首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interpretation of stacked time sections can produce a correct geological image of the earth in cases when the stack represents a true zero-offset section. This assumption is not valid in the presence of conflicting dips or strong lateral velocity variations. We present a method for constructing a relatively accurate zero-offset section. We refer to this method as model-based stack (MBS), and it is based on the idea of stacking traces within CMP gathers along actual traveltime curves, and not along hyperbolic trajectories as it is done in a conventional stacking process. These theoretical curves are calculated for each CMP gather by tracing rays through a velocity-depth model. The last can be obtained using one of the methods for macromodel estimation. In this study we use the coherence inversion method for the estimation of the macromodel since it has the advantage of not requiring prestack traveltime picking. The MBS represents an accurate zero-offset section in cases where the estimated macromodel is correct. Using the velocity–depth macromodel, the structural inversion can be completed by post-stack depth migration of the MBS.  相似文献   

2.
While seismic imaging for crustal and mantle structures has traditionally relied on surface wave and refraction data, the use of reflection data for crustal-scale targets has been largely limited to the common midpoint (CMP) stack techniques. The rapid increase in the number of seismograph array deployments in recent years in crustal and mantle seismology has reached a level such that a re-examination of the imaging techniques is becoming necessary. In this paper we show the advantage of prestack depth imaging for crustal reflection studies, based on data from two reflection surveys of the Los Angeles Regional Seismic Experiment (LARSE) to map faults and crustal-scale structures. Our analysis indicates that the quality of the previous images of these surveys is limited by the CMP stack technique. For comparison, we present here depth images of the same LARSE data using wave equation prestack depth imaging and a tomographic velocity model based on first arrivals of the LARSE surveys and local earthquakes. Our new images are considerably improved over previous images in terms of resolution and reflector continuity. The new images show reflectors throughout the crust and suggest truncations in the Moho associated with the San Andreas Fault. A series of bright reflector segments, which are associated with the San Gabriel and San Andreas faults have been identified and might represent reflections from the fault zones. Our results suggest that the presence of high noise level, strong lateral velocity heterogeneity and wide angle geometry argue for, rather than against, the use of prestack depth imaging over the simple CMP stack techniques. As demonstrated in this study, it is now viable to conduct prestack depth imaging of crustal reflection data using a velocity model based on earthquake first arrivals thanks to the dense acquisition deployment.  相似文献   

3.
Since the early days of seismic processing, time migration has proven to be a valuable tool for a number of imaging purposes. Main motivations for its widespread use include robustness with respect to velocity errors, as well as fast turnaround and low computation costs. In areas of complex geology, in which it has well-known limitations, time migration can still be of value by providing first images and also attributes, which can be of much help in further, more comprehensive depth migration. Time migration is a very close process to common-midpoint (CMP) stacking and, more recently, to zero-offset commonreflection- surface (CRS) stacking. In fact, Kirchhoff time migration operators can be readily formulated in terms of CRS parameters. In the nineties, several studies have shown advantages in the use of common-reflection-point (CRP) traveltimes to replace conventional CMP traveltimes for a number of stacking and migration purposes. In this paper, we follow that trend and introduce a Kirchhoff-type prestack time migration and velocity analysis algorithm, referred to as CRP time migration. The algorithm is based on a CRP operator together with optimal apertures, both computed with the help of CRS parameters. A field-data example indicates the potential of the proposed technique.  相似文献   

4.
共接收点倾斜叠加波动方程偏移,本质上是一种叠前偏移方法.每给定一个斜率P,对经过叠前(动校正前)常规处理的地震记录中的各共接收点道集,沿直线t=τ+px进行倾斜叠加,就形成一个共接收点倾斜叠加剖面.对之进行波动方程偏移,该偏移剖面将代表地下真实构造.对一系列的p,我们可以得到一系列这样的偏移剖面.对它们作共接收点叠加,偏移叠加剖面的信噪比将超过水平叠加剖面.本文导出了在均匀、水平层状及非均匀介质条件下的共接收点倾斜叠加波动方程偏移算法.  相似文献   

