首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high‐resolution reflection seismic survey was carried out in the southern part of the Bavarian Molasse Basin in 1998 and 1999. The survey aimed to investigate the near‐surface structure of the complicated transition from the unfolded Foreland Molasse to the Folded Molasse, and the Folded Molasse to the internally complicated thrust systems of the Helveticum, the Ultrahelveticum and the Rhenodanubian Flysch. The study is linked to the TRANSALP seismic project, and the results help to fill the gap between the surface and the upper 300–500 ms two‐way traveltime (TWT), typical of deep‐reflection seismic experiments. The environmental conditions encountered in the study area required that particular attention be paid to the acquisition parameters for the three seismic lines (each about 4 km long). The energy source was a small vibrator; the geophone spread, spacing and frequency range were adjusted to image reflectors, which were expected to dip steeply southwards. In general, the unprocessed field records did not show signals that could be attributed to specific reflectors. Individual trace processing considerably improved the data quality, taking into account the influence of the Quaternary cover and also the strong lateral velocity variations of the shallow subsurface. The effects of the various processing steps, such as muting, refraction statics, residual statics and velocity analysis, are discussed. To assess the NMO velocities, the qualitative analysis of the seismic energy in a common‐shotpoint gather offered advantages over an analysis in a common‐midpoint gather or in a stacked section, and proved to be very effective. As demonstrated along the Miesbach 9801 line, low‐velocity zones extend locally down to about 400 ms, adjacent to zones of extremely high velocities close to the surface, reflecting steeply dipping strata. Besides the Quaternary cover on top, the Miesbach 9801 and Miesbach 9802 lines exhibit many horizontal reflections, in places down as far as 1400 ms TWT, indicating the sedimentary sequences of the unfolded Foreland Molasse. The southern part of both lines is dominated by southward‐dipping reflection bands, indicating units of the Folded Molasse. The reflection pattern shown by the Miesbach 9901 line suggests that there is almost no Quaternary cover. Southward‐dipping elements reflect the internal structure of the Folded Molasse, whereas a rather diffuse reflection signature may be attributed to Rhenodanubian Flysch units.  相似文献   

2.
A major complication caused by anisotropy in velocity analysis and imaging is the uncertainty in estimating the vertical velocity and depth scale of the model from surface data. For laterally homogeneous VTI (transversely isotropic with a vertical symmetry axis) media above the target reflector, P‐wave moveout has to be combined with other information (e.g. borehole data or converted waves) to build velocity models for depth imaging. The presence of lateral heterogeneity in the overburden creates the dependence of P‐wave reflection data on all three relevant parameters (the vertical velocity VP0 and the Thomsen coefficients ε and δ) and, therefore, may help to determine the depth scale of the velocity field. Here, we propose a tomographic algorithm designed to invert NMO ellipses (obtained from azimuthally varying stacking velocities) and zero‐offset traveltimes of P‐waves for the parameters of homogeneous VTI layers separated by either plane dipping or curved interfaces. For plane non‐intersecting layer boundaries, the interval parameters cannot be recovered from P‐wave moveout in a unique way. Nonetheless, if the reflectors have sufficiently different azimuths, a priori knowledge of any single interval parameter makes it possible to reconstruct the whole model in depth. For example, the parameter estimation becomes unique if the subsurface layer is known to be isotropic. In the case of 2D inversion on the dip line of co‐orientated reflectors, it is necessary to specify one parameter (e.g. the vertical velocity) per layer. Despite the higher complexity of models with curved interfaces, the increased angle coverage of reflected rays helps to resolve the trade‐offs between the medium parameters. Singular value decomposition (SVD) shows that in the presence of sufficient interface curvature all parameters needed for anisotropic depth processing can be obtained solely from conventional‐spread P‐wave moveout. By performing tests on noise‐contaminated data we demonstrate that the tomographic inversion procedure reconstructs both the interfaces and the VTI parameters with high accuracy. Both SVD analysis and moveout inversion are implemented using an efficient modelling technique based on the theory of NMO‐velocity surfaces generalized for wave propagation through curved interfaces.  相似文献   

