首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fragility curves for retrofitted bridges indicate the influence of various retrofit measures on the probability of achieving specified levels of damage. This paper presents an analytical methodology for developing fragility curves for classes of retrofitted bridge systems. The approach captures the impact of retrofit on the vulnerability of multiple components, which to date has not been adequately addressed, and results in a comparison of the system fragility before and after the application of different retrofit measures. Details presented include analytical modeling, uncertainty treatment, impact of retrofit on demand models, capacity estimates, and component and system fragility curves. The findings indicate the importance of evaluating the impact of retrofit not only on the targeted response quantity and component vulnerability but also on the overall bridge fragility. As illustrated by the case study of a retrofitted multi‐span continuous (MSC) concrete girder bridge class, a given retrofit measure may have a positive impact on some components, yet no impact or a negative impact on other critical components. Consideration of the fragility based only on individual retrofitted components, without regard for the system, may lead to over‐estimation or under‐estimation of the impact on the bridge fragility. The proposed methodology provides an opportunity to effectively compare the fragility of the MSC concrete bridge retrofit with a range of different retrofit measures. The most effective retrofit in reducing probable damage for a given intensity is a function of the damage state of interest. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
A performance‐based earthquake engineering approach is developed for the seismic risk assessment of fixed‐roof atmospheric steel liquid storage tanks. The proposed method is based on a surrogate single‐mass model that consists of elastic beam‐column elements and nonlinear springs. Appropriate component and system‐level damage states are defined, following the identification of commonly observed modes of failure that may occur during an earthquake. Incremental dynamic analysis and simplified cloud are offered as potential approaches to derive the distribution of response parameters given the seismic intensity. A parametric investigation that engages the aforementioned analysis methods is conducted on 3 tanks of varying geometry, considering both anchored and unanchored support conditions. Special attention is paid to the elephant's foot buckling formation, by offering extensive information on its capacity and demand representation within the seismic risk assessment process. Seismic fragility curves are initially extracted for the component‐level damage states, to compare the effect of each analysis approach on the estimated performance. The subsequent generation of system‐level fragility curves reveals the issue of nonsequential damage states, whereby significant damage may abruptly appear without precursory lighter damage states.  相似文献   

3.
The objective of the study presented in this paper is to investigate the effects of masonry infills on the shear demand and failure of columns for the case when reinforced concrete frames with such infills are modeled by means of simplified nonlinear models that are not capable of the direct simulation of these effects. It is shown that an approximate simulation of the shear failure of columns can be achieved through an iterative procedure that involves pushover analysis, post‐processing of the analysis results using limit‐state checks of the components, and model adaptation if shear failure of columns is detected. The fragility parameters and the mean annual frequency of limit‐state exceedance are computed on the basis of nonlinear dynamic analysis by using an equivalent SDOF model. The proposed methodology is demonstrated by means of two examples. It was shown that the strength of the four‐story and seven‐story buildings and their deformation capacity are significantly overestimated if column shear failure due to the effects of masonry infills is neglected, whereas the mean annual frequency of limit‐state exceedance for the analyzed limit states is significantly larger than that estimated for the case if the shear failure of columns is neglected. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This study presents a seismic fragility analysis of low‐rise masonry in‐filled (MI) reinforced concrete (RC) buildings using a proposed coefficient‐based spectral acceleration method. The coefficient‐based method, without requiring any complicated finite element analysis, is a simplified procedure for assessing the spectral acceleration demand (or capacity) of buildings subjected to earthquakes. This paper begins with a calibration of the proposed coefficient‐based method for low‐rise MI RC buildings using published experimental results obtained from shaking table tests. Spectral acceleration‐based fragility curves for low‐rise MI RC buildings under various inter‐story drift limits are then constructed using the calibrated coefficient‐based method. A comparison of the experimental and estimated results indicates that the simplified coefficient‐based method can provide good approximations of the spectral accelerations at peak loads of low‐rise MI RC buildings, if a proper set of drift‐related factors and initial fundamental periods of structures are used. Moreover, the fragility curves constructed using the coefficient‐based method can provide a satisfactory vulnerability evaluation for low‐rise MI RC buildings under a given performance level. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A performance-based adaptive methodology for the seismic assessment of highway bridges is proposed. The proposed methodology is based on an Inverse (I), Adaptive (A) application of the Capacity Spectrum Method (CSM), with the capacity curve of the bridge derived through a Displacement-based Adaptive Pushover (DAP) analysis. For this reason, the acronym IACSM is used to identify the proposed methodology. A number of Performance Levels (PLs), for which the seismic vulnerability and seismic risk of the bridge shall be evaluated, are identified. Each PL is associated to a number of Damage States (DSs) of the critical members of the bridge (piers, abutments, joints and bearing devices). The IACSM provides the earthquake intensity level (PGA) corresponding to the attainment of the selected DSs, using over-damped elastic response spectra as demand curves. The seismic vulnerability of the bridge is described by means of fragility curves, derived based on the PGA values associated to each DS. The seismic risk of the bridge is evaluated as convolution integral of the product between the fragility curves and the seismic hazard curve of the bridge site. In this paper, the key aspects and basic assumptions of the proposed methodology are presented first. The IACSM is then applied to nine existing simply supported deck bridges, characterized by different types of piers and bearing devices. Finally, the IACSM predictions are compared with the results of nonlinear response time-history analysis, carried out using a set of seven ground motions scaled to the expected PGA values.  相似文献   

