首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In areas of complex geology such as the Canadian Foothills, the effects of anisotropy are apparent in seismic data and estimation of anisotropic parameters for use in seismic imaging is not a trivial task. Here we explore the applicability of common‐focus point (CFP)‐based velocity analysis to estimate anisotropic parameters for the variably tilted shale thrust sheet in the Canadian Foothills model. To avoid the inherent velocity‐depth ambiguity, we assume that the elastic properties of thrust‐sheet with respect to transverse isotropy symmetry axis are homogeneous, the reflector below the thrust‐sheet is flat, and that the anisotropy is weak. In our CFP approach to velocity analysis, for a poorly imaged reflection point, a traveltime residual is obtained as the time difference between the focusing operator for an assumed subsurface velocity model and the corresponding CFP response obtained from the reflection data. We assume that this residual is due to unknown values for anisotropy, and we perform an iterative linear inversion to obtain new model parameters that minimize the residuals. Migration of the data using parameters obtained from our inversion results in a correctly positioned and better focused reflector below the thrust sheet. For traveltime computation we use a brute force mapping scheme that takes into account weakly tilted transverse isotropy media. For inversion, the problem is set up as a generalized Newton's equation where traveltime error (differential time shift) is linearly dependent on the parameter updates. The iterative updates of parameters are obtained by a least‐squares solution of Newton's equations. The significance of this work lies in its applicability to areas where transverse isotropy layers are heterogeneous laterally, and where transverse isotropy layers are overlain by complex structures that preclude a moveout curve fitting.  相似文献   

2.
3.
Dense 3D residual moveout analysis as a tool for HTI parameter estimation   总被引:1,自引:0,他引:1  
Three‐dimensional residual moveout analysis is the basic step in velocity model refinement. The analysis is generally carried out using horizontal and/or vertical semblances defined on a sparse set of in‐lines or cross‐lines with densely sampled source–receiver offsets. An alternative approach, which we call dense residual moveout analysis (DRMA), is to use all the bins of a three‐dimensional survey but sparsely sampled offsets. The proposed technique is very fast and provides unbiased and statistically efficient estimates of the residual moveout. Indeed, for the sparsest possible offset distribution, when only near‐ and far‐angle stacks are used, the variance of the residual moveout estimate is only 1.4 times larger than the variance of the least‐squares estimate obtained using all offsets. The high performance of DRMA makes it a useful tool for many applications, of which azimuthal velocity analysis is considered here. For a horizontal transverse isotropy (HTI) model, a deterministic procedure is proposed to define, at every point of residual moveout estimation, the azimuthal angle of the HTI axis of symmetry, the Thomsen anisotropy coefficients, and the interval (or root‐mean‐square) velocities in both the HTI isotropy and symmetry planes. The procedure is not restricted by DRMA assumptions; for example, it is also applicable to semblance‐based residual moveout estimates. The high resolution of the technique is illustrated by azimuthal velocity analysis over an oilfield in West Siberia.  相似文献   

4.
There are two main sources of non-orthogonality in multicomponent shear-wave seismics: inherent non-orthogonal split shear waves arising from substantial ray deviation in off-symmetry planes due to strong anisotropy or complex overburden, and apparent non-orthogonal split shear waves in the horizontal plane due to variation of the angle of incidence even if the two shear waves along the raypath are orthogonal. Many techniques for processing shear-wave splitting in VSP data ignore these kinds of non-orthogonality of the split shear waves. Assuming inherent non-orthogonality in zero-offset VSPs, and apparent non-orthogonality in offset VSPs, we derive equations for the four-component data matrix. These can be solved by extending the linear-transform technique (LTT) to determine the shear-wave polarizations in zero-offset and offset VSPs. Both full-wave synthetic and field data are used to evaluate the technique and to examine the effects of non-orthogonal polarized split shear waves. If orthogonality is incorrectly assumed, errors in polarization measurements increase with the degree of non-orthogonality, which introduces a consistent decreasing trend in the polarization measurements. However, the effect of non-orthogonality on the estimation of geophone orientation and time delays of the two split shear waves is small and negligible in most realistic cases. Furthermore, for most cases of weak anisotropy (less than 5% shear-wave anisotropy) apparent non-orthogonality is more significant than inherent non-orthogonality. Nevertheless, for strong anisotropy (more than 10% shear-wave anisotropy) with complicated structure (tilted or inclined symmetry axis), inherent non-orthogonality may no longer be negligible. Applications to both synthetic and real data show that the extended linear-transform techniques permit accurate recovery of polarization measurements in the presence of both significant inherent and apparent non-orthogonality where orthogonal techniques often fail.  相似文献   

