首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   3篇
地质学   2篇
  2010年   1篇
  2009年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有5条查询结果,搜索用时 171 毫秒
1
1.
A new time integration technique for use in forward modelling programmes is introduced. The technique presents an alternative to second-order temporal differencing. It is based on a Chebyshev expansion of the formal evolution operator to the spatially discretized wave equation. The computational effort in forward modelling based on the new technique is about the same as in methods based on temporal differencing. However, machine accuracy can be obtained. The implementation of the technique to solve the acoustic wave equation in two spatial dimensions is described. Finally, an example of using the technique to solve a problem of wave propagation in a single layer is presented.  相似文献   
2.
Lower Cretaceous sandstones of the type exposed in Israel, deposited over much of North Africa and Arabia as widespread sandstone sheets, typically are mineralogically and texturally mature. Previous petrographic examinations suggested that the Lower Cretaceous sandstones are at least partly a product of recycling and the present study supports this notion. The results of U‐Pb Sensitive High Resolution Ion Micro‐Probe (SHRIMP) dating of detrital zircons from the Lower Cretaceous section exposed in Israel indicate that they are dominated by detrital zircons of Neoproterozoic age, mainly concentrated in the 0·55 to 0·65 Ga interval, with various amounts of older (pre‐Neoproterozoic) zircons (of 0·95 to 1·10, 1·7 to 2·0 and 2·6 to 2·65 Ga age groups). The overall age signal is similar to detrital zircon age spectra previously obtained from the Cambrian–Ordovician sections of Israel and Jordan. Remarkably, the detrital zircon spectra remained almost unchanged for nearly 400 Myr. Thus, the most probable provenance of the Lower Cretaceous sandstone is the recycling of relatively proximal Palaeozoic sandstone. Since first unroofed from above pan‐African terranes closer to the secession of orogeny, the ensuing siliciclastics were recycled repeatedly throughout the Phanerozoic with little additional basement denudation. The Lower Cretaceous sandstone comprises quartz sand that was first eroded from above pan‐African orogens ca 400 Myr prior to deposition.  相似文献   
3.
The ray-tracing algorithm presented in this paper is based on formulae derived for the common reflecting element (CRE) stacking method. A 2D, smooth, laterally-varying media is assumed where offset rays and traveltimes are evaluated from normal-incidence (central) rays. The method uses a second-order asymmetrical approximation for rays and an additional oblique spherical approximation of the central wavefronts for calculating offset traveltimes. In order to solve the two-point ray-tracing problem for the common midpoint (CMP) configuration of source-receiver pairs located symmetrically around the CMP stations, the central rays are perturbed to satisfy the above-mentioned asymmetrical distribution. Although the accuracy of the calculations is limited for far offsets, it is still good for distances of the order of the reflecting depths. Since only a few normal-incidence rays are traced through the medium, the method is very fast and is found to be most attractive for iterative inversions in macromodel estimation.  相似文献   
4.
The estimation of velocity and depth is an important stage in seismic data processing and interpretation. We present a method for velocity-depth model estimation from unstacked data. This method is formulated as an iterative algorithm producing a model which maximizes some measure of coherency computed along traveltimes generated by tracing rays through the model. In the model the interfaces are represented as cubic splines and it is assumed that the velocity in each layer is constant. The inversion includes the determination of the velocities in all the layers and the location of the spline knots. The process input consists of unstacked seismic data and an initial velocity-depth model. This model is often based on nearby well information and an interpretation of the stacked section. Inversion is performed iteratively layer after layer; during each iteration synthetic travel-time curves are calculated for the interface under consideration. A functional characterizing the main correlation properties of the wavefield is then formed along the synthetic arrival times. It is assumed that the functional reaches a maximum value when the synthetic arrival time curves match the arrival times of the events on the field gathers. The maximum value of the functional is obtained by an effective algorithm of non-linear programming. The present inversion algorithm has the advantages that event picking on the unstacked data is not required and is not based on curve fitting of hyperbolic approximations of the arrival times. The method has been successfully applied to both synthetic and field data.  相似文献   
5.
Wind‐blown soil degradation is a major problem in arid regions. Biogenic soil crust consists of a dense growth of many small organisms covering bare desert soil surfaces in arid regions worldwide. These organisms perform essential services in the ecosystem, for example, soil surface stabilization and carbon and nitrogen fixation. A unique service provided by biogenic crusts is the incorporation of large quantities of deposited atmospheric particles, leading to a significantly enhanced rate of increase in soil depth in windy and arid environments. A long‐term study (over 42 months) was conducted to investigate the contribution of a biogenic crust to the accumulation of atmospheric particles in an arid zone. Undisturbed and treated biogenic crusts were studied for their capacity to incorporate deposited particles. Atmospheric particles were found to accumulate on marble dust collectors at a rate of 120 g m?2 year?1 and on sterilized crust at a rate of 208 g m?2 year?1, while the accumulation rate on live, intact crusts was 277 g m?2 year?1, suggesting a soil depth accretion rate on an undisturbed biogenic crust of 10 mm every 33 years. Maintenance of a healthy biogenic crust in dry land environments should, therefore, be a major consideration for improving soil quality and increasing soil depth in arid regions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号