5.
A conventional velocity-stack gather consists of constant-velocity CMP-stacked traces. It emphasizes the energy associated with the events that follow hyperbolic traveltime trajectories in the CMP gather. Amplitudes along a hyperbola on a CMP gather ideally map onto a point on a velocity-stack gather. Because a CMP gather only includes a cable-length portion of a hyperbolic traveltime trajectory, this mapping is not exact. The finite cable length, discrete sampling along the offset axis and the closeness of hyperbolic summation paths at near-offsets cause smearing of the stacked amplitudes along the velocity axis. Unless this smearing is removed, inverse mapping from velocity space (the plane of stacking velocity versus two-way zero-offset time) back to offset space (the plane of offset versus two-way traveltime) does not reproduce the amplitudes in the original CMP gather. The gather resulting from the inverse mapping can be considered as the model CMP gather that contains only the hyperbolic events from the actual CMP gather. A least-squares minimization of the energy contained in the difference between the actual CMP gather and the model CMP gather removes smearing of amplitudes on the velocity-stack gather and increases velocity resolution. A practical application of this procedure is in separation of multiples from primaries. A method is described to obtain proper velocity-stack gathers with reduced amplitude smearing. The method involves a t2-stretching in the offset space. This stretching maps reflection amplitudes along hyperbolic moveout curves to those along parabolic moveout curves. The CMP gather is Fourier transformed along the stretched axis. Each Fourier component is then used in the least-squares minimization to compute the corresponding Fourier component of the proper velocity-stack gather. Finally, inverse transforming and undoing the stretching yield the proper velocity-stack gather, which can then be inverse mapped back to the offset space. During this inverse mapping, multiples, primaries or all of the hyperbolic events can be modelled. An application of velocity-stack processing to multiple suppression is demonstrated with a field data example.  相似文献   

6.
— In this paper, we provide a 5-parameter stacking formula to transform 2-D prestack data into a particular common-offset section. This requires the knowledge of the near-surface velocity only and it is expected that ray theory holds to describe primary reflections. The earth model can be arbitrarily inhomogeneous. The new stacking approach can be viewed as a generalization of the 3-parameter common-reflection-surface (CRS) stack, by which 2-D multicoverage data are stacked into a simulated zero-offset section. The new 5-parameter formula can handle P-P, P-S and S-S reflections.  相似文献   

7.
In this case study we consider the seismic processing of a challenging land data set from the Arabian Peninsula. It suffers from rough top‐surface topography, a strongly varying weathering layer, and complex near‐surface geology. We aim at establishing a new seismic imaging workflow, well‐suited to these specific problems of land data processing. This workflow is based on the common‐reflection‐surface stack for topography, a generalized high‐density velocity analysis and stacking process. It is applied in a non‐interactive manner and provides an entire set of physically interpretable stacking parameters that include and complement the conventional stacking velocity. The implementation introduced combines two different approaches to topography handling to minimize the computational effort: after initial values of the stacking parameters are determined for a smoothly curved floating datum using conventional elevation statics, the final stack and also the related residual static correction are applied to the original prestack data, considering the true source and receiver elevations without the assumption of nearly vertical rays. Finally, we extrapolate all results to a chosen planar reference level using the stacking parameters. This redatuming procedure removes the influence of the rough measurement surface and provides standardized input for interpretation, tomographic velocity model determination, and post‐stack depth migration. The methodology of the residual static correction employed and the details of its application to this data example are discussed in a separate paper in this issue. In view of the complex near‐surface conditions, the imaging workflow that is conducted, i.e. stack – residual static correction – redatuming – tomographic inversion – prestack and post‐stack depth migration, leads to a significant improvement in resolution, signal‐to‐noise ratio and reflector continuity.  相似文献   

