首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Despite the complexity of wave propagation in anisotropic media, reflection moveout on conventional common-midpoint (CMP) spreads is usually well described by the normal-moveout (NMO) velocity defined in the zero-offset limit. In their recent work, Grechka and Tsvankin showed that the azimuthal variation of NMO velocity around a fixed CMP location generally has an elliptical form (i.e. plotting the NMO velocity in each azimuthal direction produces an ellipse) and is determined by the spatial derivatives of the slowness vector evaluated at the CMP location. This formalism is used here to develop exact solutions for the NMO velocity in anisotropic media of arbitrary symmetry. For the model of a single homogeneous layer above a dipping reflector, we obtain an explicit NMO expression valid for all pure modes and any orientation of the CMP line with respect to the reflector strike. The contribution of anisotropy to NMO velocity is contained in the slowness components of the zero-offset ray (along with the derivatives of the vertical slowness with respect to the horizontal slownesses) — quantities that can be found in a straightforward way from the Christoffel equation. If the medium above a dipping reflector is horizontally stratified, the effective NMO velocity is determined through a Dix-type average of the matrices responsible for the ‘interval’ NMO ellipses in the individual layers. This generalized Dix equation provides an analytic basis for moveout inversion in vertically inhomogeneous, arbitrarily anisotropic media. For models with a throughgoing vertical symmetry plane (i.e. if the dip plane of the reflector coincides with a symmetry plane of the overburden), the semi-axes of the NMO ellipse are found by the more conventional rms averaging of the interval NMO velocities in the dip and strike directions. Modelling of normal moveout in general heterogeneous anisotropic media requires dynamic ray tracing of only one (zero-offset) ray. Remarkably, the expressions for geometrical spreading along the zero-offset ray contain all the components necessary to build the NMO ellipse. This method is orders of magnitude faster than multi-azimuth, multi-offset ray tracing and, therefore, can be used efficiently in traveltime inversion and in devising fast dip-moveout (DMO) processing algorithms for anisotropic media. This technique becomes especially efficient if the model consists of homogeneous layers or blocks separated by smooth interfaces. The high accuracy of our NMO expressions is illustrated by comparison with ray-traced reflection traveltimes in piecewise-homogeneous, azimuthally anisotropic models. We also apply the generalized Dix equation to field data collected over a fractured reservoir and show that P-wave moveout can be used to find the depth-dependent fracture orientation and to evaluate the magnitude of azimuthal anisotropy.  相似文献   

2.
Tilted transversely isotropic formations cause serious imaging distortions in active tectonic areas (e.g., fold‐and‐thrust belts) and in subsalt exploration. Here, we introduce a methodology for P‐wave prestack depth imaging in tilted transversely isotropic media that properly accounts for the tilt of the symmetry axis as well as for spatial velocity variations. For purposes of migration velocity analysis, the model is divided into blocks with constant values of the anisotropy parameters ε and δ and linearly varying symmetry‐direction velocity VP0 controlled by the vertical (kz) and lateral (kx) gradients. Since determination of tilt from P‐wave data is generally unstable, the symmetry axis is kept orthogonal to the reflectors in all trial velocity models. It is also assumed that the velocity VP0 is either known at the top of each block or remains continuous in the vertical direction. The velocity analysis algorithm estimates the velocity gradients kz and kx and the anisotropy parameters ε and δ in the layer‐stripping mode using a generalized version of the method introduced by Sarkar and Tsvankin for factorized transverse isotropy with a vertical symmetry axis. Synthetic tests for several models typical in exploration (a syncline, uptilted shale layers near a salt dome and a bending shale layer) confirm that if the symmetry‐axis direction is fixed and VP0 is known, the parameters kz, kx, ε and δ can be resolved from reflection data. It should be emphasized that estimation of ε in tilted transversely isotropic media requires using nonhyperbolic moveout for long offsets reaching at least twice the reflector depth. We also demonstrate that application of processing algorithms designed for a vertical symmetry axis to data from tilted transversely isotropic media may lead to significant misfocusing of reflectors and errors in parameter estimation, even when the tilt is moderate (30°). The ability of our velocity analysis algorithm to separate the anisotropy parameters from the velocity gradients can be also used in lithology discrimination and geologic interpretation of seismic data in complex areas.  相似文献   

