首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Peat landslides that occurred in Upper Teesdale and Weardale in 1983 are described. The slides occurred after thunderstorm rainfall of a very rare intensity and return period. The slope geomorphological features and the vegetation associated with the slide areas are detailed. Baseline geotechnical data are used in a simple retrospective stability analysis, treating the peat slides as shallow translational slips. The analysis demonstrates the probable important role played by open moor drains, natural soil pipes, and prior cracking of the peat (owing to dessication or slow mass movement) in the rapid transfer of water to the failure zone within an impervious sensitive clay beneath the peat. The frequency of peat landslides and the visual persistence of sites is considered briefly in relation to substratum and peat stability within a context of climatic change. It is suggested that there may be a gradation of type from the classic Irish bog-burst, through failures of intermediate character, to peat slips involving rigid peat blocks. Antecedent conditions and the mechanism of failure need not be similar for mass movements at either end of this spectrum.  相似文献   

2.
This paper describes and analyses the structure and deposits of a large UK peat slide, located at Hart Hope in the North Pennines, northern England. This particular failure is unusual in that it occurred in the winter (February, 1995) and shows excellent preservation of the sedimentary structures and morphology, both at the failure scar and downstream. The slide was triggered by heavy rain and rapid snowmelt along the line of an active peatland stream flush. Detailed mapping of the slide area and downstream deposits demonstrate that the slide was initiated as a blocky mass that degenerated into a debris flow. The slide pattern was complex, with areas of extending and compressive movement. A wave‐like motion may have been set up in the failure. Within the slide site there was relatively little variability in block size (b axis); however, downstream the block sizes decrease rapidly. Stability analysis suggests the area at the head of the scar is most susceptible to failure. A ‘secondary’ slide area is thought to have only been initiated once the main failure had occurred. Estimates of the velocity of the flowing peat mass as it entered the main stream channel indicate a flow velocity of approximately 10 m s?1, which rapidly decreases downstream. A sediment budget for the peat slide estimates the failed peat mass to be 30 800 t. However, sediment delivery to the stream channel was relatively low. About 37% of the failed mass entered the stream channel and, despite moving initially as debris flow, the amount of deposition along the stream course and on the downstream fan is small (only about 1%). The efficiency of fluvial systems in transporting the eroded peat is therefore high. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
This paper assesses the mechanisms and pathways by which peat blocks are eroded and transported in upland fluvial systems. Observations and experiments from the north Pennines (UK) have been carried out on two contrasting river systems. Mapping of peat block distributions and appraisal of reach‐based sediment budgets clearly demonstrates that macro‐size peat is an important stream load component. In small streams block sizes can approximate the channel width and much of the peat is transported overbank. Local ‘peat jams’ and associated mineral deposition may provide an important component of channel storage. In larger systems peat blocks rapidly move down‐channel and undergo frequent exchanges between bed and bank storage. Results of peat block tracing using painted blocks indicate that once submerged, blocks of all sizes are easily transported and blocks break down rapidly by abrasion. Vegetation and bars play an important role in trapping mobile peat. In smaller streams large block transport is limited by channel jams. Smaller blocks are transported overbank but exhibit little evidence of downstream fining. In larger rivers peat blocks are more actively sorted and show downstream reduction in size from source. A simple model relating peat block diameter (Dp) to average flow depth (d) suggests three limiting transport conditions: flotation (Dp < d), rolling (d < Dp > d/2) and deposition (Dp > d/2). Experiments demonstrate that peat block transport occurs largely by rolling and floating and the transport mechanism is probably controlled by relative flow depth (d/Dp ratio). Transport velocity varies with transport mechanism (rolling is the slowest mode) and transport lengths increase as flow depth increases. Abrasion rates vary with the transport mechanism. Rolling produces greater abrasion rates and more rounded blocks. Abrasion rates vary from 0 to 10 g m?1 for blocks ranging in mass from 10 to 6000 g. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