8.
Ambient seismic noise or microtremor observations used in spatial auto-correlation (SPAC) array methods consist of a wide frequency range of surface waves from the frequency of about 0.1 Hz to several tens of Hz. The wavelengths (and hence depth sensitivity of such surface waves) allow determination of the site S-wave velocity model from a depth of 1 or 2 m down to a maximum of several kilometres; it is a passive seismic method using only ambient noise as the energy source. Application usually uses a 2D seismic array with a small number of seismometers (generally between 2 and 15) to estimate the phase velocity dispersion curve and hence the S-wave velocity depth profile for the site. A large number of methods have been proposed and used to estimate the dispersion curve; SPAC is the one of the oldest and the most commonly used methods due to its versatility and minimal instrumentation requirements. We show that direct fitting of observed and model SPAC spectra generally gives a superior bandwidth of useable data than does the more common approach of inversion after the intermediate step of constructing an observed dispersion curve. Current case histories demonstrate the method with a range of array types including two-station arrays, L-shaped multi-station arrays, triangular and circular arrays. Array sizes from a few metres to several-km in diameter have been successfully deployed in sites ranging from downtown urban settings to rural and remote desert sites. A fundamental requirement of the method is the ability to average wave propagation over a range of azimuths; this can be achieved with either or both of the wave sources being widely distributed in azimuth, and the use of a 2D array sampling the wave field over a range of azimuths. Several variants of the method extend its applicability to under-sampled data from sparse arrays, the complexity of multiple-mode propagation of energy, and the problem of precise estimation where array geometry departs from an ideal regular array. We find that sparse nested triangular arrays are generally sufficient, and the use of high-density circular arrays is unlikely to be cost-effective in routine applications. We recommend that passive seismic arrays should be the method of first choice when characterizing average S-wave velocity to a depth of 30 m (Vs30) and deeper, with active seismic methods such as multichannel analysis of surface waves (MASW) being a complementary method for use if and when conditions so require. The use of computer inversion methodology allows estimation of not only the S-wave velocity profile but also parameter uncertainties in terms of layer thickness and velocity. The coupling of SPAC methods with horizontal/vertical particle motion spectral ratio analysis generally allows use of lower frequency data, with consequent resolution of deeper layers than is possible with SPAC alone. Considering its non-invasive methodology, logistical flexibility, simplicity, applicability, and stability, the SPAC method and its various modified extensions will play an increasingly important role in site effect evaluation. The paper summarizes the fundamental theory of the SPAC method, reviews recent developments, and offers recommendations for future blind studies.  相似文献   

9.
城市活断层的抗干扰高分辨率浅层地震勘探研究   总被引:11,自引:0,他引:11  
首先,简要介绍了城市活断层探测的意义及世界各国开展城市活断层探测的基本情况。在简述抗干扰高分辨率浅层地震勘探基本原理的基础上,重点论述了城市活断层的抗干扰高分辨率浅层地震勘探的震源激发、数字地震仪性能、接收方式与接收条件、观测系统以及数据处理与资料解释等。研究表明,对于城市活断层的抗干扰高分辨率浅层地震勘探,在数据采集环节应采用具有线性或非线性变频扫描功能的可控震源和与其相匹配的地震仪器,以及小道间距、小偏移距、多接收道、短排列和高频检波器接收的工作方法;在数据处理与解释环节,要重视折射静校正技术、噪声压制技术、高精度速度分析技术、子波压缩技术、子波零相位化技术和叠前偏移技术等的应用。最后,给出了城市活断层的抗干扰高分辨率浅层地震勘探实例。  相似文献   

