首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The common-reflection-surface (CRS) stacking is a new seismic imaging method, which only depends on seismic three parameters and near-surface velocity instead of macro-velocity model. According to optimized three parameters obtained by CRS stacking, we derived an analytical relationship between three parameters and migration velocity field, and put forward CRS gather migration velocity modeling method, which realize velocity estimation by optimizing three parameters in CRS gather. The test of a sag model proved that this method is more effective and adaptable for velocity modeling of a complex geological body, and the accuracy of velocity analysis depends on the precision of optimized three parameters.  相似文献   

2.
叠加速度分析技术是常规地震资料处理中的重要环节,也是经典的时间域速度建模方法.叠加速度分析技术主要包括速度谱计算和拾取两个步骤.至今为止,多数研究工作通过提高速度谱的分辨率以及抗噪声能力,获得高质量的速度谱从而有利于拾取.本文的目标是将叠加速度分析技术转为一个全自动化的处理流程.从参数估计的角度出发,将叠加速度估计转化为稀疏反演框架下的模型参数估计问题,并通过稀疏反演算法自动反演叠加速度,进而提高叠加速度建模的效率.为实现这一目标,首先给出了正问题的定义,即层状介质中CMP道集的预测模型,利用叠加速度、垂向双程走时(t_0)以及反射子波以及CMP道集时距关系(如双曲时距关系)可以预测CMP道集.接着,速度分析反问题可以描述为已知观测的CMP道集,估计模型参数(叠加速度及t_0时间等).利用模型参数的稀疏性作为约束条件并用L_0范数作为模型稀疏性的度量准则,叠加速度分析可以转化为L_0范数约束下的稀疏反演问题.本文提出了一种基于预测校正思想的匹配追踪算法求解上述反问题,实现了自动叠加速度建模并为后续的高精度速度反演方法提供较好的初始模型.理论和实际资料的测试结果证明了本文方法的有效性.  相似文献   

3.
The common-reflection-surface (CRS) stack can be viewed as a physically justified extension of the classical common-midpoint (CMP) stack, utilizing redundant information not only in a single, but in several neighboring CMP gathers. The zero-offset CRS moveout is parameterized in terms of kinematic attributes, which utilize reciprocity and raypath symmetries to describe the two-way process of the actual wave propagation in active seismic experiments by the propagation of auxiliary one-way wavefronts. For the diffraction case, only the attributes of a single one-way wavefront, originating from the diffractor are sufficient to explain the traveltime differences observed at the surface. While paraxial ray theory gives rise to a second-order approximation of the CRS traveltime, many higher-order approximations were subsequently introduced either by squaring the second-order expression or by employing principles of optics and geometry. It was recently discovered that all of these higher-order operators can be formulated either for the optical projection or in an auxiliary medium of a constant effective velocity. Utilizing this duality and the one-way nature of the CRS parameters, we present a simple data-driven stacking scheme that allows for the estimation of the a priori unknown excitation time of a passive seismic source. In addition, we demonstrate with a simple data example that the output of the suggested workflow can directly be used for subsequent focusing-based normal-incidence-point (NIP) tomography, leading to a reliable localization in depth.  相似文献   

4.
共反射面道集偏移速度建模   总被引:11,自引:0,他引:11       下载免费PDF全文
共反射面(CRS)叠加是一种与宏观速度模型无关,仅依赖于近地表速度的地震成像方法.其通过地震三参数的优化实现地震成像.本文推导了基于CRS叠加得出的优化三参数与偏移速度之间的解析关系,提出了在CRS道集通过优化三参数实现速度估计的CRS道集偏移速度建模方法.模型试算表明,这种速度建模方法效率较高,速度分析精度取决于优化三参数的精度,适于较复杂地质体的速度建模.   相似文献   

