首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A conventional velocity-stack gather consists of constant-velocity CMP-stacked traces. It emphasizes the energy associated with the events that follow hyperbolic traveltime trajectories in the CMP gather. Amplitudes along a hyperbola on a CMP gather ideally map onto a point on a velocity-stack gather. Because a CMP gather only includes a cable-length portion of a hyperbolic traveltime trajectory, this mapping is not exact. The finite cable length, discrete sampling along the offset axis and the closeness of hyperbolic summation paths at near-offsets cause smearing of the stacked amplitudes along the velocity axis. Unless this smearing is removed, inverse mapping from velocity space (the plane of stacking velocity versus two-way zero-offset time) back to offset space (the plane of offset versus two-way traveltime) does not reproduce the amplitudes in the original CMP gather. The gather resulting from the inverse mapping can be considered as the model CMP gather that contains only the hyperbolic events from the actual CMP gather. A least-squares minimization of the energy contained in the difference between the actual CMP gather and the model CMP gather removes smearing of amplitudes on the velocity-stack gather and increases velocity resolution. A practical application of this procedure is in separation of multiples from primaries. A method is described to obtain proper velocity-stack gathers with reduced amplitude smearing. The method involves a t2-stretching in the offset space. This stretching maps reflection amplitudes along hyperbolic moveout curves to those along parabolic moveout curves. The CMP gather is Fourier transformed along the stretched axis. Each Fourier component is then used in the least-squares minimization to compute the corresponding Fourier component of the proper velocity-stack gather. Finally, inverse transforming and undoing the stretching yield the proper velocity-stack gather, which can then be inverse mapped back to the offset space. During this inverse mapping, multiples, primaries or all of the hyperbolic events can be modelled. An application of velocity-stack processing to multiple suppression is demonstrated with a field data example.  相似文献   

2.
The simulation of a zero-offset (ZO) stack section from multi-coverage reflection data is a standard imaging method in seismic processing. It significantly reduces the amount of data and increases the signal-to-noise ratio due to constructive interference of correlated events. Conventional imaging methods, e.g., normal moveout (NMO)/dip moveout (DMO)/stack or pre-stack migration, require a sufficiently accurate macro-velocity model to yield appropriate results, whereas the recently introduced common-reflection-surface stack does not depend on a macro-velocity model. For two-dimensional seismic acquisition, its stacking operator depends on three wavefield attributes and approximates the kinematic multi-coverage reflection response of curved interfaces in laterally inhomogeneous media. The common-reflection-surface stack moveout formula defines a stacking surface for each particular sample in the ZO section to be simulated. The stacking surfaces that fit best to actual events in the multi-coverage data set are determined by means of coherency analysis. In this way, we obtain a coherency section and a section of each of the three wavefield attributes defining the stacking operator. These wavefield attributes characterize the curved interfaces and, thus, can be used for a subsequent inversion. In this paper, we focus on an application to a real land data set acquired over a salt dome. We propose three separate one-parametric search and coherency analyses to determine initial common-reflection-surface stack parameters. Optionally, a subsequent optimization algorithm can be performed to refine these initial parameters. The simulated ZO section obtained by the common-reflection-surface stack is compared to the result of a conventional NMO/DMO/stack processing sequence. We observe an increased signal-to-noise ratio and an improved continuity along the events for our proposed method — without loss of lateral resolution.  相似文献   

3.
三维三分量(3D3C)陆地反射PS转换波共中心点(CMP)叠加成像方法,虽然抽道集简单,但是对实际资料处理结果往往不理想.尤其当反射界面为三维倾斜界面时,其成像质量较差.本文提出有三个主要因素影响其成像质量:第一,转换点离散.运用实例计算得出,转换点离散度随着纵横波速度比、偏移距和界面倾角的增大而增大.相同界面倾角,不同测线方位的转换点离散度不同,视倾角的绝对值越大离散度也越大;第二,道集内静校正量差异增大.CMP道集中,由于转换点离散使得转换点横向跨度较大,经倾斜界面反射转换的S波出射到近地表地层时的角度差异也较大,导致静校突出;第三,加大动校叠加复杂性.三维倾斜界面PS波CMP道集近炮检距时距方程可表示为双曲形式,但是曲线的顶点位置和动校速度同时随测线方位变化,使得CMP道集同相轴很难校平,动校叠加过程很复杂.  相似文献   