10.
We modified the common-offset–common-reflection-surface (COCRS) method to attenuate ground roll, the coherent noise typically generated by a low-velocity, low-frequency, and high-amplitude Rayleigh wave. The COCRS operator is based on hyperbolas, thus it fits events with hyperbolic traveltimes such as reflection events in prestack data. Conversely, ground roll is linear in the common-midpoint (CMP) and common-shot gathers and can be distinguished and attenuated by the COCRS operator. Thus, we search for the dip and curvature of the reflections in the common-shot gathers prior to the common-offset section. Because it is desirable to minimize the damage to the reflection amplitudes, we only stack the multicoverage data in the ground-roll areas. Searching the CS gathers before the CO section is another modification of the conventional COCRS stacking. We tested the proposed method using synthetic and real data sets from western Iran. The results of the ground-roll attenuation with the proposed method were compared with results of the f–k filtering and conventional COCRS stacking after f–k filtering. The results show that the proposed method attenuates the aliased and nonaliased ground roll better than the f–k filtering and conventional CRS stacking. However, the computation time was higher than other common methods such as f–k filtering.  相似文献   

11.
One of the most important steps in the conventional processing of reflection seismic data is common midpoint (CMP) stacking. However, this step has considerable deficiencies. For instance the reflection or diffraction time curves used for normal moveout corrections must be hyperbolae. Furthermore, undesirable frequency changes by stretching are produced on account of the dependence of the normal moveout corrections on reflection times. Still other drawbacks of conventional CMP stacking could be listed.One possibility to avoid these disadvantages is to replace conventional CMP stacking by a process of migration to be discussed in this paper. For this purpose the Sherwood-Loewenthal model of the exploding reflector has to be extended to an exploding point model with symmetry to the lineP EX M whereP EX is the exploding point, alias common reflection point, andM the common midpoint of receiver and source pairs.Kirchhoff summation is that kind of migration which is practically identical with conventional CMP stacking with the exception that Kirchhoff summation provides more than one resulting trace.In this paper reverse time migration (RTM) was adopted as a tool to replace conventional CMP stacking. This method has the merit that it uses the full wave equation and that a direct depth migration is obtained, the velocityv can be any function of the local coordinatesx, y, z. Since the quality of the reverse time migration is highly dependent on the correct choice of interval velocities such interval velocities can be determined stepwise from layer to layer, and there is no need to compute interval velocities from normal moveout velocities by sophisticated mathematics or time consuming modelling. It will be shown that curve velocity interfaces do not impair the correct determination of interval velocities and that more precise velocity values are obtained by avoiding or restricting muting due to non-hyperbolic normal moveout curves.Finally it is discussed how in the case of complicated structures the reverse time migration of CMP gathers can be modified in such a manner that the combination of all reverse time migrated CMP gathers yields a correct depth migrated section. This presupposes, however, a preliminary data processing and interpretation.  相似文献   

12.
Angle-domain common-image gathers (ADCIGs) transformed from the shotdomain common-offset gathers are input to migration velocity analysis (MVA) and prestack inversion. ADCIGs are non-illusion prestack inversion gathers, and thus, accurate. We studied the extraction of elastic-wave ADCIGs based on amplitude-preserving elastic-wave reversetime migration for calculating the incidence angle of P-and S-waves at each image point and for different source locations. The P-and S-waves share the same incident angle, namely the incident angle of the source P-waves. The angle of incidence of the source P-wavefield was the difference between the source P-wave propagation angle and the reflector dips. The propagation angle of the source P-waves was obtained from the polarization vector of the decomposed P-waves. The reflectors’ normal direction angle was obtained using the complex wavenumber of the stacked reverse-time migration (RTM) images. The ADCIGs of P-and S-waves were obtained by rearranging the common-shot migration gathers based on the incident angle. We used a horizontally layered model, the graben medium model, and part of the Marmousi-II elastic model and field data to test the proposed algorithm. The results suggested that the proposed method can efficiently extract the P-and S-wave ADCIGs of the elastic-wave reverse-time migration, the P-and S-wave incident angle, and the angle-gather amplitude fidelity, and improve the MVA and prestack inversion.  相似文献   

13.
We present an extension of the Common Reflection Surface (CRS) stack that provides support for an arbitrary top surface topography. CRS stacking can be applied to the original prestack data without the need for any elevation statics. The CRS-stacked zero- offset section can be corrected (redatumed) to a given planar level by kinematic wave field attributes. The seismic processing results indicate that the CRS stacked section for rugged surface topography is better than the conventional stacked section for S/N ratio and better continuity of reflection events. Considering the multiple paths of zero-offset rays, the method deals with reflection information coming from different dips and performs the stack using the method of dip decomposition, which improves the kinematic and dynamic character of CRS stacked sections.  相似文献   