5.
The transversely isotropic (TI) model with a tilted axis of symmetry may be typical, for instance, for sediments near the flanks of salt domes. This work is devoted to an analysis of reflection moveout from horizontal and dipping reflectors in the symmetry plane of TI media that contains the symmetry axis. While for vertical and horizontal transverse isotropy zero-offset reflections exist for the full range of dips up to 90°, this is no longer the case for intermediate axis orientations. For typical homogeneous models with a symmetry axis tilted towards the reflector, wavefront distortions make it impossible to generate specular zero-offset reflected rays from steep interfaces. The ‘missing’ dipping planes can be imaged only in vertically inhomogeneous media by using turning waves. These unusual phenomena may have serious implications in salt imaging. In non-elliptical TI media, the tilt of the symmetry axis may have a drastic influence on normal-moveout (NMO) velocity from horizontal reflectors, as well as on the dependence of NMO velocity on the ray parameter p (the ‘dip-moveout (DMO) signature’). The DMO signature retains the same character as for vertical transverse isotropy only for near-vertical and near-horizontal orientation of the symmetry axis. The behaviour of NMO velocity rapidly changes if the symmetry axis is tilted away from the vertical, with a tilt of ±20° being almost sufficient to eliminate the influence of the anisotropy on the DMO signature. For larger tilt angles and typical positive values of the difference between the anisotropic parameters ε and δ, the NMO velocity increases with p more slowly than in homogeneous isotropic media; a dependence usually caused by a vertical velocity gradient. Dip-moveout processing for a wide range of tilt angles requires application of anisotropic DMO algorithms. The strong influence of the tilt angle on P-wave moveout can be used to constrain the tilt using P-wave NMO velocity in the plane that includes the symmetry axis. However, if the azimuth of the axis is unknown, the inversion for the axis orientation cannot be performed without a 3D analysis of reflection traveltimes on lines with different azimuthal directions.  相似文献   

6.
A number of authors in the exploration literature have written about anisotropy, but have restricted their discussions to wave propagation through rock having transverse isotropy with a vertical symmetry axis. This note shows that there are fundamental differences between transverse isotropy when the symmetry axis is vertical (normal to the free surface) and more general anisotropy with an azimuthal variation of properties. These differences are important now that effective azimuthal shear-wave anisotropy resulting from aligned cracks and pores is becoming recognized as a significant property of crustal rocks.  相似文献   

7.
各向异性介质中的AVO   总被引:15,自引:6,他引:9       下载免费PDF全文
分析了横向各向同性和方位各向异性介质的本构关系,由此讨论弹性波在两种各向异性介质中的传播特点,提出可表征这两种介质各向异性程度的广义参数.以此为基础讨论了两种各向异性介质中存在水平界面时的反射系数近似式,将Dely等人推导的横向各向同性介质中的反射系数公式推广到方位各向异性介质的主轴方向上.根据算例讨论修正的Banik和Thomsen的近似式,着重分析两种各向异性介质中的AVO关系及其对实际勘探的影响和指导意义.  相似文献   

8.
The azimuthally varying non‐hyperbolic moveout of P‐waves in orthorhombic media can provide valuable information for characterization of fractured reservoirs and seismic processing. Here, we present a technique to invert long‐spread, wide‐azimuth P‐wave data for the orientation of the vertical symmetry planes and five key moveout parameters: the symmetry‐plane NMO velocities, V(1)nmo and V(2)nmo , and the anellipticity parameters, η(1), η(2) and η(3) . The inversion algorithm is based on a coherence operator that computes the semblance for the full range of offsets and azimuths using a generalized version of the Alkhalifah–Tsvankin non‐hyperbolic moveout equation. The moveout equation provides a close approximation to the reflection traveltimes in layered anisotropic media with a uniform orientation of the vertical symmetry planes. Numerical tests on noise‐contaminated data for a single orthorhombic layer show that the best‐constrained parameters are the azimuth ? of one of the symmetry planes and the velocities V(1)nmo and V(2)nmo , while the resolution in η(1) and η(2) is somewhat compromised by the trade‐off between the quadratic and quartic moveout terms. The largest uncertainty is observed in the parameter η(3) , which influences only long‐spread moveout in off‐symmetry directions. For stratified orthorhombic models with depth‐dependent symmetry‐plane azimuths, the moveout equation has to be modified by allowing the orientation of the effective NMO ellipse to differ from the principal azimuthal direction of the effective quartic moveout term. The algorithm was successfully tested on wide‐azimuth P‐wave reflections recorded at the Weyburn Field in Canada. Taking azimuthal anisotropy into account increased the semblance values for most long‐offset reflection events in the overburden, which indicates that fracturing is not limited to the reservoir level. The inverted symmetry‐plane directions are close to the azimuths of the off‐trend fracture sets determined from borehole data and shear‐wave splitting analysis. The effective moveout parameters estimated by our algorithm provide input for P‐wave time imaging and geometrical‐spreading correction in layered orthorhombic media.  相似文献   