In October 1998 a multiple peat slide occurred on the northern slopes of Cuilcagh Mountain, Co. Fermanagh, in response to a high‐magnitude rainfall event. Few peat slides have been recorded in Ireland, and a detailed field survey and investigation of the failure was undertaken within four weeks of the event. The morphological evidence indicated a distinct sequence of events which appeared to begin with the failure of a small segment of slope above a degraded transverse drainage ditch which was cut less than ten years previously. This segment of slope was no more than 42 m wide and 25 m long, with 0·7 m of peat overlying up to 0·5 m of a pale coloured clay, the latter containing small pipes and resting on the surface of a darker coloured loamy material. The failure surface was located at or near the base of the pale clay layer. Finite element software was used to model hydrological conditions within the upper segment of slope and to calculate factors of safety for different slope configurations including the presence or absence of a drain or a subsurface pipe. Using the peak shear strength of the pale clay, as determined in the laboratory, both the drain and subsurface pipes were required to obtain a factor of safety of 1·0 or less. Allowing for the uncertainties associated with the hydrological modelling of the pipes, it is suggested that the cutting of the drain and the hydrological impacts of its subsequent degradation are ultimately responsible for the failure. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
Super-scale Failure of the Southern Oregon Cascadia Margin   总被引:1,自引:0,他引:1  
—Using SeaBeam bathymetry and multichannel seismic reflection records we have identified three large submarine landslides on the southern Oregon Cascadia margin. The area enclosed by the three arcuate slide scarps is approximately 8000 km2, and involves an estimated 12,000–16,000 km3 of the accretionary wedge. The three arcuate slump escarpments are nearly coincident with the continental shelf edge on their landward margins, spanning the full width of the accretionary wedge. Debris from the slides is buried or partially buried beneath the abyssal plain, covering a subsurface area of at least 8000 km2. The three major slides, called the Heceta, Coos Basin and Blanco slides, display morphologic and structural features typical of submarine landslides. Bathymetry, sidescan sonar, and seismic reflection profiles reveal that regions of the continental slope enclosed by the scarps are chaotic, with poor penetration of seismic energy and numerous diffractions. These regions show little structural coherence, in strong contrast to the fold thrust belt tectonics of the adjacent northern Oregon margin. The bathymetric scarps correlate with listric detachment faults identified on reflection profiles that show large vertical separation and bathymetric relief. Reflection profiles on the adjacent abyssal plain image buried debris packages extending 20–35 km seaward of the base of the continental slope. In the case of the youngest slide, an intersection of slide debris and abyssal plain sediments, rather than a thrust fault, mark the base of slope. The age of the three major slides decreases from south to north, indicated by the progressive northward shallowing of buried debris packages, increasing sharpness of morphologic expression, and southward increase in post-slide reformation of the accretionary wedge. The ages of the events, derived from calculated sedimentation rates in overlying Pleistocene sediments, are approximately 110 ka, 450 ka, and 1210 ka. This series of slides traveled 25–70 km onto the abyssal plain in at least three probably catastrophic events, which may have been triggered by subduction earthquakes. The lack of internal structure in the slide packages, and the considerable distance traveled suggest catastrophic rather than incremental slip, although there could have been multiple events. The slides would have generated large tsunami in the Pacific basin, possibly larger than that generated by an earthquake alone. We have identified a potential future slide off southern Oregon that may be released in a subduction earthquake. The occurrence of the slides and subsequent subduction of the slide debris, along with evidence for margin subsidence implies that basal subduction erosion has occurred over at least the last 1 Ma. The massive failure of the southern Oregon slope may have been the result of the collision of a seamount province or aseismic ridge with the margin, suggested by the age progression of the slides and evidence for subducted basement highs. The lack of latitudinal offset between the oldest slide debris and the corresponding scarp on the continental slope implies that the forearc is translating northward at a substantial fraction of the margin-parallel convergence rate.  相似文献   

6.