14.
We analyse the stacking process within the framework of imaging techniques. Our results show how the NMO stretch, traditionally looked upon as giving a negative contribution, can be utilized to improve the vertical resolution of the stacked data from a source deficient in low frequencies. The added bandwidth is provided by the spatial coherency of the energy emitted by a point source.  相似文献   

15.
The use of arrays to separate primary reflections from unwanted coherent seismic events is common practice in land seismic surveys. Very long source and receiver arrays have been used recently to reduce the effects of waterbottom multiples on marine seismic data. The source array consists of five uniformly spaced identical subarrays, each with five different airguns, where the distance between the subarrays may vary from 20 m56 m. The volume of each subarray is 10.3 1 (630 cu.in.) which gives a total volume of the array of 51.5 1 (3150 cu.in.) operated at a pressure of 14 MPa (2000 psi). In order to have a flexible receiver system it was decided to implement the extended receiver array in data processing by computing a weighted sum of two to five traces. The hydrophone cable consists of fifty-four channels with a group length of 50 m. Data shot with the superlong airgun array are processed by a combination of standard techniques and special procedures. In particular, the quality of the stack section is improved by using a weighted stack. The stack weights are computed by a program which takes into account the primary-to-multiple ratio. Comparisons with conventional data show significant improvements in data quality obtained by using the superlong airgun array. Examples show that the waterbottom multiples have been strongly attenuated and the deep seismic events have been enhanced. The combined array response function for dipping events is given in an appendix.  相似文献   

16.
叠加速度分析技术是常规地震资料处理中的重要环节,也是经典的时间域速度建模方法.叠加速度分析技术主要包括速度谱计算和拾取两个步骤.至今为止,多数研究工作通过提高速度谱的分辨率以及抗噪声能力,获得高质量的速度谱从而有利于拾取.本文的目标是将叠加速度分析技术转为一个全自动化的处理流程.从参数估计的角度出发,将叠加速度估计转化为稀疏反演框架下的模型参数估计问题,并通过稀疏反演算法自动反演叠加速度,进而提高叠加速度建模的效率.为实现这一目标,首先给出了正问题的定义,即层状介质中CMP道集的预测模型,利用叠加速度、垂向双程走时(t_0)以及反射子波以及CMP道集时距关系(如双曲时距关系)可以预测CMP道集.接着,速度分析反问题可以描述为已知观测的CMP道集,估计模型参数(叠加速度及t_0时间等).利用模型参数的稀疏性作为约束条件并用L_0范数作为模型稀疏性的度量准则,叠加速度分析可以转化为L_0范数约束下的稀疏反演问题.本文提出了一种基于预测校正思想的匹配追踪算法求解上述反问题,实现了自动叠加速度建模并为后续的高精度速度反演方法提供较好的初始模型.理论和实际资料的测试结果证明了本文方法的有效性.  相似文献   

17.
The multifold acquisition principle was applied to a borehole radar survey, performed in a granitic site (Grimsel Test Site, Switzerland). Two multifold coverage acquisitions (40-fold and 20-fold) were carried out in a subhorizontal borehole. Instrumental drifts (transmission time and sampling frequency fluctuations) were corrected in order to remove shifts observed on CMP gathers and to optimize velocity analysis and trace stacking. Computation of velocity spectra was adapted in order to take into account the features of the medium investigated (homogeneous velocity, various reflector orientations). The NMO velocities were then interpreted as angles between reflectors and the survey line. The processing, based on the computation of several constant velocity stacked sections performed with different NMO velocities, leads to better results than the standard DMO + NMO processing. The signal-to-noise ratio of the stacked profile is improved in comparison with the single-fold section, which results from a standard acquisition. From a practical point of view, the implementation of a multifold radar survey within a borehole is difficult but a greater investigation range is obtained, more reflectors are detected and the mapping of geological discontinuities is improved.  相似文献   

