首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
This study examines the role of rainfall variability on the spatial scaling structure of peak flows using the Whitewater River basin in Kansas as an illustration. Specifically, we investigate the effect of rainfall on the scatter, the scale break and the power law (peak flows vs. upstream areas) regression exponent. We illustrate why considering individual hydrographs at the outlet of a basin can lead to misleading interpretations of the effects of rainfall variability. We begin with the simple scenario of a basin receiving spatially uniform rainfall of varying intensities and durations and subsequently investigate the role of storm advection velocity, storm variability characterized by variance, spatial correlation and intermittency. Finally, we use a realistic space–time rainfall field obtained from a popular rainfall model that combines the aforementioned features. For each of these scenarios, we employ a recent formulation of flow velocity for a network of channels, assume idealized conditions of runoff generation and flow dynamics and calculate peak flow scaling exponents, which are then compared to the scaling exponent of the width function maxima. Our results show that the peak flow scaling exponent is always larger than the width function scaling exponent. The simulation scenarios are used to identify the smaller scale basins, whose response is dominated by the rainfall variability and the larger scale basins, which are driven by rainfall volume, river network aggregation and flow dynamics. The rainfall variability has a greater impact on peak flows at smaller scales. The effect of rainfall variability is reduced for larger scale basins as the river network aggregates and smoothes out the storm variability. The results obtained from simple scenarios are used to make rigorous interpretations of the peak flow scaling structure that is obtained from rainfall generated with the space–time rainfall model and realistic rainfall fields derived from NEXRAD radar data.  相似文献   

2.
Weather radar been widely employed to measure precipitation and to predict flood risks. However, it is still not considered accurate enough because of radar errors. Most previous studies have focused primarily on removing errors from the radar data. Therefore, in the current study, we examined the effects of radar rainfall errors on rainfall-runoff simulation using the spatial error model (SEM). SEM was used to synthetically generate random or cross-correlated errors. A number of events were generated to investigate the effect of spatially dependent errors in radar rainfall estimates on runoff simulation. For runoff simulation, the Nam River basin in South Korea was used with the distributed rainfall-runoff model, Vflo?. The results indicated that spatially dependent errors caused much higher variations in peak discharge than independent random errors. To further investigate the effect of the magnitude of cross-correlation among radar errors, different magnitudes of spatial cross-correlations were employed during the rainfall-runoff simulation. The results demonstrated that a stronger correlation led to a higher variation in peak discharge up to the observed correlation structure while a correlation stronger than the observed case resulted in lower variability in peak discharge. We concluded that the error structure in radar rainfall estimates significantly affects predictions of the runoff peak. Therefore, efforts to not only remove the radar rainfall errors, but to also weaken the cross-correlation structure of the errors need to be taken to forecast flood events accurately.  相似文献   

3.
Abstract

Important characteristics of an appropriate river basin model, intended to study the effect of climate change on basin response, are the spatial and temporal resolution of the model and the rainfall input. The effects of input and model resolution on extreme discharge of a large river basin are assessed to give some indication on appropriate resolutions. A simple stochastic rainfall model and a river basin model with uniform parameters and multiple rainfall input have been developed and applied to the River Meuse basin in northwestern Europe. The results show that the effect of model resolution on extreme river discharge is much greater than that of input resolution. The highest model resolution seems to be quite accurate in determining extreme discharge. Although the results should be interpreted with caution, they may give some indication of appropriate input and model resolutions for the determination of extreme discharge of a large river basin.  相似文献   