5.
One of the most important steps in the conventional processing of reflection seismic data is common midpoint (CMP) stacking. However, this step has considerable deficiencies. For instance the reflection or diffraction time curves used for normal moveout corrections must be hyperbolae. Furthermore, undesirable frequency changes by stretching are produced on account of the dependence of the normal moveout corrections on reflection times. Still other drawbacks of conventional CMP stacking could be listed.One possibility to avoid these disadvantages is to replace conventional CMP stacking by a process of migration to be discussed in this paper. For this purpose the Sherwood-Loewenthal model of the exploding reflector has to be extended to an exploding point model with symmetry to the lineP EX M whereP EX is the exploding point, alias common reflection point, andM the common midpoint of receiver and source pairs.Kirchhoff summation is that kind of migration which is practically identical with conventional CMP stacking with the exception that Kirchhoff summation provides more than one resulting trace.In this paper reverse time migration (RTM) was adopted as a tool to replace conventional CMP stacking. This method has the merit that it uses the full wave equation and that a direct depth migration is obtained, the velocityv can be any function of the local coordinatesx, y, z. Since the quality of the reverse time migration is highly dependent on the correct choice of interval velocities such interval velocities can be determined stepwise from layer to layer, and there is no need to compute interval velocities from normal moveout velocities by sophisticated mathematics or time consuming modelling. It will be shown that curve velocity interfaces do not impair the correct determination of interval velocities and that more precise velocity values are obtained by avoiding or restricting muting due to non-hyperbolic normal moveout curves.Finally it is discussed how in the case of complicated structures the reverse time migration of CMP gathers can be modified in such a manner that the combination of all reverse time migrated CMP gathers yields a correct depth migrated section. This presupposes, however, a preliminary data processing and interpretation.  相似文献   

6.
The interpretation of stacked time sections can produce a correct geological image of the earth in cases when the stack represents a true zero-offset section. This assumption is not valid in the presence of conflicting dips or strong lateral velocity variations. We present a method for constructing a relatively accurate zero-offset section. We refer to this method as model-based stack (MBS), and it is based on the idea of stacking traces within CMP gathers along actual traveltime curves, and not along hyperbolic trajectories as it is done in a conventional stacking process. These theoretical curves are calculated for each CMP gather by tracing rays through a velocity-depth model. The last can be obtained using one of the methods for macromodel estimation. In this study we use the coherence inversion method for the estimation of the macromodel since it has the advantage of not requiring prestack traveltime picking. The MBS represents an accurate zero-offset section in cases where the estimated macromodel is correct. Using the velocity–depth macromodel, the structural inversion can be completed by post-stack depth migration of the MBS.  相似文献   

7.
共反射面元走时曲面计算是共反射面元叠加的关键.常规共反射面元叠加必须通过相干搜索和优化确定共反射面元叠加公式中的三个属性参数(二维),从而确定共反射面元走时曲面,该类算法具有三点不足:①相干搜索及优化法计算量大;②共反射面元叠加公式仅适用小炮检距;③波前曲率半径取负号且较小时,共反射面元叠加公式基本不适用.为此,本文提出了利用共反射点射线追踪拟合共反射面元走时曲面的计算方法.模型计算证明该方法比传统共反射面元叠加走时曲面计算精度高,适用性强.  相似文献   

8.
We modified the common-offset–common-reflection-surface (COCRS) method to attenuate ground roll, the coherent noise typically generated by a low-velocity, low-frequency, and high-amplitude Rayleigh wave. The COCRS operator is based on hyperbolas, thus it fits events with hyperbolic traveltimes such as reflection events in prestack data. Conversely, ground roll is linear in the common-midpoint (CMP) and common-shot gathers and can be distinguished and attenuated by the COCRS operator. Thus, we search for the dip and curvature of the reflections in the common-shot gathers prior to the common-offset section. Because it is desirable to minimize the damage to the reflection amplitudes, we only stack the multicoverage data in the ground-roll areas. Searching the CS gathers before the CO section is another modification of the conventional COCRS stacking. We tested the proposed method using synthetic and real data sets from western Iran. The results of the ground-roll attenuation with the proposed method were compared with results of the f–k filtering and conventional COCRS stacking after f–k filtering. The results show that the proposed method attenuates the aliased and nonaliased ground roll better than the f–k filtering and conventional CRS stacking. However, the computation time was higher than other common methods such as f–k filtering.  相似文献   