3.
In order to understand various aspects of radar wave propagation, a survey of electromagnetic wave behaviour relative to the geological characteristics of the formations prospected was undertaken. The sites chosen for the tests were a granite quarry and an underground schist working. By investigating an electrically resistive isotropic site and a conductive anisotropic site, it was demonstrated that non-conventional use of a radar system (antennae raised, various orientations of the transmitter/receiver, etc.) could improve data quality, and could allow information other than reflector depth to be collected (volume scattering intensity, isotropy, etc.). By studying wave propagation velocities, we underlined the difficulties encountered in establishing a velocity versus depth law, despite recourse to seismic data processing, such as NMO corrections. The results of field experiments, complemented by laboratory measurements of dielectric permittivities, clearly showed anisotropy effects: in the case of a path that is perpendicular to the schistosity plane, an electromagnetic wave propagates more slowly and is more attenuated than a wave parallel to the schistosity plane.  相似文献   

4.
The transversely isotropic (TI) model with a tilted axis of symmetry may be typical, for instance, for sediments near the flanks of salt domes. This work is devoted to an analysis of reflection moveout from horizontal and dipping reflectors in the symmetry plane of TI media that contains the symmetry axis. While for vertical and horizontal transverse isotropy zero-offset reflections exist for the full range of dips up to 90°, this is no longer the case for intermediate axis orientations. For typical homogeneous models with a symmetry axis tilted towards the reflector, wavefront distortions make it impossible to generate specular zero-offset reflected rays from steep interfaces. The ‘missing’ dipping planes can be imaged only in vertically inhomogeneous media by using turning waves. These unusual phenomena may have serious implications in salt imaging. In non-elliptical TI media, the tilt of the symmetry axis may have a drastic influence on normal-moveout (NMO) velocity from horizontal reflectors, as well as on the dependence of NMO velocity on the ray parameter p (the ‘dip-moveout (DMO) signature’). The DMO signature retains the same character as for vertical transverse isotropy only for near-vertical and near-horizontal orientation of the symmetry axis. The behaviour of NMO velocity rapidly changes if the symmetry axis is tilted away from the vertical, with a tilt of ±20° being almost sufficient to eliminate the influence of the anisotropy on the DMO signature. For larger tilt angles and typical positive values of the difference between the anisotropic parameters ε and δ, the NMO velocity increases with p more slowly than in homogeneous isotropic media; a dependence usually caused by a vertical velocity gradient. Dip-moveout processing for a wide range of tilt angles requires application of anisotropic DMO algorithms. The strong influence of the tilt angle on P-wave moveout can be used to constrain the tilt using P-wave NMO velocity in the plane that includes the symmetry axis. However, if the azimuth of the axis is unknown, the inversion for the axis orientation cannot be performed without a 3D analysis of reflection traveltimes on lines with different azimuthal directions.  相似文献   

5.
Proper stacking of three-dimensional seismic CDP-data generally requires the knowledge of normal moveout velocities in all source-receiver directions contributing to a CDP-gather. The azimuthal variation of the stacking velocities mainly depends on the dip of the seismic interfaces. For a single dipping plane a simple relation exists between the dip and the azimuthal variation of NMO-velocity. Varying strike and dip of subsequent reflectors, however, result in a complex dependency of the seismic parameters. Reliable information on the spatial distribution of the normal moveout (NMO)-velocity can be derived from a wavefront curvature estimation using a 3-D ray-tracing technique. These procedures require additional information, e.g. reflection time gradients or depth maps to show interval velocities between leading interfaces. Moreover, their application to an extended 3-D data volume is restricted by high costs. The need for a routine 3-D procedure resulted in a special data selection to create pseudo 2-D profiles and to apply existing velocity estimation routines to these profiles. At least three estimates in different directions are necessary to derive the full azimuthal velocity variation, characterized by the large and the small main axis and the orientation of the velocity ellipse. Errors are estimated by means of computer models. Stacking velocities obtained by mathematical routines (least-squares fit) and by seismic standard routines (NMO-correction and correlation) are compared. Finally, a general 3-D velocity procedure using cross-correlation of preliminarily NMO-corrected traces is proposed.  相似文献   

6.
动校正拉伸是地震资料处理的一个基本问题,解决拉伸问题的处理方法是切除.现代地震数据大多为长排列采集,动校正拉伸更为严重.依据褶积模型和Fourier变换的基本性质,本文给出频谱代换无拉伸动校正方法.算法实现就是将CMP道集变换到频率域,取参考道的相位谱替换其它偏移距道的相位,同时保持其振幅谱不变,再做Fourier反变换就得到动校正后的地震剖面.通过其实现过程可知该方法不需要地下介质的速度信息,算法可完全自动实现,且具有较高的计算效率.频谱代换无拉伸动校正可适用于任何偏移距的地震资料,而且还可有效保持地震资料的AVO效应.理论模拟数据及其叠加结果显示频谱代换法的有效性和实用性,同时该方法具有较强的抗随机噪音能力.  相似文献   