18.
Stacking velocity V C2, vertical velocity ratio γ 0, effective velocity ratio γ eff, and anisotropic parameter χ eff are correlated in the PS-converted-wave (PS-wave) anisotropic prestack Kirchhoff time migration (PKTM) velocity model and are thus difficult to independently determine. We extended the simplified two-parameter (stacking velocity V C2 and anisotropic parameter k eff) moveout equation from stacking velocity analysis to PKTM velocity model updating and formed a new four-parameter (stacking velocity V C2, vertical velocity ratio γ 0, effective velocity ratio γ eff, and anisotropic parameter k eff) PS-wave anisotropic PKTM velocity model updating and process flow based on the simplified two-parameter moveout equation. In the proposed method, first, the PS-wave two-parameter stacking velocity is analyzed to obtain the anisotropic PKTM initial velocity and anisotropic parameters; then, the velocity and anisotropic parameters are corrected by analyzing the residual moveout on common imaging point gathers after prestack time migration. The vertical velocity ratio γ 0 of the prestack time migration velocity model is obtained with an appropriate method utilizing the P- and PS-wave stacked sections after level calibration. The initial effective velocity ratio γ eff is calculated using the Thomsen (1999) equation in combination with the P-wave velocity analysis; ultimately, the final velocity model of the effective velocity ratio γ eff is obtained by percentage scanning migration. This method simplifies the PS-wave parameter estimation in high-quality imaging, reduces the uncertainty of multiparameter estimations, and obtains good imaging results in practice.  相似文献   

19.
The determination of the vertical and lateral extent of discontinuities is an important aspect of interpreting seismic reflection data. The Common Fault Point (CFP) stacking method appears to be promising in imaging discontinuities in acoustic impedance by making use of diffracted energy from a spatial array of receivers. The problems of vertical and lateral resolution in the method are most important when carrying out an interpretation. Source signature, subsurface velocities and the depth of the discontinuity are the most important parameters affecting the resolution. We use, for a perfectly coherent source, the first derivative of the Gaussian function which is an antisymmetric band-limited wavelet. Rayleigh's, Ricker's and Widess' criteria are also applicable to this wavelet. The limits of vertical and lateral resolution are illustrated by using a step fault and a dike model respectively. The vertical resolution of the CFP method is found to be of the order of λ/16 which is half the theoretically predicted value for a single receiver. The lateral resolution is still limited by the size of the Fresnel zone which depends upon the velocity, two-way time and the dominant frequency of the wavelet. The resolution limits of the CFP method are compared with that of the CDP method, prestack migration and post-stack migration. Obtaining high resolution with real data is limited by the extent to which it is possible to generate a coherent source or to simulate one during computer processing with before stack seismic data. The CFP method is an artificial intelligence approach to imaging diffracting points as it localizes parts of the structure that scatter acoustic waves.  相似文献   

20.
Common-reflection-surface (CRS) stack for common offset   总被引:8,自引:0,他引:8  
We provide a data-driven macro-model-independent stacking technique that migrates 2D prestack multicoverage data into a common-offset (CO) section. We call this new process the CO common-reflection-surface (CRS) stack. It can be viewed as the generalization of the zero-offset (ZO) CRS stack, by which 2D multicoverage data are stacked into a well-simulated ZO section. The CO CRS stack formula can be tailored to stack P-P, S-S reflections as well as P-S or S-P converted reflections. We point out some potential applications of the five kinematic data-derived attributes obtained by the CO CRS stack for each stack value. These include (i) the determination of the geometrical spreading factor for reflections, which plays an important role in the construction of the true-amplitude CO section, and (ii) the separation of the diffractions from reflection events. As a by-product of formulating the CO CRS stack formula, we have also derived a formula to perform a data-driven prestack time migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号