6.
Fragility curves are found to be useful tools for predicting the extent of probable damage. They show the probability of highway structure damage as a function of strong motion parameters, and they allow the estimation of a level of damage probability for a known ground motion index. In this study, an analytical approach was adopted to develop the fragility curves for highway bridges based on numerical simulation. Four typical RC bridge piers and two RC bridge structures were considered, of which one was a non‐isolated system and the other was an isolated system, and they were designed according to the seismic design code in Japan. From a total of 250 strong motion records, selected from Japan, the United States, and Taiwan, non‐linear time history analyses were performed, and the damage indices for the bridge structures were obtained. Using the damage indices and ground motion parameters, fragility curves for the four bridge piers and the two bridge structures were constructed assuming a lognormal distribution. It was found that there was a significant effect on the fragility curves due to the variation of structural parameters. The relationship between the fragility curve parameters and the over‐strength ratio of the structures was also obtained by performing a linear regression analysis. It was observed that the fragility curve parameters showed a strong correlation with the over‐strength ratio of the structures. Based on the observed correlation between the fragility curve parameters and the over‐strength ratio of the structures, a simplified method was developed to construct the fragility curves for highway bridges using 30 non‐isolated bridge models. The simplified method may be a very useful tool to construct the fragility curves for non‐isolated highway bridges in Japan, which fall within the same group and have similar characteristics. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Bridge fragility curves, which express the probability of a bridge reaching a certain damage state for a given ground motion parameter, play an important role in the overall seismic risk assessment of a transportation network. Current analytical methodologies for generating bridge fragility curves do not adequately account for all major contributing bridge components. Studies have shown that for some bridge types, neglecting to account for all of these components can lead to a misrepresentation of the bridges' overall fragilities. In this study, an expanded methodology for the generation of analytical fragility curves for highway bridges is presented. This methodology considers the contribution of the major components of the bridge, such as the columns, bearings and abutments, to its overall bridge system fragility. In particular, this methodology utilizes probability tools to directly estimate the bridge system fragility from the individual component fragilities. This is illustrated using a bridge whose construction and configuration are typical to the Central and Southeastern United States and the results are presented and discussed herein. This study shows that the bridge as a system is more fragile than any one of the individual components. Assuming that the columns represent the entire bridge system can result in errors as large as 50% at higher damage states. This provides support to the assertion that multiple bridge components should be considered in the development of bridge fragility curves. The findings also show that estimation of the bridge fragilities by their first‐order bounds could result in errors of up to 40%. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Fragility curves constitute an emerging tool for the seismic risk assessment of all constructions at risk. They describe the probability of a structure being damaged beyond a specific damage state for various levels of ground shaking. They are usually represented as two-parameter (median and log-standard deviation) cumulative lognormal distributions. In this paper a numerical approach is proposed for the construction of fragility curves for geotechnical constructions. The methodology is applied to cantilever bridge abutments on surface foundation often used in road and railway networks. The response of the abutment to increasing levels of seismic intensity is evaluated using a 2D nonlinear FE model, with an elasto-plastic criterion to simulate the soil behavior. A calibration procedure is followed in order to account for the dependency of both the stiffness and the damping on the soil strain level. The effect of soil conditions and ground motion characteristics on the global soil and structural response is taken into account considering different typical soil profiles and seismic input motions. The objective is to assess the vulnerability of the road network as regards the performance of the bridge abutments; therefore, the level of damage, is described in terms of the range of settlement that is observed on the backfill. The effect of backfill material to the overall response of the abutment wall is also examined. The fragility curves are estimated based on the evolution of damage with increasing earthquake intensity. The proposed approach allows the evaluation of new fragility curves considering the distinctive features of the structure geometry, the input motion and the soil properties as well as the associated uncertainties. The proposed fragility curves are verified based on observed damage during the 2007 Niigata-Chuetsu Oki earthquake.  相似文献   