9.
Common‐midpoint moveout of converted waves is generally asymmetric with respect to zero offset and cannot be described by the traveltime series t2(x2) conventionally used for pure modes. Here, we present concise parametric expressions for both common‐midpoint (CMP) and common‐conversion‐point (CCP) gathers of PS‐waves for arbitrary anisotropic, horizontally layered media above a plane dipping reflector. This analytic representation can be used to model 3D (multi‐azimuth) CMP gathers without time‐consuming two‐point ray tracing and to compute attributes of PS moveout such as the slope of the traveltime surface at zero offset and the coordinates of the moveout minimum. In addition to providing an efficient tool for forward modelling, our formalism helps to carry out joint inversion of P and PS data for transverse isotropy with a vertical symmetry axis (VTI media). If the medium above the reflector is laterally homogeneous, P‐wave reflection moveout cannot constrain the depth scale of the model needed for depth migration. Extending our previous results for a single VTI layer, we show that the interval vertical velocities of the P‐ and S‐waves (VP0 and VS0) and the Thomsen parameters ε and δ can be found from surface data alone by combining P‐wave moveout with the traveltimes of the converted PS(PSV)‐wave. If the data are acquired only on the dip line (i.e. in 2D), stable parameter estimation requires including the moveout of P‐ and PS‐waves from both a horizontal and a dipping interface. At the first stage of the velocity‐analysis procedure, we build an initial anisotropic model by applying a layer‐stripping algorithm to CMP moveout of P‐ and PS‐waves. To overcome the distorting influence of conversion‐point dispersal on CMP gathers, the interval VTI parameters are refined by collecting the PS data into CCP gathers and repeating the inversion. For 3D surveys with a sufficiently wide range of source–receiver azimuths, it is possible to estimate all four relevant parameters (VP0, VS0, ε and δ) using reflections from a single mildly dipping interface. In this case, the P‐wave NMO ellipse determined by 3D (azimuthal) velocity analysis is combined with azimuthally dependent traveltimes of the PS‐wave. On the whole, the joint inversion of P and PS data yields a VTI model suitable for depth migration of P‐waves, as well as processing (e.g. transformation to zero offset) of converted waves.  相似文献   

10.
The ray-tracing algorithm presented in this paper is based on formulae derived for the common reflecting element (CRE) stacking method. A 2D, smooth, laterally-varying media is assumed where offset rays and traveltimes are evaluated from normal-incidence (central) rays. The method uses a second-order asymmetrical approximation for rays and an additional oblique spherical approximation of the central wavefronts for calculating offset traveltimes. In order to solve the two-point ray-tracing problem for the common midpoint (CMP) configuration of source-receiver pairs located symmetrically around the CMP stations, the central rays are perturbed to satisfy the above-mentioned asymmetrical distribution. Although the accuracy of the calculations is limited for far offsets, it is still good for distances of the order of the reflecting depths. Since only a few normal-incidence rays are traced through the medium, the method is very fast and is found to be most attractive for iterative inversions in macromodel estimation.  相似文献   

11.
In recent years, the use of wide source arrays in marine seismic surveys has been a topic of interest in the seismic industry. Although one motivation for wide arrays is to get more guns in a source array without increasing the in-line array dimension, wide arrays can also provide the benefit of suppressing side-scattered energy. Comparisons of common midpoint (CMP) stacks of data acquired offshore Washington and Alaska with wide and conventional-width source arrays, however, show only small and sometimes inconsistent differences. These data were acquired in areas where side-scattered energy is a problem. Comparisons of pre-stack data, however, show substantial differences between the wide and conventional source array data. The disparity between the stacked and prestack data is explained by analysing the effective suppression of back-scattered energy by CMP stacking. Energy reflected from scatterer positions broadside to a given CMP location has a lower stacking velocity than that of the primary reflection events. Thus, CMP stacking attenuates the side-scattered energy. In both survey areas the action of CMP stacking was so powerful in suppressing the broadside energy that the additional action of the wide array was inconsequential in the final stacked sections. In other areas, where the scattering velocity is comparable to the primary stacking velocity, wide arrays could provide considerable advantage. Even though CMP stacked data from wide and conventional-width arrays may appear similar, the reduced amount of side-scattered energy in wide-array prestack data may provide a benefit for data dependent processes such as predictive deconvolution and velocity analysis. However, wide arrays cannot be used indiscriminately because they can degrade cross-dipping primary events. They should be considered primarily as a special tool for attacking severe source-generated noise from back-scattered waves in areas where the action of CMP stacking is insufficient.  相似文献   