On 19 September 2003, 40 landslides of 140–18 000 m3 volume occurred within 2·5 km2 on the slopes of Dooncarton Mountain (Republic of Ireland) during a storm that may have exceeded 90 mm within 90 minutes. The landslides were investigated to determine the reasons for such a high density of slope failures. All of the landslides were surveyed within four months, and nine of them were investigated in detail. The six largest landslides, all peat failures, accounted for 57% of the more than 100 000 m3 of material displaced during the event. A consistent sequence of superficial materials was found on the failed hillslopes, including an extensive iron pan at the base of a buried soil horizon 0·3 m below the base of the peat. Morphologically, almost all of the landslides occurred on steep planar slopes or around sharp convexities, with the latter failures developing retrogressively upslope. The only significant relationship found from analysis of 371 subsurface pipes and 142 seepage cracks (defined here as contiguous fissures conducting concentrated subsurface flow) across all the failures was that the thinner the peat cover, the deeper the pipes and seepage cracks occurred below the base of peat. It is concluded that most of the landslides were probably caused by a combination of excess water pressures in the buried soil horizon and the thinner overburden of peat or peaty soil associated with the steeper slope segments. Pipes and seepage cracks formed on the iron pan probably existed prior to the failure event and may have contributed to the high water pressures as rainwater inputs exceeded their discharge capacities. One large peat slide was probably triggered by excess water pressures developed within and between artificial tine cuts. The properties of the blanket peat were generally of little consequence in the occurrence of the landslides, but relict desiccation cracks and other structural weaknesses through the peat mass were probably highly significant. Although several aspects of the peat failures correspond to previously published examples, the context of these failures in terms of the topography and upland catena is distinctive. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
 Four Late Holocene pyroclastic units composed of block and ash flows, surges, ashfalls of silicic andesite and dacite composition, and associated lahar deposits represent the recent products emitted by domes on the upper part of Nevado Cayambe, a large ice-capped volcano 60 km northeast of Quito. These units are correlated stratigraphically with fallout deposits (ash and lapilli) exposed in a peat bog. Based on 14C dating of the peat and charcoal, the following ages were obtained: ∼910 years BP for the oldest unit, 680–650 years BP for the second, and 400–360 years BP for the two youngest units. Moreover, the detailed tephrochronology observed in the peat bog and in other sections implies at least 21 volcanic events during the last 4000 years, comprising three principal eruptive phases of activity that are ∼300, 800, and 900 years in duration and separated by repose intervals of 600–1000 years. The last phase, to which the four pyroclastic units belong, has probably not ended, as suggested by an eruption in 1785–1786. Thus, Cayambe, previously thought to have been dormant for a long time, should be considered active and potentially dangerous to the nearby population of the Interandean Valley. Received: 5 July 1997 / Accepted: 21 October 1997  相似文献   

8.
The initial phase of the eruption forming Ukinrek Maars during March and April 1977 were explosions from the site of West Maar. These were mainly phreatomagmatic and initially transitional to strombolian. Activity at West Maar ceased after three days upon the initiation of the East Maar. The crater quickly grew by strong phreatomagmatic explosions. During the first phases of phreatomagmatic activity at East Maar, large exotic blocks derived from a subsurface till were ejected. Ballistic studies indicate muzzle velocities for these blocks of 80–90 m s−1.Phreatomagmatic explosions ejected both juvenile and non-juvenile material which formed a low rim of ejecta (< 26 mhigh) around the crater and a localized, coarse, wellsorted (σφ = 1−1.5) juvenile and lithic fall deposit. Other fine ash beds, interstratified with the coarse beds, are more poorly sorted (σφ = 2−3) and are interpreted as fallout of wet, cohesive ash from probably milder phases of activity in the crater. Minor base surge activity damaged trees and deposited fine ash, including layers plastered on vertical surfaces. Viscous basalt lava appeared in the center of the East Maar crater almost immediately and a lava dome gradually grew in the crater despite phreatomagmatic eruptions adjacent to it.The development of these maars appears to be mainly controlled by gradual collapse of crater and conduit walls, and blasting-out of the slumped debris by phreatomagmatic explosions when rising magma contacted groundwater beneath the regional water table and a local perched aquifer.Ballistic analysis on the ejected blocks indicates a maximum muzzle velocity of 100–150 m s-1, values similar to those obtained from other ballistic studies on maar ejecta.  相似文献   

9.