3.
Transversely isotropic models with a tilted symmetry axis have become standard for imaging beneath dipping shale formations and in active tectonic areas. Here, we develop a methodology of wave-equation-based image-domain tomography for acoustic tilted transversely isotropic media. We obtain the gradients of the objective function using an integral wave-equation operator based on a separable dispersion relation that takes the symmetry-axis tilt into account. In contrast to the more conventional differential solutions, the integral operator produces only the P-wavefield without shear-wave artefacts, which facilitates both imaging and velocity analysis. The model is parameterized by the P-wave zero-dip normal-moveout velocity, the Thomsen parameter δ, anellipticity coefficient η and the symmetry-axis tilt θ. Assuming that the symmetry axis is orthogonal to reflectors, we study the influence of parameter errors on energy focusing in extended (space-lag) common-image gathers. Distortions in the anellipticity coefficient η introduce weak linear defocusing regardless of reflector dip, whereas δ influences both the energy focusing and depth scale of the migrated section. These results, which are consistent with the properties of the P-wave time-domain reflection moveout in tilted transversely isotropic media, provide important insights for implementation of velocity model-building in the image-domain. Then the algorithm is tested on a modified anticline section of the BP 2007 benchmark model.  相似文献   

4.
5.
In an acoustic transversely isotropic medium, there are two waves that propagate. One is the P-wave and another one is the S-wave (also known as S-wave artefact). This paper is devoted to analyse the S-wave in two-dimensional acoustic transversely isotropic media with a tilted symmetry axis. We derive the S-wave slowness surface and traveltime function in a homogeneous acoustic transversely isotropic medium with a tilted symmetry axis. The S-wave traveltime approximations in acoustic transversely isotropic media with a tilted symmetry axis can be mapped from the counterparts for acoustic transversely isotropic media with a vertical symmetry axis. We consider a layered two-dimensional acoustic transversely isotropic medium with a tilted symmetry axis to analyse the S-wave moveout. We also illustrate the behaviour of the moveout for reflected S-wave and converted waves.  相似文献   

6.
Much of the success of modern seismic data processing derives from the use of the stacking process. Unfortunately, as is well known, conventional normal moveout correction (NMO) introduces mispositioning of data, and hence mis-stacking, when dip is present. Dip moveout correction (DMO) is a technique that converts non-zero-offset seismic data after NMO to true zero-offset locations and reflection times, irrespective of dip. The combination of NMO and DMO followed by post-stack time migration is equivalent to, but can be implemented much more efficiently than, full time migration before stack. In this paper we consider the frequency-wavenumber DMO algorithm developed by Hale. Our analysis centres on the result that, for a given dip, the combination of NMO at migration velocity and DMO is equivalent to NMO at the appropriate, dip-dependent, stacking velocity. This perspective on DMO leads to computationally efficient methods for applying Hale DMO and also provides interesting insights on the nature of both DMO and conventional stacking.  相似文献   

7.
Existing and commonly used in industry nowadays, closed‐form approximations for a P‐wave reflection coefficient in transversely isotropic media are restricted to cases of a vertical and a horizontal transverse isotropy. However, field observations confirm the widespread presence of rock beds and fracture sets tilted with respect to a reflection boundary. These situations can be described by means of the transverse isotropy with an arbitrary orientation of the symmetry axis, known as tilted transversely isotropic media. In order to study the influence of the anisotropy parameters and the orientation of the symmetry axis on P‐wave reflection amplitudes, a linearised 3D P‐wave reflection coefficient at a planar weak‐contrast interface separating two weakly anisotropic tilted tranversely isotropic half‐spaces is derived. The approximation is a function of the incidence phase angle, the anisotropy parameters, and symmetry axes tilt and azimuth angles in both media above and below the interface. The expression takes the form of the well‐known amplitude‐versus‐offset “Shuey‐type” equation and confirms that the influence of the tilt and the azimuth of the symmetry axis on the P‐wave reflection coefficient even for a weakly anisotropic medium is strong and cannot be neglected. There are no assumptions made on the symmetry‐axis orientation angles in both half‐spaces above and below the interface. The proposed approximation can be used for inversion for the model parameters, including the orientation of the symmetry axes. Obtained amplitude‐versus‐offset attributes converge to well‐known approximations for vertical and horizontal transverse isotropic media derived by Rüger in corresponding limits. Comparison with numerical solution demonstrates good accuracy.  相似文献   