12.
A three-dimensional (3-D) kinematic migration algorithm for media in which migration velocity varies linearly with depth is developed, implemented and tested. The algorithm is based on the concept that a single reflection or diffraction in a (zero- or finite-offset) trace may have originated at any point on a constant traveltime surface within the Earth defined by the observed two-way traveltime. The envelope of all such constant time surfaces, for all observed reflections and diffractions produced by one reflector, is the desired migrated 3-D image. The optimal envelope position in depth is determined, beneath each point on a regular grid, by a statistical imaging condition; an incremental function of depth containing the number of constant time surfaces passing through that depth increment is cross-correlated with a Gaussian function whose width is chosen to correspond to the vertical scale of the features of interest. The numerical procedures are based on the observation that, in a medium in which velocity varies linearly with depth, ray segments are circular so traveltimes can be computed analytically. Also, traveltimes are independent of azimuth so the 3-D problem can be collapsed into an equivalent 2-D problem. The algorithm is illustrated and tested by application to synthetic data and to scale-model data from the Seismic Acoustics Laboratory at the University of Houston.  相似文献   

13.
Much of the success of modern seismic data processing derives from the use of the stacking process. Unfortunately, as is well known, conventional normal moveout correction (NMO) introduces mispositioning of data, and hence mis-stacking, when dip is present. Dip moveout correction (DMO) is a technique that converts non-zero-offset seismic data after NMO to true zero-offset locations and reflection times, irrespective of dip. The combination of NMO and DMO followed by post-stack time migration is equivalent to, but can be implemented much more efficiently than, full time migration before stack. In this paper we consider the frequency-wavenumber DMO algorithm developed by Hale. Our analysis centres on the result that, for a given dip, the combination of NMO at migration velocity and DMO is equivalent to NMO at the appropriate, dip-dependent, stacking velocity. This perspective on DMO leads to computationally efficient methods for applying Hale DMO and also provides interesting insights on the nature of both DMO and conventional stacking.  相似文献   

14.
Although it is widely recognized that anisotropy can have a significant influence on the focusing and positioning of migrated reflection events, conventional depth imaging methods still operate with isotropic velocity fields. Here, we present an application of a 2D migration velocity analysis (MVA) algorithm, designed for factorized v(x, z) VTI (transversely isotropic with a vertical symmetry axis) media, to an offshore data set from West Africa. By approximating the subsurface with factorized VTI blocks, it is possible to decouple the spatial variations in the vertical velocity from the anisotropic parameters with minimal a priori information. Since our method accounts for lateral velocity variation, it produces more accurate estimates of the anisotropic parameters than those previously obtained with time‐domain techniques. The values of the anellipticity parameter η found for the massive shales exceed 0.2, which confirms that ignoring anisotropy in the study area can lead to substantial imaging distortions, such as mis‐stacking and mispositioning of dipping events. While some of these distortions can be removed by using anisotropic time processing, further marked improvement in image quality is achieved by prestack depth migration with the estimated factorized VTI model. In particular, many fault planes, including antithetic faults in the shallow part of the section, are better focused by the anisotropic depth‐migration algorithm and appear more continuous. Anisotropic depth migration facilitates structural interpretation by eliminating false dips at the bottom of the section and improving the images of a number of gently dipping features. One of the main difficulties in anisotropic MVA is the need to use a priori information for constraining the vertical velocity. In this case study, we successfully reconstructed the time–depth curve from reflection data by assuming that the vertical velocity is a continuous function of depth and estimating the vertical and lateral velocity gradients in each factorized block. If the subsurface contains strong boundaries with jumps in velocity, knowledge of the vertical velocity at a single point in a layer is sufficient for our algorithm to determine all relevant layer parameters.  相似文献   

15.
椭圆展开共反射点叠加方法的应用研究   总被引:4,自引:1,他引:3       下载免费PDF全文
本文详细介绍了均匀介质条件下椭圆展开共反射点(CRP)叠加原理,并引入双参数(上行波与下行波的速度比和平均速度)来解决非均匀介质条件下的叠加成像,严密论证了所求得的速度是真正的共反射点叠加速度,并结合理论模型计算和地震资料处理证实,利用椭圆展开CRP方法可以对复杂地质剖面求取准确的共反射点叠加速度和正确的零偏移距剖面,得到的成像效果远优于传统共中心点(CMP)方法.  相似文献   