The natural carbon storage function of peatland ecosystems can be severely affected by the abandonment of peat extraction, influencing peatland drainage, leading to large and persistent sources of atmospheric CO2. Moreover, these cutover peatlands have a low and variable water table position and high tension at the surface, creating harsh ecohydrological conditions for vegetation re‐establishment, particularly peat forming Sphagnum moss. Standard restoration techniques aim to restore the peatland to a carbon accumulating system through various water management techniques to improve hydrological conditions and by reintroducing Sphagnum at the surface. However, restoring the hydrology of peatlands can be expensive due to the cost of implementing the various restoration techniques. This study examines a peat extraction‐restoration technique where the acrotelm is preserved and replaced directly on the cutover peat surface. An experimental peatland adopting this acrotelm transplant technique had both a high water table and peat moisture conditions providing sufficient water at the surface for Sphagnum moss. Average water table conditions were higher at the experimental site (?8·4 ± 4·2 cm) compared to an adjacent natural site (?12·7 ± 6·0 cm) suggesting adequate moisture conditions at the restored surface. However, the experimental site experienced high variability in volumetric moisture content (VMC) in the capitula zone (upper 2 cm) where large diurnal changes in VMC (~30%) were observed, suggesting possible disturbance to the peat matrix structure during the extraction‐restoration process. However, soil–water retention analysis and physical peat properties (porosity and bulk density) suggest that no significant differences existed between the natural and experimental sites. Any structural changes within the peat matrix were therefore minimal. Moreover, low soil‐water tensions were maintained well above the laboratory measured critical Sphagnum threshold of 33% (?100 mb) VMC, further indicating favourable conditions for Sphagnum moss survival and growth. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
The hydraulic conductivity (K) of many low permeability materials is strongly scale‐dependent. In raised mires and other types of peat deposit the effects of features such as abandoned infilled ditches, root holes and localized woody material, cause K to be heterogeneous and scale‐dependent. Despite this, field measurements are routinely made using auger hole (slug) tests at the scale of only a few tens of centimetres. Such measurements are locally valid, but where the regional subsurface movement of water through peat bogs is simulated using groundwater models, typically at the scale of hundreds of metres, they give rise to a systematic underestimate of flows and an overprediction of water table elevations. Until now, techniques to obtain values at a scale sufficiently large to include the effects of localized features of higher permeability have not been applied routinely. Research at Thorne Moor, a large raised mire, demonstrates that the K of peat varies over several orders of magnitude when measured at different scales, using a variety of techniques. Laboratory and auger hole tests cannot be relied upon to provide results that represent the hydraulic conductivity of large expanses of peatland. This has significant implications for the management and long‐term restoration of peatlands where both regional and local control of water levels is crucial. For groundwater models to be used successfully to plan such schemes, it is essential to apply the K values relevant to the scale of the simulation. This paper describes and tests novel techniques, using ditches, for the derivation of K at large scales which overcome many of the problems that have been identified with conventional techniques and are capable of producing estimates that are appropriate to the application of physically based regional flow models. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
This study used a two‐dimensional steady‐state finite‐element groundwater flow model to simulate groundwater flow in two Newfoundland blanket peat complexes and to examine flow system sensitivity to changes in water table recharge and aquifer properties. The modelling results were examined within the context of peat‐forming processes in the two complexes. Modelled flow compared favourably with observed flow. The sensitivity analyses suggested that more highly decomposed bog peat along bog margins probably has/had a positive impact on net peat accumulation within bog interiors. Peat with lower hydraulic conductivity along bog margins effectively impedes lateral drainage, localizes water table drawdown to extreme bog margins, and elevates water tables along bog interiors. Peat formation and elevated water tables in adjacent poor fens/laggs currently rely on placic and ortstein horizons impeding vertical drainage and water flow inputs from adjacent bogs. Modest reductions in atmospheric recharge were found to govern bog‐flow‐system geometries in a way that would adversely affect paludification processes in adjacent fens/laggs. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
A mass‐transport deposit named MTD1 (up to 100 m in thickness) is intercalated in the upper Kiwada Formation, a Pleistocene forearc basin fill on the Boso Peninsula, east‐central Japan. The present study aims to examine the origin, age, and distribution of MTD1. MTD1 consists mainly of mudstone blocks containing thin very fine‐ to medium‐grained sandstones, and ranges from tens of centimeters to more than tens of meters in length and thickness. Correlation of marker tuff beds and application of the biostratigraphy of calcareous nannofossils suggest that the blocks in MTD1 were derived from the underlying strata. The total thickness of the stratified blocks from the different stratigraphic horizons exceeds 60 m, implying that MTD1 originated from deeply‐excavated slope failure. The slope failure occurred in a short time interval at ca 1.3 Ma. MTD1 provides an estimate of the height of the escarpment on the basis of the stratigraphic origin of the blocks.  相似文献   

13.