4.
The common-reflection-surface (CRS) stack can be viewed as a physically justified extension of the classical common-midpoint (CMP) stack, utilizing redundant information not only in a single, but in several neighboring CMP gathers. The zero-offset CRS moveout is parameterized in terms of kinematic attributes, which utilize reciprocity and raypath symmetries to describe the two-way process of the actual wave propagation in active seismic experiments by the propagation of auxiliary one-way wavefronts. For the diffraction case, only the attributes of a single one-way wavefront, originating from the diffractor are sufficient to explain the traveltime differences observed at the surface. While paraxial ray theory gives rise to a second-order approximation of the CRS traveltime, many higher-order approximations were subsequently introduced either by squaring the second-order expression or by employing principles of optics and geometry. It was recently discovered that all of these higher-order operators can be formulated either for the optical projection or in an auxiliary medium of a constant effective velocity. Utilizing this duality and the one-way nature of the CRS parameters, we present a simple data-driven stacking scheme that allows for the estimation of the a priori unknown excitation time of a passive seismic source. In addition, we demonstrate with a simple data example that the output of the suggested workflow can directly be used for subsequent focusing-based normal-incidence-point (NIP) tomography, leading to a reliable localization in depth.  相似文献   

5.
Common-reflection-surface (CRS) stack for common offset   总被引:8,自引:0,他引:8  
We provide a data-driven macro-model-independent stacking technique that migrates 2D prestack multicoverage data into a common-offset (CO) section. We call this new process the CO common-reflection-surface (CRS) stack. It can be viewed as the generalization of the zero-offset (ZO) CRS stack, by which 2D multicoverage data are stacked into a well-simulated ZO section. The CO CRS stack formula can be tailored to stack P-P, S-S reflections as well as P-S or S-P converted reflections. We point out some potential applications of the five kinematic data-derived attributes obtained by the CO CRS stack for each stack value. These include (i) the determination of the geometrical spreading factor for reflections, which plays an important role in the construction of the true-amplitude CO section, and (ii) the separation of the diffractions from reflection events. As a by-product of formulating the CO CRS stack formula, we have also derived a formula to perform a data-driven prestack time migration.  相似文献   

6.
A velocity model updating approach is developed based on moveout analysis of the diffraction curve of PS converted waves in prestack Kirchhoff time migration. The diffraction curve can be expressed as a product of two factors: one factor depending on the PS converted‐wave velocity only, and the other factor depending on all parameters. The velocity‐dependent factor represents the hyperbolic behaviour of the moveout and the other is a scale factor that represents the non‐hyperbolic behaviour of the moveout. This non‐hyperbolic behaviour of the moveout can be corrected in prestack Kirchhoff time migration to form an inverse normal‐moveout common‐image‐point gather in which only the hyperbolic moveout is retained. This hyperbolic moveout is the moveout that would be obtained in an isotropic equivalent medium. A hyperbolic velocity is then estimated from this gather by applying hyperbolic moveout analysis. Theoretical analysis shows that for any given initial velocity, the estimated hyperbolic velocity converges by an iterative procedure to the optimal velocity if the velocity ratio is optimal or to a value closer to the optimal velocity if the velocity ratio is not optimal. The velocity ratio (VP/VS) has little effect on the estimation of the velocity. Applying this technique to a synthetic seismic data set confirms the theoretical findings. This work provides a practical method to obtain the velocity model for prestack Kirchhoff time migration.  相似文献   

7.
The moveout of P-SV mode-converted seismic reflection events in a common-midpoint gather is non-hyperbolic. This is true even if the medium has constant P- and SV-wave velocities. Furthermore, reflection-point smear occurs even along horizontal reflectors. These effects reduce the resolution of the zero-offset stack. In such a medium, the generalization of the dip moveout transformation to P-SV data can be calculated analytically. The resulting P-SV dip moveout operators solve the problem of reflection-point smear, and image any reflector regardless of dip or depth. The viability of this technique is demonstrated on synthetic and field data.  相似文献   