8.
任意空间取向TI介质中P波四次时差系数特征   总被引:4,自引:3,他引:1       下载免费PDF全文
郝重涛  姚陈 《地球物理学报》2008,51(4):1172-1179
同类反射波(非转换波)走时偏离双曲,称为非双曲或四次时差,在长排列各向异性地震资料处理中需要校正.本文基于我们导出的水平界面任意空间取向TI (ATI)介质中同类反射波四次时差系数(A4)的精确解析解,数值计算研究P波四次时差系数特征.正演结果表明,ATI条件下A4系数随CMP测线方位变化的特征不仅与TI介质的各向异性参数有关,而且与TI对称轴的空间取向密切相关; TI介质的各向异性参数和TI对称轴的倾角决定了A4变化特征,而且TI对称轴的方位决定了A4随测线方位变化的对称性.此研究结果将对各向异性解释及参数反演有参考意义.  相似文献   

9.
忽略TTI介质对称轴倾角的可行性   总被引:1,自引:1,他引:0       下载免费PDF全文
李磊  郝重涛 《地球物理学报》2012,55(6):2004-2013
假设横向各向同性(TI)介质的对称轴是垂直的(VTI)或者水平的(HTI)能给实际资料处理带来便利,然而实际TI介质的对称轴往往是倾斜的(TTI),忽略对称轴倾角可能给各向异性参数提取和成像带来偏差,因此需要研究是否能、以及什么条件下能忽略TTI介质对称轴倾角.本文通过理论研究和数值分析研究了与TTI介质弹性性质最接近的VTI介质(OAVTI)的弹性常数和各向异性参数与原TTI介质的弹性常数和各向异性参数之间的联系与差别.结果表明:OAVTI介质各向异性参数与原TTI介质各向异性参数之间的差别可统一表示成F(α00,ε,δ,γ)ξ2的形式,其中F(α00,ε,δ,γ)是无量纲各向异性参数(ε, δ, γ)的线性函数,ξ是对称轴倾角;ξ的大小对各参数的误差起主导作用,一般不建议忽略20°~25°以上的对称轴倾角;当ξ较小时,即使是对强各向异性的TTI介质作VTI近似,引起的P波各向异性参数误差也很小,因此在纵波资料处理中忽略TTI介质对称轴倾角通常是可行的;即使在小ξ条件下,倾斜对称轴对SV波也有显著影响,因此在转换波资料处理中,不建议忽略TTI介质的对称轴倾角.本文的研究为分析忽略TTI介质对称轴倾角的可行性提供了理论依据和简便的判据.  相似文献   

10.
A major complication caused by anisotropy in velocity analysis and imaging is the uncertainty in estimating the vertical velocity and depth scale of the model from surface data. For laterally homogeneous VTI (transversely isotropic with a vertical symmetry axis) media above the target reflector, P‐wave moveout has to be combined with other information (e.g. borehole data or converted waves) to build velocity models for depth imaging. The presence of lateral heterogeneity in the overburden creates the dependence of P‐wave reflection data on all three relevant parameters (the vertical velocity VP0 and the Thomsen coefficients ε and δ) and, therefore, may help to determine the depth scale of the velocity field. Here, we propose a tomographic algorithm designed to invert NMO ellipses (obtained from azimuthally varying stacking velocities) and zero‐offset traveltimes of P‐waves for the parameters of homogeneous VTI layers separated by either plane dipping or curved interfaces. For plane non‐intersecting layer boundaries, the interval parameters cannot be recovered from P‐wave moveout in a unique way. Nonetheless, if the reflectors have sufficiently different azimuths, a priori knowledge of any single interval parameter makes it possible to reconstruct the whole model in depth. For example, the parameter estimation becomes unique if the subsurface layer is known to be isotropic. In the case of 2D inversion on the dip line of co‐orientated reflectors, it is necessary to specify one parameter (e.g. the vertical velocity) per layer. Despite the higher complexity of models with curved interfaces, the increased angle coverage of reflected rays helps to resolve the trade‐offs between the medium parameters. Singular value decomposition (SVD) shows that in the presence of sufficient interface curvature all parameters needed for anisotropic depth processing can be obtained solely from conventional‐spread P‐wave moveout. By performing tests on noise‐contaminated data we demonstrate that the tomographic inversion procedure reconstructs both the interfaces and the VTI parameters with high accuracy. Both SVD analysis and moveout inversion are implemented using an efficient modelling technique based on the theory of NMO‐velocity surfaces generalized for wave propagation through curved interfaces.  相似文献   