4.
High resolution radar rainfall fields and a distributed hydrologic model are used to evaluate the sensitivity of flood and flash flood simulations to spatial aggregation of rainfall and soil properties at catchment scales ranging from 75 to 983 km2. Hydrologic modeling is based on a Hortonian infiltration model and a network-based representation of hillslope and channel flow. The investigation focuses on three extreme flood and flash flood events occurred on the Sesia river basin, North Western Italy, which are analysed by using four aggregation lengths ranging from 1 to 16 km. The influence of rainfall spatial aggregation is examined by using the flow distance as a spatial coordinate, hence emphasising the role of river network in the averaging of space–time rainfall. The effects of reduced and distorted rainfall spatial variability on peak discharge have been found particularly severe for the flash flood events, with peak errors up to 35% for rainfall aggregation of 16 km and at 983 km2 catchment size. Effects are particularly remarkable when significant structured rainfall variability combines with relatively important infiltration volumes due to dry initial conditions, as this emphasises the non-linear character of the rainfall–runoff relationship. In general, these results confirm that the correct estimate of rainfall volume is not enough for the accurate reproduction of flash flood events characterised by large and structured rainfall spatial variability, even at catchment scales around 250 km2. However, accurate rainfall volume estimation may suffice for less spatially variable flood events. Increasing the soil properties aggregation length exerts similar effects on peak discharge errors as increasing the rainfall aggregation length, for the cases considered here and after rescaling to preserve the rainfall volume. Moreover, peak discharge errors are roughly proportional to runoff volume errors, which indicates that the shape of the flood wave is influenced in a limited way by modifying the detail of the soil property spatial representation. Conversely, rainfall aggregation may exert a pronounced influence on the discharge peak by reshaping the spatial organisation of the runoff volumes and without a comparable impact on the runoff volumes.  相似文献   

5.
Rainfall threshold (RT) method is one of the evolving flood forecasting approaches. When the cumulative rainfall depth for a given initial soil moisture condition intersects the threshold rainfall curve, the peak discharge is expected to be equal or greater than the threshold discharge for flooding at the target site. Besides the total rainfall depth, spatial and temporal distribution of rainfall impacts the flood peak discharge and the time to peak. To revisit a previous study conducted by the authors, in which spatially independent rainfall pattern was assumed, the spatial distribution of rainfall was simulated following a Monte Carlo approach. The structure of the spatial dependence among sub‐watersheds' rainfalls was taken into account under three different scenarios, namely independent, bivariate copula (2copula) and multivariate Gaussian copula (MGC). For each set of generated random dimensionless rainfalls, the probabilistic RT curves were derived for dry moisture condition. Results were evaluated with both historical and simulated events. For the simulated events, threshold curves were assessed by means of categorical statistics, such as hit rate, false rate and critical success index (CSI). Results revealed that the best performance based on the CSI criterion corresponded to 50% curve in 2copula and MGC scenarios as well as 90% curve in the independent scenario. The recognition of 50% curve in 2copula and MGC scenarios is in agreement with our expectations that the mean probable curve should have the best performance. Moreover, the proposed inclusion of spatially dependent rainfall scenario improved the performance of RT curves by about 25% in comparison with the presumed spatially uniform rainfall scenario. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
ABSTRACT

Discharge observations and reliable rainfall forecasts are essential for flood prediction but their availability and accuracy are often limited. However, even scarce data may still allow adequate flood forecasts to be made. Here, we explored how far using limited discharge calibration data and uncertain forcing data would affect the performance of a bucket-type hydrological model for simulating floods in a tropical basin. Three events above thresholds with a high and a low frequency of occurrence were used in calibration and 81 rainfall scenarios with different degrees of uncertainty were used as input to assess their effects on flood predictions. Relatively similar model performance was found when using calibrated parameters based on a few events above different thresholds. Flood predictions were sensitive to rainfall errors, but those related to volume had a larger impact. The results of this study indicate that a limited number of events can be useful for predicting floods given uncertain rainfall forecasts.  相似文献   