We report the results of numerical and analytical simulations to test the hypothesis that downward vertical flow of porewater from the crests of domed alpine and kettle bogs controls vertical porewater distributions of major solutes such as Ca and Mg. The domed Etang de la Gruère bog (EGr), Switzerland, characterized by a vertical downward gradient of 0·04 and stratified layers of peat, is chosen as a field site for the model calibration and evaluation. The middle 4‐m section of the 6·5 m thick bog peat is heavily humified and has a hydraulic conductivity of ~10?5·6 cm s?1. Above and below, peat is less humified with a hydraulic conductivity of ~10?3 cm s?1. Heuristic finite difference simulations, using Visual MODFLOW, of the bog hydraulics show that the higher conductivity peat at the bog base is critical to create the observed deep, local flow cells that substantively recharge porewater. Model results and Peclet number calculations show that before ~7000 14C yr BP diffusion of solutes from underlying mineral soils controlled the vertical distribution of porewater chemistry. From 7000 to ~1250 14C BP the porewater chemistry was probably controlled by both upward diffusion and downward advection, and after ~1250 14C yr BP porewater chemistry was probably controlled by downward advection. Concentrations of conservative major solutes in the porewaters of alpine, ombrotrophic bogs are the net effect of both downward vertical porewater movement and upward vertical diffusion, the magnitudes of which are delicately poised to the configuration of the bog water table over time and subsurface peat stratigraphy. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
The hydraulic conductivity (K) of peat beneath the water table varies over short (annual) periods. Biogenic gas bubbles block pores and reduce K, and seasonal changes in the water table position cause peat deformation, altering peat pore size distribution. Although it has been hypothesized that both processes reduce K during warm dry summer conditions, temporal variations in K under field conditions have been explained previously by peat volume changes (strain) alone. We determine the effect of both controls on K by monitoring changes in gas content (Δγ), strain and K within a poor fen. Over the growing season, K decreased by an order of magnitude. In the near‐surface peat (0.3–0.7 m), this reduction is more strongly correlated with Δγ, providing the first field‐based evidence that biogenic gas bubbles reduce K. In the deeper peat (0.7–1.3 m), K is correlated principally with strain. However, causality is uncertain because of multicollinearity between strain and Δγ. To mitigate for multicollinearity, we took advantage of a peatland drainage experiment where the water table was artificially dropped at the beginning of the growing season, reducing correlations between strain and Δγ. Δγ remained the primary cause of K variations just beneath the water table at a depth of 0.5–0.7 m, although further down through the peat profile (0.7–1.2 m) changes in K were controlled by strain. We suggest that the larger pore structure of the poorly decomposed peat just below the water table is impacted less by volume changes than that of the more decomposed peat at depth. However, within this poorly decomposed peat, K is reduced by the high gas contents that result from higher rates of methane production. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Ground water recharge is assumed to occur primarily at raised bog crests in northern peatlands, which are globally significant terrestrial carbon reservoirs. We synoptically surveyed vertical profiles of peat pore water δ18O and δ2H from a range of bog and fen landforms across the Glacial Lake Agassiz Peatlands, northern Minnesota. Contrary to our expectations, we find that local‐scale recharge penetrates to not only the basal peat at topographically high bog crests but also transitional Sphagnum lawns and low‐lying fen water tracks. Surface landscape characteristics appear to control the isotopic composition of the deeper pore waters (depths ≥0.5 m), which are partitioned into discrete ranges of δ18O on the basis of landform type (mean ± standard deviation for bog crests = ?11.9 ± 0.4‰, lawns = ?10.6 ± 0.1‰, fen water tracks = ?8.8 ± 1.0‰). Fen water tracks have a shallow free‐water surface that is seasonally enriched by isotope fractionating evaporation, fingerprinting recharge to underlying pore waters at depths ≥3 m. Isotope mass balance calculations indicate on average 12% of the waters we sampled from the basal peat of the fen water tracks was lost to surface evaporation, which occurred prior to advection and dispersion into the underlying formation. These new data provide direct support for the hypothesis that methane production in deeper peat strata is fuelled by the downward transport of labile carbon substrates from the surface of northern peat basins. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Cliff stability within the Pembrokeshire Coast National Park was evaluated using a numerical model applied at four sites representative of rock mass failure phenomena and major sedimentary geological sequences. The sites were: Mill Bay, (Old Red Sandstone); St Govan's Head, Carboniferous Limestone (Dinantian); Druidston, Millstone Grit (Namurian) and Lower Coal Measures (Westphalian); and Wiseman's Bridge, Lower Coal Measures (Westphalian). The study integrated a range of geotechnical parameters, measured in the field and laboratory, into a model to predict the likely failure mechanisms. The model is based on the existence of rock prisms delineated by structural parameters, i.e. joints, bedding planes and critical tension fractures behind the cliff face. An iterative approach is used to define the dip of the most probable, stepped failure surface at the base of any potentially unstable multiblock system and to calculate the sliding and toppling forces for each block in the cliff mass. Prediction compared favourably with field observations at three of the four selected sites, i.e. Druidston, St Govan's Head and Wiseman's Bridge. At Druidston sliding is predicted and dominates in the basal blocks, whilst toppling is confined to the upper cliff and is dependent on movement of the lower structural units. St Govan-s Head is shown to have a low risk of toppling and sliding and this was predicted except where basal undercutting reaches a depth of 1·0 m or lateral forces exceed 100 kN m−2 when failure could occur. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
On May 7, 1986, the residents of Tuscaloosa, Alabama, felt a seismic event of local magnitude 3.6 that occurred at the same time as a rock burst and roof collapse in an active longwall coal mine. Visual inspection of the seismograms reveals a deficiency in energy at frequencies above 20 Hz compared to tectonic earthquakes or surface blasts. The predominance of energy below 5 Hz may explain reports of body wave magnitudes (m b ) greater than 4.2. Also, 1.0 Hz surface waves were more strongly excited than body waves and may explain local felt effects more typically associated with greater epicentral distances. All recorded first motions were dilatational. The concentration of stations in the northern hemisphere allows reverse motion on an east-trending near-vertical plane or strike-slip motion on northwest or southeast trending planes. The reverse focal mechanism is preferred, because the area of roof collapse and the area of active longwall mining are located between two east-striking loose vertical fracture zones. The characteristics of the seismic event suggest that it might have been sudden shear failure resulting from accumulated strain energy in overlying strata behind an active longwall. Although an alternate interpretation of the focal mechanism as an implosion or shear failure in the strata above previously mined out areas is also allowed by the first motion data, this alternate intepretation is not supported by geological data.  相似文献   

18.
Triaxial compression experiments were performed on samples of natural granular fault gouge from the Lopez Fault in Southern California. This material consists primarily of quartz and has a self-similar grain size distribution thought to result from natural cataclasis. The experiments were performed at a constant mean effective stress of 150 MPa, to expose the volumetric strains associated with shear failure. The failure strength is parameterized by the coefficient of internal friction , based on the Mohr-Coulomb failure criterion.Samples of remoulded Lopez gouge have internal friction =0.6±0.02. In experiments where the ends of the sample are constrained to remain axially aligned, suppressing strain localisation, the sample compacts before failure and dilates persistently after failure. In experiments where one end of the sample is free to move laterally, the strain localises to a single oblique fault at around the point of failure; some dilation occurs but does not persist. A comparison of these experiments suggests that dilation is confined to the region of shear localisation in a sample. Overconsolidated samples have slightly larger failure strengths than normally consolidated samples, and smaller axial strains are required to cause failure. A large amount of dilation occurs after failure in heavily overconsolidated samples, suggesting that dilation is occurring throughout the sample. Undisturbed samples of Lopez gouge, cored from the outcrop, have internal friction in the range =0.4–0.6; the upper end of this range corresponds to the value established for remoulded Lopez gouge. Some kind of natural heterogeneity within the undisturbed samples is probably responsible for their low, variable strength. In samples of simulated gouge, with a more uniform grain size, active cataclasis during axial loading leads to large amounts of compaction. Larger axial strains are required to cause failure in simulated gouge, but the failure strength is similar to that of natural Lopez gouge.Use of the Mohr-Coulomb failure criterion to interpret the results from this study, and other recent studies on intact rock and granular gouge, leads to values of that depend on the loading configuration and the intact or granular state of the sample. Conceptual models are advanced to account for these descrepancies. The consequences for strain-weakening of natural faults are also discussed.  相似文献   

19.