9.
Common‐midpoint moveout of converted waves is generally asymmetric with respect to zero offset and cannot be described by the traveltime series t2(x2) conventionally used for pure modes. Here, we present concise parametric expressions for both common‐midpoint (CMP) and common‐conversion‐point (CCP) gathers of PS‐waves for arbitrary anisotropic, horizontally layered media above a plane dipping reflector. This analytic representation can be used to model 3D (multi‐azimuth) CMP gathers without time‐consuming two‐point ray tracing and to compute attributes of PS moveout such as the slope of the traveltime surface at zero offset and the coordinates of the moveout minimum. In addition to providing an efficient tool for forward modelling, our formalism helps to carry out joint inversion of P and PS data for transverse isotropy with a vertical symmetry axis (VTI media). If the medium above the reflector is laterally homogeneous, P‐wave reflection moveout cannot constrain the depth scale of the model needed for depth migration. Extending our previous results for a single VTI layer, we show that the interval vertical velocities of the P‐ and S‐waves (VP0 and VS0) and the Thomsen parameters ε and δ can be found from surface data alone by combining P‐wave moveout with the traveltimes of the converted PS(PSV)‐wave. If the data are acquired only on the dip line (i.e. in 2D), stable parameter estimation requires including the moveout of P‐ and PS‐waves from both a horizontal and a dipping interface. At the first stage of the velocity‐analysis procedure, we build an initial anisotropic model by applying a layer‐stripping algorithm to CMP moveout of P‐ and PS‐waves. To overcome the distorting influence of conversion‐point dispersal on CMP gathers, the interval VTI parameters are refined by collecting the PS data into CCP gathers and repeating the inversion. For 3D surveys with a sufficiently wide range of source–receiver azimuths, it is possible to estimate all four relevant parameters (VP0, VS0, ε and δ) using reflections from a single mildly dipping interface. In this case, the P‐wave NMO ellipse determined by 3D (azimuthal) velocity analysis is combined with azimuthally dependent traveltimes of the PS‐wave. On the whole, the joint inversion of P and PS data yields a VTI model suitable for depth migration of P‐waves, as well as processing (e.g. transformation to zero offset) of converted waves.  相似文献   

10.
Kinematical characteristics of reflected waves in anisotropic elastic media play an important role in the seismic imaging workflow. Considering compressional and converted waves, we derive new, azimuthally dependent, slowness-domain approximations for the kinematical characteristics of reflected waves (radial and transverse offsets, intercept time and traveltime) for layered orthorhombic media with varying azimuth of the vertical symmetry planes. The proposed method can be considered an extension of the well-known ‘generalized moveout approximation’ in the slowness domain, from azimuthally isotropic to azimuthally anisotropic models. For each slowness azimuth, the approximations hold for a wide angle range, combining power series coefficients in the vicinity of both the normal-incidence ray and an additional wide-angle ray. We consider two cases for the wide-angle ray: a ‘critical slowness match’ and a ‘pre-critical slowness match’ studied in Parts I and II of this work, respectively. For the critical slowness match, the approximations are valid within the entire slowness range, up to the critical slowness. For the ‘pre-critical slowness match’, the approximations are valid only within the bounded slowness range; however, the accuracy within the defined range is higher. The critical slowness match is particularly effective when the subsurface model includes a dominant high-velocity layer where, for nearly critical slowness values, the propagation in this layer is almost horizontal. Comparing the approximated kinematical characteristics with those computed by numerical ray tracing, we demonstrate high accuracy.  相似文献   

11.
Diffractions carry valuable information about local discontinuities and small‐scale objects in the subsurface. They are still not commonly used in the process of geological interpretation. Many diffraction imaging techniques have been developed and applied for isotropic media, whereas relatively few techniques have been developed for anisotropic media. Ignoring anisotropy can result in low‐resolution images with wrongly positioned or spurious diffractors. In this article, we suggest taking anisotropy into account in two‐dimensional post‐stack domain by considering P‐wave non‐hyperbolic diffraction traveltime approximations for vertical transverse isotropy media, previously developed for reflection seismology. The accuracy of the final images is directly connected to the accuracy of the diffraction traveltime approximations. We quantified the accuracy of six different approximations, including hyperbolic moveout approximation, by the application of a post‐stack diffraction imaging technique on two‐dimensional synthetic data examples.  相似文献   