7.
Fluid flow in many hydrocarbon reservoirs is controlled by aligned fractures which make the medium anisotropic on the scale of seismic wavelength. Applying the linear‐slip theory, we investigate seismic signatures of the effective medium produced by a single set of ‘general’ vertical fractures embedded in a purely isotropic host rock. The generality of our fracture model means the allowance for coupling between the normal (to the fracture plane) stress and the tangential jump in displacement (and vice versa). Despite its low (triclinic) symmetry, the medium is described by just nine independent effective parameters and possesses several distinct features which help to identify the physical model and estimate the fracture compliances and background velocities. For example, the polarization vector of the vertically propagating fast shear wave S1 and the semi‐major axis of the S1‐wave normal‐moveout (NMO) ellipse from a horizontal reflector always point in the direction of the fracture strike. Moreover, for the S1‐wave both the vertical velocity and the NMO velocity along the fractures are equal to the shear‐wave velocity in the host rock. Analysis of seismic signatures in the limit of small fracture weaknesses allows us to select the input data needed for unambiguous fracture characterization. The fracture and background parameters can be estimated using the NMO ellipses from horizontal reflectors and vertical velocities of P‐waves and two split S‐waves, combined with a portion of the P‐wave slowness surface reconstructed from multi‐azimuth walkaway vertical seismic profiling (VSP) data. The stability of the parameter‐estimation procedure is verified by performing non‐linear inversion based on the exact equations.  相似文献   

8.
Improving the accuracy of NMO corrections and of the corresponding interval velocities entails implementing a better approximation than the formula used since the beginning of seismic processing. The exact equations are not practical as they include many unknowns. The approximate expression has only two unknowns, the reflection time and the rms velocity, but becomes inaccurate for large apertures of the recording system and heterogeneous vertical velocities. Several methods of improving the accuracy have been considered, but the gains do not compensate for the dramatic increase in computing time. Two alternative equations are proposed: the first containing two parameters, the reflection time and the focusing time, is not valid for apertures much greater than is the standard formula, but has a much faster computing time and does not stretch the far traces; the other, containing three parameters, the reflection time, like focusing time and the tuning velocity, retains high frequencies for apertures about twice those allowed by the standard equation. Its computing time can be kept within the same limits. NMO equations, old and new, are designed strictly for horizontal layering, but remain reliable as long as the rays travel through the same layers in both the down and up directions. An equation, similar to Dix's formula, is given to compute the interval velocities. The entire scheme can be automated to produce interval-velocity sections without manual picking.  相似文献   

9.
动校正是地震资料处理的关键内容之一,直接关系到地震资料处理结果的精度.在浅层和大偏移距情况下,常规动校正使波形发生拉伸畸变,波形拉长、频带向低频方向移动,进而影响叠加效果.通常地震资料处理中大都采用切除的方法克服动校正拉伸畸变的影响,这对目的层较深时是可取的.以工程地质调查为目的的海洋地震勘探旨在了解海底之下较浅地层深度范围内的地质信息,一般勘探区水深较浅,数据叠加道数较少,如果仍然采取切除处理,势必严重影响资料的分辨率和准确度.本文阐述了一种无拉伸动校正方法,能较好地解决动校正后的波形畸变问题,理论模型和实际资料的处理结果表明该方法在近海浅层工程地震勘探中是行之有效的,有助于提高速度分析的精度和地震资料的分辨率.  相似文献   