7.
Abstract

The relative importance of data on winter snow accumulation and summer (monsoon) rainfall for estimating annual runoff in the Jhelum River basin, Punjab Himalaya, Pakistan, has been investigated. Strong correlations were found between point measurements of the annual maximum of snowpack water equivalent and of total winter precipitation in the Kunhar sub-basin, and total annual discharge. In addition, total winter snowfall showed a generally significant correlation with annual discharge. Elevation did not appear to play a strong role in determining the usefulness of these measurements, whereas location within the basin relative to large scale precipitation patterns did, in some cases. Monsoon rainfall appeared to be a very poor indicator of annual discharge. The results also suggest that the operation of a continental scale negative feedback mechanism between Eurasian snow cover and the Indian monsoon might be felt in this region of the Himalaya.  相似文献   

8.
The response of the flood peak to the spatial distribution of rainfall has been reported in basins with nonuniform characteristics. However, prioritization of the influences of these characteristics is still poorly understood. This study evaluated the variability in the flood peak with the spatial distribution of rainfall at Sukhothai (city) in the Yom River basin, Thailand, and investigated the influence of the basin characteristics on the flood peak. For each of the 2-, 5- and 10-y rainfalls with durations of 24, 48 and 72 h, 1000 simulated rainfall events with various spatial distributions were generated according to the observed data by using a Monte Carlo analysis and Cholesky randomization. The floods from these rainfalls were then simulated, and the peak discharges were evaluated. The flood peaks from 24-h rainfalls were usually small but highly variable and could be extremely large when the rainfalls were concentrated over the mountainous region. The flood peaks from 48 to 72-h rainfalls were consistently large and correlated with the rainfalls over the joint area between the mountainous region and plain area. The basin characteristics that influenced the response of the flood peak to the spatial distribution of the rainfall appeared to depend on the rainfall duration and magnitude. For short-duration rainfalls, the response was mainly influenced by the surface storage when the rainfall was small and by the terrain steepness when the rainfall was large. For long-duration rainfalls, the response was mainly influenced by the soil percolation rate.  相似文献   

9.
Radar rainfall estimation for flash flood forecasting in small, urban catchments is examined through analyses of radar, rain gage and discharge observations from the 14.3 km2 Dead Run drainage basin in Baltimore County, Maryland. The flash flood forecasting problem pushes the envelope of rainfall estimation to time and space scales that are commensurate with the scales at which the fundamental governing laws of land surface processes are derived. Analyses of radar rainfall estimates are based on volume scan WSR-88D reflectivity observations for 36 storms during the period 2003–2005. Gage-radar analyses show large spatial variability of storm total rainfall over the 14.3 km2 basin for flash flood producing storms. The ability to capture the detailed spatial variation of rainfall for flash flood producing storms by WSR-88D rainfall estimates varies markedly from event to event. As spatial scale decreases from the 14.3 km2 scale of the Dead Run watershed to 1 km2 (and the characteristic time scale of flash flood producing rainfall decreases from 1 h to 15 min) the predictability of flash flood response from WSR-88D rainfall estimates decreases sharply. Storm to storm variability of multiplicative bias in storm total rainfall estimates is a dominant element of the error structure of radar rainfall estimates, and it varies systematically over the warm season and with flood magnitude. Analyses of the 7 July 2004 and 28 June 2005 storms illustrate microphysical and dynamical controls on radar estimation error for extreme flash flood producing storms.  相似文献   

10.
Robert E. Criss 《水文研究》2018,32(11):1607-1615
The rainfall–run‐off convolution integral is analytically solved for several models for the elementary hydrograph. These solutions can be combined with available rainfall frequency analyses to predict flood flows along streams for different recurrence intervals, using no free parameters for gauged streams and one estimable parameter for ungauged streams. Extreme discharge magnitudes at gauged sites can be typically estimated within a factor of two of actual records, using no historical data on extreme flows. The flow predictions reproduce several important characteristics of the flood phenomenon, such as the slope of the regression line between observed extreme flows and basin area on the conventional logQ versus logA plot. Importantly, for the models and data sets investigated, the storm duration of greatest significance to flooding was found to approximate the intrinsic transport timescale of the particular watershed, which increases with basin size. Thus, storms that deliver extraordinary amounts of rainfall over a particular time interval will most greatly activate basins whose time constants approximately equal that interval. This theoretical finding is supported by examination of the regional hydrological response to the massive storms of September 14, 2008, and April 28–30, 2017, which caused extraordinary record flooding of basins of about 5–100 km2 and 500–4,000 km2, respectively, but produced few records in basins that were larger or smaller than those ranges.  相似文献   