8.
The stacking velocity best characterizes the normal moveout curves in a common-mid-point gather, while the migration velocity characterizes the diffraction curves in a zero-offset section as well as in a common-midpoint gather. For horizontally layered media, the two velocity types coincide due to the conformance of the normal and the image ray. In the case of dipping subsurface structures, stacking velocities depend on the dip of the reflector and relate to normal rays, but with a dip-dependent lateral smear of the reflection point. After dip-moveout correction, the stacking velocities are reduced while the reflection-point smear vanishes, focusing the rays on the common reflection points. For homogeneous media the dip-moveout correction is independent of the actual velocity and can be applied as a dip-moveout correction to multiple offset before velocity analysis. Migration to multiple offset is a prestack, time-migration technique, which presents data sets which mimic high-fold, bin-centre adjusted, common-midpoint gathers. This method is independent of velocity and can migrate any 2D or 3D data set with arbitrary acquisition geometry. The gathers generated can be analysed for normal-moveout velocities using traditional methods such as the interpretation of multivelocity-function stacks. These stacks, however, are equivalent to multi-velocity-function time migrations and the derived velocities are migration velocities.  相似文献   

9.
We review the multifocusing method for traveltime moveout approximation of multicoverage seismic data. Multifocusing constructs the moveout based on two notional spherical waves at each source and receiver point, respectively. These two waves are mutually related by a focusing quantity. We clarify the role of this focusing quantity and emphasize that it is a function of the source and receiver location, rather than a fixed parameter for a given multicoverage gather. The focusing function can be designed to make the traveltime moveout exact in certain generic cases that have practical importance in seismic processing and interpretation. The case of a plane dipping reflector (planar multifocusing) has been the subject of all publications so far. We show that the focusing function can be generalized to other surfaces, most importantly to the spherical reflector (spherical multifocusing). At the same time, the generalization implies a simplification of the multifocusing method. The exact traveltime moveout on spherical surfaces is a very versatile and robust formula, which is valid for a wide range of offsets and locations of source and receiver, even on rugged topography. In two‐dimensional surveys, it depends on the same three parameters that are commonly used in planar multifocusing and the common‐reflection surface (CRS) stack method: the radii of curvature of the normal and normal‐incidence‐point waves and the emergence angle. In three dimensions the exact traveltime moveout on spherical surfaces depends on only one additional parameter, the inclination of the plane containing the source, receiver and reflection point. Comparison of the planar and spherical multifocusing with the CRS moveout expression for a range of reflectors with increasing curvature shows that the planar multifocusing can be remarkably accurate but the CRS becomes increasingly inaccurate. This can be attributed to the fact that the CRS formula is based on a Taylor expansion, whereas the multifocusing formulae are double‐square root formulae. As a result, planar and spherical multifocusing are better suited to model the moveout of diffracted waves.  相似文献   