10.
中国大陆科学钻探孔区的数字三分量反射地震调查   总被引:1,自引:1,他引:1       下载免费PDF全文
本文将简要介绍在大陆科学钻探孔区进行数字三分量地震勘探试验数据采集处理技术,以及取得的初步成果. 鉴于结晶岩地区波场的复杂性,在剖面调查之前要先进行波场特征调查,才能确定三分量地震调查观测系统采集参数.数据处理中与水平分量处理有关的三个困难环节包括静校正、速度分析与动校叠加,必须有所创新.在大陆科学钻探工程中,三分量数字地震调查之所以放在终孔后才进行,主要是因为三分量地震解释要以钻孔资料和VSP成果为基础.如果没有岩芯物性测定资料或VSP纵横波速度计算曲线,横波速度剖面模式就难以建立,水平分量数据处理和解释就难以进行.与单分量地震调查相比,水平分量采集处理提供了转换波信息,可反映独特的很有意义的地质信息.在三分量数字地震调查X分量深度叠加剖面左半边深度2600~3400 m区段出现密集的水平反射层,与Z分量反射剖面和变质岩片倾向不一致.对比主孔气体异常曲线可知,这些水平反射是地层中流体含量升高的反映.  相似文献   

11.
裂隙各向异性介质中的NMO速度   总被引:1,自引:4,他引:1       下载免费PDF全文
推导了各向异性介质中由弹性系数表示的方位动校NMO速度的具体表达式,表明各向异性介质中方位NMO速度程椭圆形状,并分别对具水平对称轴的横向各向同性介质(HTI)、正交介质和单斜各向异性介质及在不同的裂隙填充物的性质下方位NMO速度进行了计算,结果表明裂隙的存在对NMO速度的影响不仅与裂隙密度有关,还取决于裂隙填充物的性质.同时,研究表明对于裂隙型单斜各向异性介质,其方位NMO速度椭圆轴向并不象HTI介质和正交介质中的那样与自然坐标系的坐标轴一致,而是发生了一定角度的偏离,其大小与裂隙填充物的性质、两组裂隙密度的比值及裂隙间的夹角等因素有关,研究结果为进一步区分裂隙介质的类型及裂隙填充物的性质提供依据.  相似文献   

12.
Sensitivity of time-lapse seismic to reservoir stress path   总被引:1,自引:1,他引:1  
The change in reservoir pore pressure due to the production of hydrocarbons leads to anisotropic changes in the stress field acting on the reservoir. Reservoir stress path is defined as the ratio of the change in effective horizontal stress to the change in effective vertical stress from the initial reservoir conditions, and strongly influences the depletion‐induced compaction behaviour of the reservoir. Seismic velocities in sandstones vary with stress due to the presence of stress‐sensitive regions within the rock, such as grain boundaries, microcracks, fractures, etc. Since the response of any microcracks and grain boundaries to a change in stress depends on their orientation relative to the principal stress axes, elastic‐wave velocities are sensitive to reservoir stress path. The vertical P‐ and S‐wave velocities, the small‐offset P‐ and SV‐wave normal‐moveout (NMO) velocities, and the P‐wave amplitude‐versus‐offset (AVO) are sensitive to different combinations of vertical and horizontal stress. The relationships between these quantities and the change in stress can be calibrated using a repeat seismic, sonic log, checkshot or vertical seismic profile (VSP) at the location of a well at which the change in reservoir pressure has been measured. Alternatively, the variation of velocity with azimuth and distance from the borehole, obtained by dipole radial profiling, can be used. Having calibrated these relationships, the theory allows the reservoir stress path to be monitored using time‐lapse seismic by combining changes in the vertical P‐wave impedance, changes in the P‐wave NMO and AVO behaviour, and changes in the S‐wave impedance.  相似文献   