11.
引入两个负指数型差值函数,估计降雨量的概率分布,以此描述流域降雨空间变异性问题.将降雨量空间统计分布与垂向混合产流模型耦合进行产流量计算,即对地表径流,采用超渗产流模式,根据降雨与土壤下渗能力的联合分布推求其空间分布;对地面以下径流,采用蓄满产流模式,以地表渗入量的均值作为输入,进行简化处理以提高其实用性;最终推导出总产流量概率分布函数计算公式.将流域概化成一个线性水库,并根据随机微分方程理论,推导任一计算时段洪水流量的概率分布,从而构建了一个完整的随机产汇流模型.以淮河支流黄泥庄流域为例进行应用研究,结果表明,该模型可提供洪水过程的概率预报,可用于防洪风险分析,若以概率分布的期望值作为确定性预报,亦具有较高精度.  相似文献   

12.
The reliability of a procedure for investigation of flooding into an ungauged river reach close to an urban area is investigated. The approach is based on the application of a semi‐distributed rainfall–runoff model for a gauged basin, including the flood‐prone area, and that furnishes the inlet flow conditions for a two‐dimensional hydraulic model, whose computational domain is the urban area. The flood event, which occurred in October 1998 in the Upper Tiber river basin and caused significant damage in the town of Pieve S. Stefano, was used to test the approach. The built‐up area, often inundated, is included in the gauged basin of the Montedoglio dam (275 km2), for which the rainfall–runoff model was adapted and calibrated through three flood events without over‐bank flow. With the selected set of parameters, the hydrological model was found reasonably accurate in simulating the discharge hydrograph of the three events, whereas the flood event of October 1998 was simulated poorly, with an error in peak discharge and time to peak of −58% and 20%, respectively. This discrepancy was ascribed to the combined effect of the rainfall spatial variability and a partial obstruction of the bridge located in Pieve S. Stefano. In fact, taking account of the last hypothesis, the hydraulic model reproduced with a fair accuracy the observed flooded urban area. Moreover, incorporating into the hydrological model the flow resulting from a sudden cleaning of the obstruction, which was simulated by a ‘shock‐capturing’ one‐dimensional hydraulic model, the discharge hydrograph at the basin outlet was well represented if the rainfall was supposed to have occurred in the region near the main channel. This was simulated by reducing considerably the dynamic parameter, the lag time, of the instantaneous unit hydrograph for each homogeneous element into which the basin is divided. The error in peak discharge and time to peak decreased by a few percent. A sensitivity analysis of both the flooding volume involved in the shock wave and the lag time showed that this latter parameter requires a careful evaluation. Moreover, the analysis of the hydrograph peak prediction due to error in rainfall input showed that the error in peak discharge was lower than that of the same input error quantity. Therefore, the obtained results allowed us to support the hypothesis on the causes which triggered the complex event occurring in October 1998, and pointed out that the proposed procedure can be conveniently adopted for flood risk evaluation in ungauged river basins where a built‐up area is located. The need for a more detailed analysis regarding the processes of runoff generation and flood routing is also highlighted. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Statistical self-similarity in the spatial and temporal variability of rainfall, river networks, and runoff processes has been observed in many empirical studies. To theoretically investigate the relationships between the various time and space scales of variability in rainfall and runoff process we propose a simplified, yet physically based model of a catchment–rainfall interaction. The channel network is presented as a random binary tree, having topological and hydraulic geometry properties typically observed in real river networks. The continuous rainfall model consists of individual storms separated by dry periods. Each given storm is disaggregated in space and time using the random cascade model. The flow routing is modelled by the network of topologically connected nonlinear reservoirs, each representing a link in the channel network. Running the model for many years of synthetic rainfall time series and a continuous water balance model we generate an output, in the form of continuous time series of water discharge in all links in the channel network. The main subject of study is the annual peak flow as a function of catchment area and various characteristics of rainfall. The model enables us to identify different physical processes responsible for the empirically observed scaling properties of peak flows.  相似文献   