10.
Despite the complexity of wave propagation in anisotropic media, reflection moveout on conventional common-midpoint (CMP) spreads is usually well described by the normal-moveout (NMO) velocity defined in the zero-offset limit. In their recent work, Grechka and Tsvankin showed that the azimuthal variation of NMO velocity around a fixed CMP location generally has an elliptical form (i.e. plotting the NMO velocity in each azimuthal direction produces an ellipse) and is determined by the spatial derivatives of the slowness vector evaluated at the CMP location. This formalism is used here to develop exact solutions for the NMO velocity in anisotropic media of arbitrary symmetry. For the model of a single homogeneous layer above a dipping reflector, we obtain an explicit NMO expression valid for all pure modes and any orientation of the CMP line with respect to the reflector strike. The contribution of anisotropy to NMO velocity is contained in the slowness components of the zero-offset ray (along with the derivatives of the vertical slowness with respect to the horizontal slownesses) — quantities that can be found in a straightforward way from the Christoffel equation. If the medium above a dipping reflector is horizontally stratified, the effective NMO velocity is determined through a Dix-type average of the matrices responsible for the ‘interval’ NMO ellipses in the individual layers. This generalized Dix equation provides an analytic basis for moveout inversion in vertically inhomogeneous, arbitrarily anisotropic media. For models with a throughgoing vertical symmetry plane (i.e. if the dip plane of the reflector coincides with a symmetry plane of the overburden), the semi-axes of the NMO ellipse are found by the more conventional rms averaging of the interval NMO velocities in the dip and strike directions. Modelling of normal moveout in general heterogeneous anisotropic media requires dynamic ray tracing of only one (zero-offset) ray. Remarkably, the expressions for geometrical spreading along the zero-offset ray contain all the components necessary to build the NMO ellipse. This method is orders of magnitude faster than multi-azimuth, multi-offset ray tracing and, therefore, can be used efficiently in traveltime inversion and in devising fast dip-moveout (DMO) processing algorithms for anisotropic media. This technique becomes especially efficient if the model consists of homogeneous layers or blocks separated by smooth interfaces. The high accuracy of our NMO expressions is illustrated by comparison with ray-traced reflection traveltimes in piecewise-homogeneous, azimuthally anisotropic models. We also apply the generalized Dix equation to field data collected over a fractured reservoir and show that P-wave moveout can be used to find the depth-dependent fracture orientation and to evaluate the magnitude of azimuthal anisotropy.  相似文献   

11.
Common‐midpoint moveout of converted waves is generally asymmetric with respect to zero offset and cannot be described by the traveltime series t2(x2) conventionally used for pure modes. Here, we present concise parametric expressions for both common‐midpoint (CMP) and common‐conversion‐point (CCP) gathers of PS‐waves for arbitrary anisotropic, horizontally layered media above a plane dipping reflector. This analytic representation can be used to model 3D (multi‐azimuth) CMP gathers without time‐consuming two‐point ray tracing and to compute attributes of PS moveout such as the slope of the traveltime surface at zero offset and the coordinates of the moveout minimum. In addition to providing an efficient tool for forward modelling, our formalism helps to carry out joint inversion of P and PS data for transverse isotropy with a vertical symmetry axis (VTI media). If the medium above the reflector is laterally homogeneous, P‐wave reflection moveout cannot constrain the depth scale of the model needed for depth migration. Extending our previous results for a single VTI layer, we show that the interval vertical velocities of the P‐ and S‐waves (VP0 and VS0) and the Thomsen parameters ε and δ can be found from surface data alone by combining P‐wave moveout with the traveltimes of the converted PS(PSV)‐wave. If the data are acquired only on the dip line (i.e. in 2D), stable parameter estimation requires including the moveout of P‐ and PS‐waves from both a horizontal and a dipping interface. At the first stage of the velocity‐analysis procedure, we build an initial anisotropic model by applying a layer‐stripping algorithm to CMP moveout of P‐ and PS‐waves. To overcome the distorting influence of conversion‐point dispersal on CMP gathers, the interval VTI parameters are refined by collecting the PS data into CCP gathers and repeating the inversion. For 3D surveys with a sufficiently wide range of source–receiver azimuths, it is possible to estimate all four relevant parameters (VP0, VS0, ε and δ) using reflections from a single mildly dipping interface. In this case, the P‐wave NMO ellipse determined by 3D (azimuthal) velocity analysis is combined with azimuthally dependent traveltimes of the PS‐wave. On the whole, the joint inversion of P and PS data yields a VTI model suitable for depth migration of P‐waves, as well as processing (e.g. transformation to zero offset) of converted waves.  相似文献   