12.
13.
VTI介质纯P波混合法正演模拟及稳定性分析   总被引:3,自引:3,他引:0       下载免费PDF全文
各向异性介质纯P波方程完全不受横波的干扰,在一定程度上可以减缓由于介质各向异性引起的数值不稳定,本文推导了具有垂直对称轴的横向各向同性(VTI)介质纯P波一阶速度-应力方程.由于纯P波方程存在一个分数形式的伪微分算子,无法直接采用有限差分法求解.针对该问题,本文采用伪谱法和高阶有限差分法联合求解波动方程,重点分析了混合法求解纯P波一阶速度-应力方程的稳定性问题,并给出了混合法求解纯P波方程的稳定性条件.数值模拟结果表明纯P波方程伪谱法和高阶有限差分混合法能够进行复杂介质的正演模拟,在强变速度、变密度的地球介质中仍然具有较好的稳定性.  相似文献   

14.
Multiple vertical fracture sets, possibly combined with horizontal fine layering, produce an equivalent medium of monoclinic symmetry with a horizontal symmetry plane. Although monoclinic models may be rather common for fractured formations, they have hardly been used in seismic methods of fracture detection due to the large number of independent elements in the stiffness tensor. Here, we show that multicomponent wide-azimuth reflection data (combined with known vertical velocity or reflector depth) or multi-azimuth walkaway VSP surveys provide enough information to invert for all but one anisotropic parameters of monoclinic media. In order to facilitate the inversion procedure, we introduce a Thomsen-style parametrization for monoclinic media that includes the vertical velocities of the P-wave and one of the split S-waves and a set of dimensionless anisotropic coefficients. Our notation, defined for the coordinate frame associated with the polarization directions of the vertically propagating shear waves, captures the combinations of the stiffnesses responsible for the normal-moveout (NMO) ellipses of all three pure modes. The first group of the anisotropic parameters contains seven coefficients (ε(1,2), δ(1,2,3) and γ(1,2)) analogous to those defined by Tsvankin for the higher-symmetry orthorhombic model. The parameters ε(1,2), δ(1,2) and γ(1,2) are primarily responsible for the pure-mode NMO velocities along the coordinate axes x1 and x2 (i.e. in the shear-wave polarization directions). The remaining coefficient δ(3) is not constrained by conventional-spread reflection traveltimes in a horizontal monoclinic layer. The second parameter group consists of the newly introduced coefficients ζ(1,2,3) which control the rotation of the P-, S1- and S2-wave NMO ellipses with respect to the horizontal coordinate axes. Misalignment of the P-wave NMO ellipse and shear-wave polarization directions was recently observed on field data by Pérez et al. Our parameter-estimation algorithm, based on NMO equations valid for any strength of the anisotropy, is designed to obtain anisotropic parameters of monoclinic media by inverting the vertical velocities and NMO ellipses of the P-, S1- and S2-waves. A Dix-type representation of the NMO velocity of mode-converted waves makes it possible to replace the pure shear modes in reflection surveys with the PS1- and PS2-waves. Numerical tests show that our method yields stable estimates of all relevant parameters for both a single layer and a horizontally stratified monoclinic medium.  相似文献   

15.
Propagation in the plane of mirror symmetry of a monoclinic medium, with displacement normal to the plane, is the most general circumstance in anisotropic media for which pure shear-wave propagation can occur at all angles. Because the pure shear mode is uncoupled from the other two modes, its slowness surface in the plane is an ellipse. When the mirror symmetry plane is vertical the pure shear waves in this plane are SH waves and the elliptical SH sheet of the slowness surface is, in general, tilted with respect to the vertical axis. Consider a half-space of such a monoclinic medium, called medium M, overlain by a half-space of isotropic medium I with plane SH waves incident on medium M propagating in the vertical symmetry plane of M. Contrary to the appearance of a lack of symmetry about the vertical axis due to the tilt of the SH-wave slowness ellipse, the reflection and transmission coefficients are symmetrical functions of the angle of incidence, and further, there exists an isotropic medium E with uniquely determined density and shear speed which gives exactly the same reflection and transmission coefficients underlying medium J as does monoclinic medium M. This means that the underlying monoclinic medium M can be replaced by isotropic medium E without changing the reflection and transmission coefficients for all values of the angle of incidence. Thus no set of SH seismic experiments performed in the isotropic medium in the symmetry plane of the underlying half-space can reveal anything about the monoclinic anisotropy of that underlying half-space. Moreover, even when the underlying monoclinic half-space is stratified, there exists a stratified isotropic half-space that gives the identical reflection coefficient as the stratified monoclinic half-space for all angles of incidence and all frequencies.  相似文献   