13.
Despite the complexity of wave propagation in anisotropic media, reflection moveout on conventional common-midpoint (CMP) spreads is usually well described by the normal-moveout (NMO) velocity defined in the zero-offset limit. In their recent work, Grechka and Tsvankin showed that the azimuthal variation of NMO velocity around a fixed CMP location generally has an elliptical form (i.e. plotting the NMO velocity in each azimuthal direction produces an ellipse) and is determined by the spatial derivatives of the slowness vector evaluated at the CMP location. This formalism is used here to develop exact solutions for the NMO velocity in anisotropic media of arbitrary symmetry. For the model of a single homogeneous layer above a dipping reflector, we obtain an explicit NMO expression valid for all pure modes and any orientation of the CMP line with respect to the reflector strike. The contribution of anisotropy to NMO velocity is contained in the slowness components of the zero-offset ray (along with the derivatives of the vertical slowness with respect to the horizontal slownesses) — quantities that can be found in a straightforward way from the Christoffel equation. If the medium above a dipping reflector is horizontally stratified, the effective NMO velocity is determined through a Dix-type average of the matrices responsible for the ‘interval’ NMO ellipses in the individual layers. This generalized Dix equation provides an analytic basis for moveout inversion in vertically inhomogeneous, arbitrarily anisotropic media. For models with a throughgoing vertical symmetry plane (i.e. if the dip plane of the reflector coincides with a symmetry plane of the overburden), the semi-axes of the NMO ellipse are found by the more conventional rms averaging of the interval NMO velocities in the dip and strike directions. Modelling of normal moveout in general heterogeneous anisotropic media requires dynamic ray tracing of only one (zero-offset) ray. Remarkably, the expressions for geometrical spreading along the zero-offset ray contain all the components necessary to build the NMO ellipse. This method is orders of magnitude faster than multi-azimuth, multi-offset ray tracing and, therefore, can be used efficiently in traveltime inversion and in devising fast dip-moveout (DMO) processing algorithms for anisotropic media. This technique becomes especially efficient if the model consists of homogeneous layers or blocks separated by smooth interfaces. The high accuracy of our NMO expressions is illustrated by comparison with ray-traced reflection traveltimes in piecewise-homogeneous, azimuthally anisotropic models. We also apply the generalized Dix equation to field data collected over a fractured reservoir and show that P-wave moveout can be used to find the depth-dependent fracture orientation and to evaluate the magnitude of azimuthal anisotropy.  相似文献   

14.
Time horizons can be depth-migrated when interval velocities are known; on the other hand, the velocity distribution can be found when traveltimes and NMO velocities at zero offset are known (wavefront curvatures; Shah 1973). Using these concepts, exact recursive inversion formulae for the calculation of interval velocities are given. The assumption of rectilinear raypath propagation within each layer is made; interval velocities and curvatures of the interfaces between layers can be found if traveltimes together with their gradients and curvatures and very precise VNMO velocities at zero offset are known. However, the available stacking velocity is a numerical quantity which has no direct physical significance; its deviation from zero offset NMO velocity is examined in terms of horizon curvatures, cable length and lateral velocity inhomogeneities. A method has been derived to estimate the geological depth model by searching, iteratively, for the best solution that minimizes the difference between stacking velocities from the real data and from the structural model. Results show the limits and capabilities of the approach; perhaps, owing to the low resolution of conventional velocity analyses, a simplified version of the given formulae would be more robust.  相似文献   

15.
Rapid melting of permafrost in many alpine areas has increased the probability of catastrophic rock slides. In an attempt to provide critical structural information needed for the design and implementation of suitable mitigation procedures, we have acquired low frequency (22 MHz) cross‐hole radar data from within a fast‐moving rock glacier, an important form of alpine permafrost. Since the ice, rock and pockets of water and air found in the underground of high alpine areas have very different dielectric permittivities and electrical conductivities, the radar method was well‐suited for investigating the structure and state of the rock glacier. Our interpretation of the radar velocities and attenuations was constrained by geomorphological observations, borehole lithological logs and the results of a surface seismic survey. The radar data revealed the existence of a discontinuous 7–11 m thick ice‐rich zone distinguished by high velocities (0.14–0.17 m/ns) and low attenuations (0.04–0.09 m?1) and a thin underlying ice‐free zone characterized by moderate velocities (0.11–0.12 m/ns) and low attenuations (0.04–0.09 m?1). Beneath these two zones, we observed a prominent band of high velocities (0.14–0.17 m/ns) and moderately high attenuations (0.10–0.20 m?1) associated with unconsolidated glacial sediments and numerous large air‐filled voids, which in the past were probably filled with ice. At greater depths, the variably dry to water‐saturated sediments were represented by generally lower velocities (0.08–0.10 m/ns) and higher attenuations (0.16–0.24 m?1). The bedrock surface was represented by an abrupt ~0.03 m/ns velocity increase. We speculate that the disappearance of ice, both laterally and with depth, occurred during the past one to two decades.  相似文献   

16.
A method to determine ground-penetrating radar (GPR) velocities, which utilize Brewster angles, is presented. The method determines the relative dielectric constant ratio at interface boundaries where the radar wave is traveling from a low-velocity to a high-velocity medium. Using Brewster angle analysis is currently the only means to determine the velocity of the medium below the deepest detectable reflector. Data are presented for water-saturated clean sand with a known velocity of 0.52 m/ns, which overlays a sandy silt with a known velocity of 0.13 m/ns. Brewster angle analysis of a common midpoint (CMP) survey gives a relative dielectric constant ratio of 33/4.77. The Brewster angle relative dielectric constant ratio is in good agreement with the relative dielectric constant ratio calculated from the known velocities.  相似文献   