9.
Bridges are crucial to the transportation network in a region struck by an earthquake. Collapse of a bridge determines if a road is passable. Ability of a bridge to carry traffic load after an earthquake determines the weight and speed of vehicles that can cross it. Extent of system and component structural damage in bridges determines the cost and time required for repair. Today, post‐earthquake bridge evaluation is qualitative rather than quantitative. The research presented in this paper aims to provide a quantitative engineering basis for quick and reliable evaluation of the ability of a typical highway overpass bridge to function after an earthquake. The Pacific Earthquake Engineering Research (PEER) Center's probabilistic performance‐based evaluation approach provides the framework for post‐earthquake bridge evaluation. An analytical study was performed that linked engineering demand parameters to earthquake intensity measures. The PEER structural performance database and reliability analysis tools were then used to link demand parameters to damage measures. Finally, decision variables were developed to describe three limit states, repair cost, traffic function, and collapse, in terms of induced damage. This paper presents the analytical models used to evaluate post‐earthquake bridge function, decision variables and their correlation to the considered limit states, and fragility curves that represent the probability of exceeding a bridge function limit state given an earthquake intensity. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Masonry arch bridges are crucial elements in the railway transportation network throughout Europe. Although significant advances in seismic risk assessment of various bridge types have been made by developing fragility curves of generalized classes of structures, there are no comparable tools for masonry arch structures. In this context, this paper presents the construction of seismic fragility curves of single-span masonry bridges according to the limit analysis method. An iterative procedure is implemented to define the capacity curve of the equivalent single degree of freedom system through non-linear kinematic analysis. The process involves determination of the collapse mechanism, calculation of the limit load multiplier, and definition of the thrust line. The intrinsic variability of the seismic action is incorporated with the use of different sets of elastic spectra compatible with EC 8 Type-1 spectrum for various types of soil, with peak ground acceleration varying over the range 0.05–1.5 g. The fragility curves of the generalized classes of single-span masonry bridges are finally obtained from the effective ranges of the main geometric and material parameters affecting arch bridge capacity.  相似文献   

11.
The lack of knowledge concerning modelling existing buildings leads to significant variability in fragility curves for single or grouped existing buildings. This study aims to investigate the uncertainties of fragility curves, with special consideration of the single-building sigma. Experimental data and simplified models are applied to the BRD tower in Bucharest, Romania, a RC building with permanent instrumentation. A three-step methodology is applied: (1) adjustment of a linear MDOF model for experimental modal analysis using a Timoshenko beam model and based on Anderson's criteria, (2) computation of the structure's response to a large set of accelerograms simulated by SIMQKE software, considering twelve ground motion parameters as intensity measurements (IM), and (3) construction of the fragility curves by comparing numerical interstory drift with the threshold criteria provided by the Hazus methodology for the slight damage state. By introducing experimental data into the model, uncertainty is reduced to 0.02 considering Sd ) as seismic intensity IM and uncertainty related to the model is assessed at 0.03. These values must be compared with the total uncertainty value of around 0.7 provided by the Hazus methodology.  相似文献   

12.
It is desirable that nonlinear dynamic analyses for structural fragility assessment are performed using unscaled ground motions. The widespread use of a simple dynamic analysis procedure known as Cloud Analysis, which uses unscaled records and linear regression, has been impeded by its alleged inaccuracies. This paper investigates fragility assessment based on Cloud Analysis by adopting, as the performance variable, a scalar demand to capacity ratio that is equal to unity at the onset of limit state. It is shown that the Cloud Analysis, performed based on a careful choice of records, leads to reasonable and efficient fragility estimates. There are 2 main rules to keep in mind for record selection: to make sure that a good portion of the records leads to a demand to capacity ratio greater than unity and that the dispersion in records' seismic intensity is considerable. An inevitable consequence of implementing these rules is that one often needs to deal with the so‐called collapse cases. To formally consider the collapse cases, a 5‐parameter fragility model is proposed that mixes the simple regression in the logarithmic scale with logistic regression. The joint distribution of fragility parameters can be obtained by adopting a Markov Chain Monte Carlo simulation scheme leading directly to the fragility and its confidence intervals. The resulting fragility curves compare reasonably with those obtained from the Incremental Dynamic Analysis and Multiple Stripe Analysis with (variable) conditional spectrum–compatible suites of records at different intensity levels for 3 older reinforced concrete frames with shear‐, shear‐flexure‐, and flexure‐dominant behavior.  相似文献   