16.
The difference in travel times between split shear waves (travel-time splitting) in anisotropic media depends on nine combinations of the density normalized elastic parameters (the birefringence parameters). These combinations are all zero in isotropic media, where there is no shear-wave splitting. The number of nonzero birefringence parameters increases with decreasing symmetry elements in the medium: from one in cubic media to nine in triclinic media.The birefringence parameters may be recovered from travel-time splitting observations. Their azimuthal behavior may then be interpreted in terms of crack orientation (strike and dip directions).  相似文献   

17.
In this paper, we derive analytical expressions for one‐way and two‐way kinematical parameters in elliptical tilted transverse isotropy media. We show that the homogeneous elliptical tilted transverse isotropy models result in hyperbolic moveout with a reflection point sideslip x0, which can be considered as an additional traveltime parameter for one‐way wave propagation. For homogeneous elliptical tilted transverse isotropy models we show that the inversion of one‐way traveltime parameters suffers from the ambiguity for large tilts. It is shown that the accuracy of the inversion is sensitive to the error in x0. We also derive and invert the traveltime parameters for a vertically heterogeneous elliptical tilted transverse isotropy model with a tilt gradually changing with depth. The a priori knowledge of parameter δ is very important for inversion. The wrong choise of this parameter results in significant errors in inverted model parameters.  相似文献   

18.
Existing and commonly used in industry nowadays, closed‐form approximations for a P‐wave reflection coefficient in transversely isotropic media are restricted to cases of a vertical and a horizontal transverse isotropy. However, field observations confirm the widespread presence of rock beds and fracture sets tilted with respect to a reflection boundary. These situations can be described by means of the transverse isotropy with an arbitrary orientation of the symmetry axis, known as tilted transversely isotropic media. In order to study the influence of the anisotropy parameters and the orientation of the symmetry axis on P‐wave reflection amplitudes, a linearised 3D P‐wave reflection coefficient at a planar weak‐contrast interface separating two weakly anisotropic tilted tranversely isotropic half‐spaces is derived. The approximation is a function of the incidence phase angle, the anisotropy parameters, and symmetry axes tilt and azimuth angles in both media above and below the interface. The expression takes the form of the well‐known amplitude‐versus‐offset “Shuey‐type” equation and confirms that the influence of the tilt and the azimuth of the symmetry axis on the P‐wave reflection coefficient even for a weakly anisotropic medium is strong and cannot be neglected. There are no assumptions made on the symmetry‐axis orientation angles in both half‐spaces above and below the interface. The proposed approximation can be used for inversion for the model parameters, including the orientation of the symmetry axes. Obtained amplitude‐versus‐offset attributes converge to well‐known approximations for vertical and horizontal transverse isotropic media derived by Rüger in corresponding limits. Comparison with numerical solution demonstrates good accuracy.  相似文献   

19.
华北太行山区地壳各向异性的接收函数证据   总被引:13,自引:6,他引:7       下载免费PDF全文
采用具有任意方向对称轴的横向各向同性介质系统,探讨了各向异性介质中接收函数表现出的横波分裂、能量偏离等特征,并系统剖析了各向异性介质对称轴方位角、倾角以及各向异性层位分布对接收函数方位变化花样的影响.太行山隆起地区是研究华北克拉通构造运动以及动力学过程的重要场所.我们以该地区JJJX台为例,介绍了利用远场接收函数研究台站下方地壳各向异性特征的方法.反演结果表明,该台站下方存在明显的来源于中、上地壳的各向异性,浅层2.4 km以内表现出强度约为10%的裂隙成因的慢轴型各向异性,裂隙面沿NNE方向展布,与该地区断层走向一致;中地壳表现出强度约为8%的晶体成因的快轴型各向异性,太行山新生代的隆起是形成晶体优势排列方向的一种可能的动力机制.  相似文献   

20.
IntroductionItiswellknownthatanisotropylieswidelyintheundergroundmedia.Anisotropicmediawhicharemetintheseismicengineeringandseismicexplorationofenergyaremainlycausedbytheperiodicthinlayers(PTL)andextensivedilatancyanisotropy(EDA).Insuchmedia,anisotropyleadstomorecomplicatepropagationofseismicwave,thesignificantfeatureinanisotropicmediaisvelocityanisotropy.Infact,undergroundstrataareverycomplicated,whichareusuallycomposedofsolidframeandfluid(suchasoil,gasesorwater)inpores.Inordertostudyseism…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号