14.
V. P. Singh 《水文研究》1997,11(12):1649-1669
The shape, timing and peak flow of a stream flow hydrograph are significantly influenced by spatial and temporal variability in rainfall and watershed characteristics. Depending upon the size and shape of a watershed, its hydrological response is closely linked with storm dynamics. On an urban watershed a rain storm moving in the direction of flow produces a higher peak than it would if it were moving in the opposite direction. The effect of storm speed on peak discharge is much less for rapidly moving storms than for storms moving at about the same speed as the flow velocity. In a relatively homogeneous watershed the most important effect of spatial variability of rainfall occurs in the timing and shape of the runoff hydrograph. Temporally variable rainfall leads to higher peak flow than does constant rainfall. Significant errors in the prediction of runoff occur when an equivalent uniform hillslope is used to represent a heterogeneous hillslope. When average soil properties are used instead of spatially variable properties, significant differences are observed in infiltration. Spatially variable roughness alters the flow dynamics significantly. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
An important problem in hydrologic science is understanding how river flow is influenced by rainfall properties and drainage basin characteristics. In this paper we consider one approach, the use of mass exponents, in examining the relation of river flow to rainfall and the channel network, which provides the primary conduit for transport of water to the outlet in a large basin. Mass exponents, which characterize the power-law behavior of moments as a function of scale, are ideally suited for defining scaling behavior of processes that exhibit a high degree of variability or intermittency. The main result in this paper is an expression relating the mass exponent of flow resulting from an instantaneous burst of rainfall to the mass exponents of spatial rainfall and that of the network width function. Spatial rainfall is modeled as a random multiplicative cascade and the channel network as a recursive replacement tree; these fractal models reproduce certain types of self-similar behavior seen in actual rainfall and networks. It is shown that under these modeling assumptions the scaling behavior of flow mirrors that of rainfall if rainfall is highly variable in space, and on the other hand flow mirrors the structure of the network if rainfall is not so highly variable.  相似文献   

16.
Conventional statistical downscaling techniques for prediction of multi-site rainfall in a river basin fail to capture the correlation between multiple sites and thus are inadequate to model the variability of rainfall. The present study addresses this problem through representation of the pattern of multi-site rainfall using rainfall state in a river basin. A model based on K-means clustering technique coupled with a supervised data classification technique, namely Classification And Regression Tree (CART), is used for generation of rainfall states from large-scale atmospheric variables in a river basin. The K-means clustering is used to derive the daily rainfall state from the historical daily multi-site rainfall data. The optimum number of clusters in the observed rainfall data is obtained after application of various cluster validity measures to the clustered data. The CART model is then trained to establish relationship between the daily rainfall state of the river basin and the standardized, dimensionally-reduced National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis climatic data set. The relationship thus developed is applied to the General Circulation Model (GCM)-simulated, standardized, bias free large-scale climate variables for prediction of rainfall states in future. Comparisons of the number of days falling under different rainfall states for the observed period and the future give the change expected in the river basin due to global warming. The methodology is tested for the Mahanadi river basin in India.  相似文献   