11.
Practical VTI approximations: a systematic anatomy   总被引:3,自引:0,他引:3  
Transverse isotropy (TI) with a vertical symmetry axis (VTI) often provides an appropriate earth model for prestack imaging of steep-dip reflection seismic data. Exact P-wave and SV-wave phase velocities in VTI media are described by complicated equations requiring four independent parameters. Estimating appropriate multiparameter earth models can be difficult and time-consuming, so it is often useful to replace the exact VTI equations with simpler approximations requiring fewer parameters. The accuracy limits of different previously published VTI approximations are not always clear, nor is it always obvious how these different approximations relate to each other. Here I present a systematic framework for deriving a variety of useful VTI approximations. I develop first a sequence of well-defined approximations to the exact P-wave and SV-wave phase velocities. In doing so, I show how the useful but physically questionable heuristic of setting shear velocities identically to zero can be replaced with a more precise and quantifiable approximation. The key here to deriving accurate approximations is to replace the stiffness a13 with an appropriate factorization in terms of velocity parameters. Two different specific parameter choices lead to the P-wave approximations of Alkhalifah (Geophysics 63 (1998) 623) and Schoenberg and de Hoop (Geophysics 65 (2000) 919), but there are actually an infinite number of reasonable parametrizations possible. Further approximations then lead to a variety of other useful phase velocity expressions, including those of Thomsen (Geophysics 51 (1986) 1954), Dellinger et al. (Journal of Seismic Exploration 2 (1993) 23), Harlan (Stanford Exploration Project Report 89 (1995) 145), and Stopin (Stopin, A., 2001. Comparison of v(θ) equations in TI medium. 9th International Workshop on Seismic Anisotropy). Each P-wave phase velocity approximation derived this way can be paired naturally with a corresponding SV-wave approximation. Each P-wave or SV-wave phase velocity approximation can then be converted into an equivalent dispersion relation in terms of horizontal and vertical slownesses. A simple heuristic substitution also allows each phase velocity approximation to be converted into an explicit group velocity approximation. From these, in turn, travel time or moveout approximations can also be derived. The group velocity and travel time approximations derived this way include ones previously used by Byun et al. (Geophysics 54 (1989) 1564), Dellinger et al. (Journal of Seismic Exploration 2 (1993) 23), Tsvankin and Thomsen (Geophysics 59 (1994) 1290), Harlan (89 (1995) 145), and Zhang and Uren (Zhang, F. and Uren, N., 2001. Approximate explicit ray velocity functions and travel times for P-waves in TI media. 71st Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 106–109).  相似文献   

12.
ATI介质中四次时差系数解析近似   总被引:2,自引:2,他引:0       下载免费PDF全文
郝重涛  姚陈 《地球物理学报》2009,52(8):2074-2083
非双曲(远偏移距)时差为各向异性介质中正、反演研究,特别是各向异性参数估计提供了重要信息.本文在任意空间取向TI(ATI)介质水平界面同类反射波四次时差系数(A4)精确解的基础上,进一步讨论我们推导得出的ATI介质中四次时差系数解析近似解,比较随CMP测线方位变化的近似解与精确解之间的差别,为利用近似解来解析研究ATI介质中非双曲时距以及参数反演提供有价值的信息.结合实际岩性资料的数值研究表明,ATI条件下四次时差系数近似解与精确解之间存在差别,不仅表现在A4数的大小及符号特征上,更突出地表现在A4系数随方位的变化特征上;在强各向异性条件下,近似解相比精确解存在较大误差.但在各向异性参数满足0<ε-δ<0.15、|δ|<0.20的情况下,对于TI对称轴的特殊倾角范围(75°~80°),近似解与精确解的差别很小,可用近似解进行各向异性观测解释及参数反演.  相似文献   