16.
Kirchhoff叠前时间偏移角度道集   总被引:8,自引:5,他引:3       下载免费PDF全文
邹振  刘洪  刘红伟 《地球物理学报》2010,53(5):1207-1214
提出三维Kirchhoff叠前时间偏移角度域共像点道集的改进算法,克服传统角度求取算法局限,可计算相对倾斜地层法线入射角;与Kirchhoff直射线叠前时间偏移求角度算法相比,本文方法考虑射线弯曲效应,包含层速度,角度范围加大,更接近真实入射角;计算走时采取弯曲射线或者适应线性横向变速介质的非对称走时等算法,角度道集在大角度处得到拉平;采用相对保幅的权因子以及覆盖次数校正技术,有利于叠前AVA反演.模型测试结果表明:叠前时间偏移角度道集,相对CMP、CRP所转化角度道集,更准确反应AVA效应;实际三维数据测试表明本文方法可以提供品质优良的角度道集,适用于AVA分析、反演,提高叠前反演分辨率.  相似文献   

17.
Migration methods for imaging different-order multiples   总被引:2,自引:0,他引:2  
Multiples contain valuable information about the subsurface, and if properly migrated can provide a wider illumination of the subsurface compared to imaging with VSP primary reflections. In this paper we review three different methods for migrating multiples. The first method is model-based, and it is more sensitive to velocity errors than primary migration; the second method uses a semi-natural Green's function for migrating multiples, where part of the traveltimes are computed from the velocity model, and part of the traveltimes (i.e., natural traveltimes) are picked from the data to construct the imaging condition for multiples; the third method uses cross-correlation of traces. The last two methods are preferred in the sense that they are significantly less sensitive to velocity errors and statics because they use “natural data” to construct part of the migration imaging conditions. Compared with the interferometric (i.e., crosscorrelation) imaging method the semi-natural Green's function method is more computationally efficient and is sometimes less prone to migration artifacts. Numerical tests with 2-D and 3-D VSP data show that a wider subsurface coverage, higher-fold and more balanced illumination of the subsurface can be achieved with multiple migration compared with migration of primary reflections only. However, there can be strong interference from multiples with different orders or primaries when multiples of high order are migrated. One possible solution is to filter primaries and different orders of multiples before migration, and another possible solution is least squares migration of all events. A limitation of multiple migration is encountered for subsalt imaging. Here, the multiples must pass through the salt body more than twice, which amplifies the distortion of the image.  相似文献   

18.
Two dimensional inverse modeling, a process to be applied after standard processing and interpretation, uses interfaces picked by the user. These interfaces are transformed into an approximate subsurface model. The subsurface model is represented by curved interfaces and interval velocities. The interfaces have to be unique functions of the line coordinate. Otherwise they may be arbitrarily curved and may begin or terminate anywhere along the section, e.g., at faults, pinchouts, salt domes and the like. Interval velocities may vary laterally along the section. The inverse modeling algorithm then modifies the model until traveltimes calculated from this model match the traveltimes observed as closely as possible in a least squares sense. The traveltimes corresponding to the model are obtained through ray tracing taking exact account of refraction. The traveltimes observed are the arrival times of single impulses before stacking contributing to the interfaces. These traveltimes are provided by ANAKON, a continuous interface analysis system. The comparison of INMOD results with those of well measurements and those of classical interval velocity computation from seismic data shows the accuracy of the method. Deviations of INMOD derived interface depths are within 2% of well data.  相似文献   

19.
The performance of a 3D prestack migration of the Kirchhoff type can be significantly enhanced if the computation of the required stacking surface is replaced by an efficient and accurate method for the interpolation of diffraction traveltimes. Thus, input traveltimes need only be computed and stored on coarse grids, leading to considerable savings in CPU time and computer storage. However, interpolation methods based on a local approximation of the traveltime functions fail in the presence of triplications of the wavefront or later arrivals. This paper suggests a strategy to overcome this problem by employing the coefficients of a hyperbolic traveltime expansion to locate triplications and correct for the resulting errors in the interpolated traveltime tables of first and later arrivals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号