Citlaltépetl volcano is the easternmost stratovolcano in the Trans-Mexican Volcanic Belt. Situated within 110 km of Veracruz, it has experienced two major collapse events and, subsequent to its last collapse, rebuilt a massive, symmetrical summit cone. To enhance hazard mitigation efforts we assess the stability of Citlaltépetl's summit cone, the area thought most likely to fail during a potential massive collapse event. Through geologic mapping, alteration mineralogy, geotechnical studies, and stability modeling we provide important constraints on the likelihood, location, and size of a potential collapse event. The volcano's summit cone is young, highly fractured, and hydrothermally altered. Fractures are most abundant within 5–20-m wide zones defined by multiple parallel to subparallel fractures. Alteration is most pervasive within the fracture systems and includes acid sulfate, advanced argillic, argillic, and silicification ranks. Fractured and altered rocks both have significantly reduced rock strengths, representing likely bounding surfaces for future collapse events. The fracture systems and altered rock masses occur non-uniformly, as an orthogonal set with N–S and E–W trends. Because these surfaces occur non-uniformly, hazards associated with collapse are unevenly distributed about the volcano. Depending on uncertainties in bounding surfaces, but constrained by detailed field studies, potential failure volumes are estimated to range between 0.04–0.5 km3. Stability modeling was used to assess potential edifice failure events. Modeled failure of the outer portion of the cone initially occurs as an "intact block" bounded by steeply dipping joints and outwardly dipping flow contacts. As collapse progresses, more of the inner cone fails and the outer "intact" block transforms into a collection of smaller blocks. Eventually, a steep face develops in the uppermost and central portion of the cone. This modeled failure morphology mimics collapse amphitheaters present at many of the world's stratovolcanoes that have experienced massive failure events.Editorial responsibility: H. Shinohara  相似文献   

20.
A 4.3 m‐long peat sequence from the shore of Lake Tiriara, Mangaia, Cook Islands, was analyzed using an ITRAX core scanner equipped with a magnetic susceptibility meter. Variations in the elemental profiles, providing insights into long‐ and short‐term environmental changes over the last 3500 years, are supported by grain size data and diatom assemblages. The scattering ratio (Mo Inc/Mo Coh) was evaluated and found to represent a good proxy for organic matter in peat. X‐Ray Fluorescence (XRF) data were processed by principal component analysis that confirmed the distinction of biogenic and detrital phases, organic matter and elements of marine origin. The record preserved in the peat sequence includes a peatland infilling stage followed by alternating drier and wetter periods. A notable steady increase in clay associated with high counts of detrital elements from 2000–1700 cal yr BP is attributed to increased erosion, which is most probably linked with human colonization and/or more intense chemical weathering linked with a wetter climate. Freshwater gastropods (Melanoides sp.), which were possibly introduced by humans, or are native, occupied the wetland during a period of lower water level about 1000–1100 cal yr BP. Short‐term changes in the elemental profiles are often linked with slight coarsening of the inorganic fraction that is, however, only revealed after grain size analysis. Peaks in marine indicators (Br, Cl, S, and/or Ca) associated with marine‐dominated diatom assemblages most probably represent marine incursions through the underground tunnel in the makatea, a fossilized, uplifted coral limestone rim. While none of the marine event units present characteristics typical of cyclone or tsunami deposits, the concurrent or absent peak of detrital elements (Fe, Si, Rb, Ti, K) attributed to increased erosion of the volcanic cone associated with a cyclone is used to distinguish both types of events, as also suggested by principal component analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号