13.
Seismic fragility of lightly reinforced concrete frames with masonry infills is assessed through numerical simulations considering uncertainty in ground motion and building materials. To achieve this aim, a numerical model of the components is developed, a rational approach to proportion and locate individual struts in the equivalent three‐strut model is proposed, and an explicit nonlinear column shear response model accounting for the infill–column interaction and soft‐story mechanism is employed. The proposed numerical model is used to (1) generate probabilistic seismic demand models accounting for a wide range of ground motion intensities with different frequency content and (2) determine limit state models obtained from nonlinear pushover analysis and incremental dynamic analysis. Using the demand and limit state model, fragility curves for the masonry‐infilled frames are developed to investigate the impact of various infill properties on the frame vulnerability. It is observed that the beneficial effect of the masonry infill diminishes at more severe limit states because of the interaction with the boundary frame. In some cases, this effect almost vanishes or switches to an adverse effect beyond a threshold of ground motion intensities. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A framework for the generation of bridge-specific fragility curves utilizing the capabilities of machine learning and stripe-based approach is presented in this paper. The proposed methodology using random forests helps to generate or update fragility curves for a new set of input parameters with less computational effort and expensive resimulation. The methodology does not place any assumptions on the demand model of various components and helps to identify the relative importance of each uncertain variable in their seismic demand model. The methodology is demonstrated through the case study of a multispan concrete bridge class in California. Geometric, material, and structural uncertainties are accounted for in the generation of bridge numerical models and their fragility curves. It is also noted that the traditional lognormality assumption on the demand model leads to unrealistic fragility estimates. Fragility results obtained by the proposed methodology can be deployed in a risk assessment platform such as HAZUS for regional loss estimation.  相似文献   

15.
The paper illustrates a probabilistic methodology for assessing the vulnerability of existing reinforced concrete (RC) buildings with limited ductility capacity retrofitted by means of dissipative braces. The aim is to highlight the most important parameters controlling the capacity of these coupled systems and specific aspects concerning the response uncertainties. The proposed methodology is based on the use of local engineering demand parameters for monitoring the seismic response and on the development of component and system fragility curves before and after the retrofit. In the first part of the paper, the methodology is illustrated by highlighting its advantages with respect to the existing approaches. Then, its capability and effectiveness are tested by considering a benchmark two‐dimensional RC frame designed for gravity‐loads only. The frame is retrofitted by introducing elasto‐plastic dissipative braces designed for different levels of base shear capacity. The obtained results show the effectiveness of the methodology in describing the changes in the response and in the failure modalities before and after the retrofit, for different retrofit levels. Moreover, the retrofit effectiveness is evaluated by introducing proper synthetic parameters describing the fragility curves and by stressing the importance of employing local engineering demand parameters (EDPs) rather than global EDPs in the seismic risk evaluation of coupled systems consisting in low‐ductility RC frames and dissipative braces. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Seismic fragility curves for greek bridges: methodology and case studies   总被引:2,自引:1,他引:1  
This study focusses on the estimation of seismic fragility curves for all common bridge types found in modern greek motorways. At first a classification scheme is developed in order to classify the existing bridges into a sufficient number of classes. A total of 11 representative bridge classes resulted, based on the type of piers, deck, and pier-to-deck connection. Then an analytical methodology for deriving fragility curves is proposed and applied to the representative bridge models. This procedure is based on pushover analysis of the entire bridge and definition of damage states in terms of parameters of the bridge pushover curves. The procedure differentiates the way of defining damage according to the seismic energy dissipation mechanism in each bridge, i.e. bridges with yielding piers of the column type and bridges with bearings (with or without seismic links) and non-yielding piers of the wall type. The activation of the abutment-backfill system due to closure of the gap between the deck and the abutments is also taken into account. The derived fragility curves are subjected to a first calibration against empirical curves based on damage data from the US and Japan.  相似文献   