13.
Backus and Crampin derived analytical equations for estimating approximate phase-velocity variations in symmetry planes in weakly anisotropic media, where the coefficients of the equations are linear combinations of the elastic constants. We examine the application of similar equations to group-velocity variations in off-symmetry planes, where the coefficients of the equations are derived numerically. We estimate the accuracy of these equations over a range of anisotropic materials with transverse isotropy with both vertical and horizontal symmetry axes, and with combinations of transverse isotropy yielding orthorhombic symmetry. These modified equations are good approximations for up to 17% shear-wave anisotropy for propagations in symmetry planes for all waves in all symmetry systems examined, but are valid only for lower shear-wave anisotropy (up to 11%) in off-symmetry planes. We also obtain analytical moveout equations for the reflection of qP-, qSH-, and qSV- waves from a single interface for off-symmetry planes in anisotropic symmetry. The moveout equation consists of two terms: a hyperbolic moveout and a residual moveout, where the residual moveout is proportional to the degree of anisotropy and the spread length of the acquisition geometry. Numerical moveout curves are computed for a range of anisotropic materials to verify the analytical moveout equations.  相似文献   

14.
The relation between vertical and horizontal slownesses, better known as the dispersion relation, for transversely isotropic media with a tilted symmetry axis (TTI) requires solving a quartic polynomial equation, which does not admit a practical explicit solution to be used, for example, in downward continuation. Using a combination of the perturbation theory with respect to the anelliptic parameter and Shanks transform to improve the accuracy of the expansion, we develop an explicit formula for the vertical slowness that is highly accurate for all practical purposes. It also reveals some insights into the anisotropy parameter dependency of the dispersion relation including the low impact that the anelliptic parameter has on the vertical placement of reflectors for a small tilt in the symmetry angle.  相似文献   

15.
由所建立的三维qP波相速度表示式出发,导出并解析求解各向异性介质中的频散方程,得到三维各向异性介质中的相移算子,进而将以相移算子为基础的对称非平稳相移方法推广到各向异性介质,发展了一个三维各向异性介质的深度偏移方法. 文中使用的各向异性介质的速度模型与现行的各向异性构造的速度估计方法一致,将各向同性、弱各向异性及强各向异性统一在一个模型中. 所建立的各向异性介质对称非平稳相移波场延拓算子可以同时适应速度及各向异性参数横向变化;文中给出的算例虽然是针对二维VTI介质的,但所提出的算法同样适用于三维TI介质.  相似文献   

16.
陈文康  姚陈  郝重涛 《地震地质》2011,33(3):684-692
利用任意空间取向横向各向同性介质( ATI)的弹性张量解析表达式,分析ATI弹性常数之间的内在关系,得到一个判断ATI介质的必要条件.假若介质弹性矩阵满足这个ATI必要条件,可做ATI假设,确定可能的ATI对称轴空间取向.此时,如果通过坐标变换得到的是VTI弹性矩阵,就说明介质确实是ATI介质,这就完整地解决了从包含2...  相似文献   

17.
VTI介质纯P波混合法正演模拟及稳定性分析   总被引:3,自引:3,他引:0       下载免费PDF全文
各向异性介质纯P波方程完全不受横波的干扰,在一定程度上可以减缓由于介质各向异性引起的数值不稳定,本文推导了具有垂直对称轴的横向各向同性(VTI)介质纯P波一阶速度-应力方程.由于纯P波方程存在一个分数形式的伪微分算子,无法直接采用有限差分法求解.针对该问题,本文采用伪谱法和高阶有限差分法联合求解波动方程,重点分析了混合法求解纯P波一阶速度-应力方程的稳定性问题,并给出了混合法求解纯P波方程的稳定性条件.数值模拟结果表明纯P波方程伪谱法和高阶有限差分混合法能够进行复杂介质的正演模拟,在强变速度、变密度的地球介质中仍然具有较好的稳定性.  相似文献   