17.
A new measurement technique enables the complex dielectric properties of the geological strata comprising the UG1–UG2 (Upper Group 1–Upper Group 2) unit of the Bushveld Complex in South Africa to be determined with unprecedented detail at radio frequencies (RF). Results of non-destructive laboratory measurements of representative diamond drill core samples from the UG1–UG2 unit are presented at 25 MHz. These data establish that the UG1 and UG2 chromitite layers are embedded in rock strata (norite, pyroxenite and anorthosite) which are translucent in the HF spectral band, whereas the chromitite layers themselves exhibit significant velocity contrast, making them good radar reflectors. The data presented here is useful for calibration of the radar system, and for predicting the range and resolution performance of borehole radars operating in both the hanging and footwalls of the economically important platiniferous UG2 reef.  相似文献   

18.
Lateral inhomogeneities generate fluctuations in the traveltime of seismic waves. By evaluation of these traveltime fluctuations from different source and receiver positions, lateral inhomogeneities can be located using a pseudo inverse matrix method (Aki, Christoffersson and Husebye 1977). The formulation of the problem is possible for transmitted waves as well as for reflected and refracted waves. In reflection seismics this method is of importance, if no reflections from the inhomogeneities themselves, but only reflections from lower boundaries can be observed. The basic assumptions for the mathematical formulation are (1) the average velocities and depths of the reflecting horizons are known already from standard processing methods, and (2) the traveltime residuals are due to lateral velocity changes between different reflectors or between reflectors and the surface. The area of the earth to be considered is divided into layers and the layers into rectangular blocks. The parallel displacement of a ray after passing a disturbed block is neglected, only the traveltime residual is taken into account. In this paper the method and its application to data obtained with two-dimensional models are described.  相似文献   

19.
We use residual moveouts measured along continuous full azimuth reflection angle gathers, in order to obtain effective horizontal transversely isotropic model parameters. The angle gathers are generated through a special angle domain imaging system, for a wide range of reflection angles and full range of phase velocity azimuths. The estimation of the effective model parameters is performed in two stages. First, the background horizontal transversely isotropic (HTI)/vertical transversely isotropic (VTI) layered model is used, along with the values of reflection angles, for converting the measured residual moveouts (or traveltime errors) into azimuthally dependent normal moveout (NMO) velocities. Then we apply a digital Fourier transform to convert the NMO velocities into azimuthal wavenumber domain, in order to obtain the effective HTI model parameters: vertical time, vertical compression velocity, Thomsen parameter delta and the azimuth of the medium axis of symmetry. The method also provides a reliability criterion of the HTI assumption. The criterion shows whether the medium possesses the HTI type of symmetry, or whether the azimuthal dependence of the residual traveltime indicates to a more complex azimuthal anisotropy. The effective model used in this approach is defined for a 1D structure with a set of HTI, VTI and isotropic layers (with at least one HTI layer). We describe and analyse the reduction of a multi‐layer structure into an equivalent effective HTI model. The equivalent model yields the same NMO velocity and the same offset azimuth on the Earth's surface as the original layered structure, for any azimuth of the phase velocity. The effective model approximates the kinematics of an HTI/VTI layered structure using only a few parameters. Under the hyperbolic approximation, the proposed effective model is exact.  相似文献   

20.
各向同性介质长偏移距地震同相轴动校正   总被引:3,自引:2,他引:1       下载免费PDF全文
传统二阶动校正方法基于较小最大偏移距与目标层深度比和地震波沿直线传播假设,进行长偏移距地震资料处理时,这些假设不再成立.高阶项动校正公式能提高长偏移动校正精度,文中对几种典型的高阶项动校正方法进行了比较,并提出了优化四阶、优化六阶动校正方法.模型计算表明,高阶项动校正方法能取得较常规动校正方法好的动校正结果,但并非阶数越高动校正精度就越高;在纵向速度变化剧烈时,高阶动校正或优化高阶动校正方法一般不能适用于最大偏移距与目标层深度大于3.5的地震反射同相轴,优化四阶和优化六阶动校正公式由于考虑了无穷大偏移距的影响,具有更稳定、更加精确动校正效果,适合于实际的各向同性长偏移距地震资料处理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号