12.
One of the most important steps in the conventional processing of reflection seismic data is common midpoint (CMP) stacking. However, this step has considerable deficiencies. For instance the reflection or diffraction time curves used for normal moveout corrections must be hyperbolae. Furthermore, undesirable frequency changes by stretching are produced on account of the dependence of the normal moveout corrections on reflection times. Still other drawbacks of conventional CMP stacking could be listed.One possibility to avoid these disadvantages is to replace conventional CMP stacking by a process of migration to be discussed in this paper. For this purpose the Sherwood-Loewenthal model of the exploding reflector has to be extended to an exploding point model with symmetry to the lineP EX M whereP EX is the exploding point, alias common reflection point, andM the common midpoint of receiver and source pairs.Kirchhoff summation is that kind of migration which is practically identical with conventional CMP stacking with the exception that Kirchhoff summation provides more than one resulting trace.In this paper reverse time migration (RTM) was adopted as a tool to replace conventional CMP stacking. This method has the merit that it uses the full wave equation and that a direct depth migration is obtained, the velocityv can be any function of the local coordinatesx, y, z. Since the quality of the reverse time migration is highly dependent on the correct choice of interval velocities such interval velocities can be determined stepwise from layer to layer, and there is no need to compute interval velocities from normal moveout velocities by sophisticated mathematics or time consuming modelling. It will be shown that curve velocity interfaces do not impair the correct determination of interval velocities and that more precise velocity values are obtained by avoiding or restricting muting due to non-hyperbolic normal moveout curves.Finally it is discussed how in the case of complicated structures the reverse time migration of CMP gathers can be modified in such a manner that the combination of all reverse time migrated CMP gathers yields a correct depth migrated section. This presupposes, however, a preliminary data processing and interpretation.  相似文献   

13.
Since the early days of seismic processing, time migration has proven to be a valuable tool for a number of imaging purposes. Main motivations for its widespread use include robustness with respect to velocity errors, as well as fast turnaround and low computation costs. In areas of complex geology, in which it has well-known limitations, time migration can still be of value by providing first images and also attributes, which can be of much help in further, more comprehensive depth migration. Time migration is a very close process to common-midpoint (CMP) stacking and, more recently, to zero-offset commonreflection- surface (CRS) stacking. In fact, Kirchhoff time migration operators can be readily formulated in terms of CRS parameters. In the nineties, several studies have shown advantages in the use of common-reflection-point (CRP) traveltimes to replace conventional CMP traveltimes for a number of stacking and migration purposes. In this paper, we follow that trend and introduce a Kirchhoff-type prestack time migration and velocity analysis algorithm, referred to as CRP time migration. The algorithm is based on a CRP operator together with optimal apertures, both computed with the help of CRS parameters. A field-data example indicates the potential of the proposed technique.  相似文献   

14.
Optimum multichannel filters can be designed to process seismic events falling on hyperbolic moveout curves using the conventional least-squares method. Contrary to the linear moveout filters, autocorrelation and crosscorrelation functions inherent in the normal equations have to be computed numerically. However, computation times of filter coefficients are comparable to linear moveout operators. For a given source-receiver geometry and assuming straight ray-path, relative moveout of a seismic reflection event is dependent on the two way arrival time and rms velocity. Consequently, to avoid overlapping of pass and reject moveout windows, hyperbolic moveout filters have to be designed over time gates rather than for the whole record lengths. Hyperbolic and hyperbolic-linear moveout filters applied to synthetic and field seismic reflection traces show good signal-to-noise (S/N) ratio improvements. Results of some combined synthetic and field data examples are presented.  相似文献   

15.
We modified the common-offset–common-reflection-surface (COCRS) method to attenuate ground roll, the coherent noise typically generated by a low-velocity, low-frequency, and high-amplitude Rayleigh wave. The COCRS operator is based on hyperbolas, thus it fits events with hyperbolic traveltimes such as reflection events in prestack data. Conversely, ground roll is linear in the common-midpoint (CMP) and common-shot gathers and can be distinguished and attenuated by the COCRS operator. Thus, we search for the dip and curvature of the reflections in the common-shot gathers prior to the common-offset section. Because it is desirable to minimize the damage to the reflection amplitudes, we only stack the multicoverage data in the ground-roll areas. Searching the CS gathers before the CO section is another modification of the conventional COCRS stacking. We tested the proposed method using synthetic and real data sets from western Iran. The results of the ground-roll attenuation with the proposed method were compared with results of the f–k filtering and conventional COCRS stacking after f–k filtering. The results show that the proposed method attenuates the aliased and nonaliased ground roll better than the f–k filtering and conventional CRS stacking. However, the computation time was higher than other common methods such as f–k filtering.  相似文献   