18.
Computation of complex-valued traveltimes provides an efficient approach to describe the seismic wave attenuation for applications like attenuation tomography, inverse Q filtering and Kirchhoff migration with absorption compensation. Attenuating acoustic transverse isotropy can be used to describe the directional variation of velocity and attenuation of P-waves in thin-bedding geological structures. We present an approximate method to solve the acoustic eikonal equation for an attenuating transversely isotropic medium with a vertical symmetry axis. We take into account two similar parameterizations of an attenuating vertical symmetry axis medium. The first parameterization uses the normal moveout velocity, whereas the second parameterization uses the horizontal velocity. For each parameterization, we combine perturbation theory and the Shanks transform in different ways to derive analytic solutions. Numerical examples show that the analytic solutions derived from the second parameterization yield better accuracy. The Shanks transform solution with respect to only the anellipticity parameter from the second parameterization is demonstrated numerically to be the most accurate among all the analytic solutions.  相似文献   

19.
Dense 3D residual moveout analysis as a tool for HTI parameter estimation   总被引:1,自引:0,他引:1  
Three‐dimensional residual moveout analysis is the basic step in velocity model refinement. The analysis is generally carried out using horizontal and/or vertical semblances defined on a sparse set of in‐lines or cross‐lines with densely sampled source–receiver offsets. An alternative approach, which we call dense residual moveout analysis (DRMA), is to use all the bins of a three‐dimensional survey but sparsely sampled offsets. The proposed technique is very fast and provides unbiased and statistically efficient estimates of the residual moveout. Indeed, for the sparsest possible offset distribution, when only near‐ and far‐angle stacks are used, the variance of the residual moveout estimate is only 1.4 times larger than the variance of the least‐squares estimate obtained using all offsets. The high performance of DRMA makes it a useful tool for many applications, of which azimuthal velocity analysis is considered here. For a horizontal transverse isotropy (HTI) model, a deterministic procedure is proposed to define, at every point of residual moveout estimation, the azimuthal angle of the HTI axis of symmetry, the Thomsen anisotropy coefficients, and the interval (or root‐mean‐square) velocities in both the HTI isotropy and symmetry planes. The procedure is not restricted by DRMA assumptions; for example, it is also applicable to semblance‐based residual moveout estimates. The high resolution of the technique is illustrated by azimuthal velocity analysis over an oilfield in West Siberia.  相似文献   

20.
Fluid flow in many hydrocarbon reservoirs is controlled by aligned fractures which make the medium anisotropic on the scale of seismic wavelength. Applying the linear‐slip theory, we investigate seismic signatures of the effective medium produced by a single set of ‘general’ vertical fractures embedded in a purely isotropic host rock. The generality of our fracture model means the allowance for coupling between the normal (to the fracture plane) stress and the tangential jump in displacement (and vice versa). Despite its low (triclinic) symmetry, the medium is described by just nine independent effective parameters and possesses several distinct features which help to identify the physical model and estimate the fracture compliances and background velocities. For example, the polarization vector of the vertically propagating fast shear wave S1 and the semi‐major axis of the S1‐wave normal‐moveout (NMO) ellipse from a horizontal reflector always point in the direction of the fracture strike. Moreover, for the S1‐wave both the vertical velocity and the NMO velocity along the fractures are equal to the shear‐wave velocity in the host rock. Analysis of seismic signatures in the limit of small fracture weaknesses allows us to select the input data needed for unambiguous fracture characterization. The fracture and background parameters can be estimated using the NMO ellipses from horizontal reflectors and vertical velocities of P‐waves and two split S‐waves, combined with a portion of the P‐wave slowness surface reconstructed from multi‐azimuth walkaway vertical seismic profiling (VSP) data. The stability of the parameter‐estimation procedure is verified by performing non‐linear inversion based on the exact equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号