17.
This paper aims to assess the seismic fragility of vehicle-bridge-interaction (VBI) systems considering the effects of vehicle types, traffic conditions, and road surface qualities. A stochastic nonlinear mechanical model for the earthquake-VBI system is developed, and the fragility functions for the proposed VBI model are derived by considering the relevant probabilistic seismic demand parameters. On the basis of a typical four-span continuous prestressed concrete highway bridge in China, a complete numerical model for the VBI system is built considering multiple uncertainties from bridge and vehicle parameters, as well as the road surface qualities. A total of 120 real ground motion records with different combinations of magnitude-source-to-site distance (M-R) and earthquake intensity characteristics are selected. Meanwhile, 80 scenarios in terms of different combinations of vehicle types, vehicle speeds, and road surface irregularities are defined. In this context, 96,000 nonlinear time-history analyses are performed, and the developed fragility models are applied to the VBI system at both component and system levels. Results indicate that the fragilities of pier drift, bearing shear strain, and the overall VBI system increase with the increase of the vehicle weight or the decrease of the vehicle speed, while the vertical deck displacement is dominated by the vehicle weight. It is also found that the road surface quality has a negligible effect on both component and system fragilities.  相似文献   

18.
A simplified fragility analysis of fan type cable stayed bridges using Probabilistic Risk Analysis (PRA) procedure is presented for determining their failure probability under random ground motion. Seismic input to the bridge support is considered to be a risk consistent response spectrum which is obtained from a separate analysis. For the response analysis, the bridge deck is modeled as a beam supported on springs at different points. The stiffnesses of the springs are determined by a separate 2D static analysis of cable-tower-deck system. The analysis provides a coupled stiffness matrix for the spring system. A continuum method of analysis using dynamic stiffness is used to determine the dynamic properties of the bridges .The response of the bridge deck is obtained by the response spectrum method of analysis as applied to multidegree of freedom system which duly takes into account the quasi - static component of bridge deck vibration. The fragility analysis includes uncertainties arising due to the variation in ground motion, material property, modeling, method of analysis, ductility factor and damage concentration effect. Probability of failure of the bridge deck is determined by the First Order Second Moment (FOSM) method of reliability. A three span double plane symmetrical fan type cable stayed bridge of total span 689 m, is used as an illustrative example. The fragility curves for the bridge deck failure are obtained under a number of parametric variations. Some of the important conclusions of the study indicate that (i) not only vertical component but also the horizontal component of ground motion has considerable effect on the probability of failure; (ii) ground motion with no time lag between support excitations provides a smaller probability of failure as compared to ground motion with very large time lag between support excitation; and (iii) probability of failure may considerably increase for soft soil condition.  相似文献   

19.
基于OpenSEES平台,以某近海刚构桥桥墩为例,选取符合场地类型的地震波,并根据地震记录构造主余震序列。运用"能力需求比"分析方法建立不同服役时间节点桥墩控制截面在不同损伤状态条件下的地震易损性曲线,研究氯离子侵蚀和主余震序列对桥墩抗震性能的影响。结果表明:同一损伤状态的超越概率随着服役时间延长和PGA增大而不断变大,且随着损伤状态等级提高,超越概率逐渐降低。轻微损伤状态下,主余震序列对桥墩易损性影响较小;中等损伤、严重破坏和完全倒塌状态下,同一服役期,考虑主余震序列作用下桥墩的超越概率相比于仅考虑主震作用明显增大。  相似文献   

20.
Incremental dynamic analysis (IDA) leads to curves expressed in terms of structural response versus intensity, commonly known as the IDA curves. It is known that implementation of IDA usually involves significant computational effort and most often significant scaling of the original records to various intensity levels. Employing as the performance variable the critical demand to capacity ratio (DCR) throughout the structure, which is equal to unity at the onset of the limit state, facilitates the identification of the intensity values at the onset of a desired limit state and hence the implementation of the IDA procedure. Employing the structural response to un‐scaled records and the corresponding regression‐based response predictions (a.k.a., the “Cloud Analysis”) helps in identifying the range of intensity values corresponding to demand to capacity ratio values in the vicinity of unity. The Cloud to IDA procedure for structural fragility assessment is proposed on the premise of exploiting the Cloud Analysis results to obtain the IDA curves both with minimum number of analyses and minimum amount of scaling. The transverse frame of a shear‐critical 7‐story older RC building in Van Nuys, CA, which is modeled in Opensees with fiber‐section considering the flexural‐shear‐axial interactions and the bar slip, is employed as a case study. It is demonstrated, by comparing the results to IDA and other state of the art non‐linear dynamic procedures based on no scaling or spectral‐shape‐compatible scaling, that the Cloud to IDA procedure leads to reliable results in terms of structural fragility and risk for the prescribed limit state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号