16.
针对高阶统计量混合相位地震子波提取方法的局限性, 提出一种基于矢量预测的单输入多输出系统(SIMO)的混合相位地震子波提取方法. 该方法利用二阶循环平稳统计量包含的系统相位信息, 将CMP道集视为一个单输入多输出系统的输出, 利用道集中相邻两道或多道数据通过矢量预测来构建反子波计算的方程式, 进一步进行混合相位子波提取. 利用提取出的子波相位信息对CMP道集进行纯相位滤波, 能够替代相位校正技术, 并且利用获取的反褶积算子对CMP道集进行反褶积处理, 使提高分辨率后的不同道子波振幅、 频率、 波形相一致, 提高叠加的质量. 模型试算和实际资料处理结果表明, 文中方法适用于任意相位的子波提取及反褶积处理, 且处理精度较高, 具有较高的实际应用价值.   相似文献   

17.
共反射面元叠加的应用实践   总被引:19,自引:5,他引:14       下载免费PDF全文
共反射面元(Common Reflection Surface)叠加是一种不依赖于宏观速度模型的零炮检距剖面成像方法,实现共反射面元叠加依赖于3个波场属性参数的确定,它们分别是零偏移距射线的出射角α、Normal波和Normal Incident Point波出射到地表的波前曲率半径RN和RNIP. 在CRS叠加的理论基础上,本文阐述如何在实际数据上实现CRS叠加. 首先,通过简洁的一维相关性分析在常规叠加剖面上找到对应该共反射面元的一组初始波场属性参数(α,RN,RNIP),然后在对应的叠前数据上应用最优化算法对这组参数进行优化处理,相比初始属性参数,优化后的属性参数能够更好地聚集来自地下反射层的能量,最后应用优化后的属性参数实现最优CRS叠加.  相似文献   

18.
横波速度动校正后的共转换点(CCP)道集内,同时刻的各道横波信号S变换(ST)谱与其叠加道ST谱具有相似关系.因此,可基于这种相似关系设计自适应滤波器来提取多波地震数据中的横波波场.首先对共中心点(CMP)道集应用纵波速度动校正并在各道减去叠加道来去除数据中的纵波波场;然后在CCP道集应用横波速度动校正,将地震道振幅水平调整至叠加道振幅水平并做S变换,以叠加道ST谱为参考对地震道ST谱进行自适应滤波,去除数据中的残余纵波和噪声;最后,将滤波结果的振幅水平恢复至滤波前振幅水平.理论和实际数据试算表明,本文方法可有效提取多波地震数据中的横波波场,为多波多分量横波数据处理提供新思路.  相似文献   

19.
Bayesian statistics are applied to the problem of signal-to-noise ratio enhancement from a common-midpoint gather. By maximizing the a posteriori probability distribution of the gather with respect to the minimum-offset trace and suppressing multiples via a semblance criterion, a statistically biased stack is formed with signal-to-noise ratio comparable to that of the usual stack while preserving the resolution and registration of the original noisy trace. Application of the algorithm to real data reveals geologically significant features which are indistinct in the standard stacked section.  相似文献   

20.
各向同性介质长偏移距地震同相轴动校正   总被引:3,自引:2,他引:1       下载免费PDF全文
传统二阶动校正方法基于较小最大偏移距与目标层深度比和地震波沿直线传播假设,进行长偏移距地震资料处理时,这些假设不再成立.高阶项动校正公式能提高长偏移动校正精度,文中对几种典型的高阶项动校正方法进行了比较,并提出了优化四阶、优化六阶动校正方法.模型计算表明,高阶项动校正方法能取得较常规动校正方法好的动校正结果,但并非阶数越高动校正精度就越高;在纵向速度变化剧烈时,高阶动校正或优化高阶动校正方法一般不能适用于最大偏移距与目标层深度大于3.5的地震反射同相轴,优化四阶和优化六阶动校正公式由于考虑了无穷大偏移距的影响,具有更稳定、更加精确动校正效果,适合于实际的各向同性长偏移距地震资料处理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号