17.
Influence of rainfall spatial variability on flood prediction   总被引:9,自引:0,他引:9  
This paper deals with the sensitivity of distributed hydrological models to different patterns that account for the spatial distribution of rainfall: spatially averaged rainfall or rainfall field. The rainfall data come from a dense network of recording rain gauges that cover approximately 2000 km2 around Mexico City. The reference rain sample accounts for the 50 most significant events, whose mean duration is about 10 h and maximal point depth 170 mm. Three models were tested using different runoff production models: storm-runoff coefficient, complete or partial interception. These models were then applied to four fictitious homogeneous basins, whose sizes range from 20 to 1500 km2. For each test, the sensitivity of the model is expressed as the relative differences between the empirical distribution of the peak flows (and runoff volumes), calculated according to the two patterns of rainfall input: uniform or non-uniform. Differences in flows range from 10 to 80%, depending on the type of runoff production model used, the size of the basin and the return period of the event. The differences are generally moderate for extreme events. In the local context, this means that uniform design rainfall combining point rainfall distribution and the probabilistic concept of the areal reduction factor could be sufficient to estimate major flood probability. Differences are more significant for more frequent events. This can generate problems in calibrating the hydrological model when spatial rainfall localization is not taken into account: a bias in the estimation of parameters makes their physical interpretation difficult and leads to overestimation of extreme flows.  相似文献   

18.
Abstract

The accurate prediction of hourly runoff discharge in a watershed during heavy rainfall events is of critical importance for flood control and management. This study predicts n-h-ahead runoff discharge in the Sandimen basin in southern Taiwan using a novel hybrid approach which combines a physically-based model (HEC-HMS) with an artificial neural network (ANN) model. Hourly runoff discharge data (1200 datasets) from seven heavy rainfall events were collected for the model calibration (training) and validation. Six statistical indicators (i.e. mean absolute error, root mean square error, coefficient of correlation, error of time to peak discharge, error of peak discharge and coefficient of efficiency) were employed to evaluate the performance. In comparison with the HEC-HMS model, the single ANN model, and the time series forecasting (ARMAX) model, the developed hybrid HEC-HMS–ANN model demonstrates improved accuracy in recursive n-h-ahead runoff discharge prediction, especially for peak flow discharge and time.  相似文献   

19.
Most of the water from the Nile originates in Ethiopia but there is no agreement on how land degradation or climate change affects the future flow in downstream countries. The objective of this paper is to improve the understanding of future conditions by analysing historical trends. During the period 1964–2003, the average monthly basin‐wide precipitation and monthly discharge data were collected and analysed statistically for two stations in the upper 30% of the Blue Nile Basin and monthly and 10‐day discharge data of one station at the Sudan–Ethiopia border. A rainfall–runoff model examined the causes for observed trends. The results show that, while there was no significant trend in the seasonal and annual basin‐wide average rainfall, significant increases in discharge during the long rainy season (June to September) were observed at all three stations. In the upper Blue Nile, the short rainy season flow (March to May) increased, while the dry season flow (October to February) stayed the same. At the Sudan border, the dry season flow decreased significantly with no change in the short rainy season flow. The difference in response was likely due to the construction of weir in the 1990s at the Lake Tana outlet that affected the upper Blue Nile discharge significantly but affected less than 10% of the discharge at the Sudan border. The rainfall–runoff model reproduced the observed trends, assuming that an additional 10% of the hillsides were eroded in the 40‐year time span and generated overland flow instead of interflow and base flow. Models concerning future trends in the Nile cannot assume that the landscape runoff processes will remain static. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
This study developed a correction approach to improve the rainfall field estimation using the TRMM rainfall product in a sparsely-gauged mountainous basin. First, Thiessen polygons were generated to define the measurement domain of each raingauge. Second, the rainfall of TRMM pixels in each Thiessen polygon was corrected using a benchmark method based on the difference between the monthly rainfall estimated by a raingauge and the TRMM pixel that possessed a gauge station (referred to as a gauged pixel). Third, the rainfall values in the gauged pixels were adjusted to the weighted average value of the gauge rainfall and corrected pixel rainfall. Finally, the rainfall in the non-gauged TRMM pixels was corrected as the sum of two terms. The first term is the adjusted rainfall in the corresponding gauged pixel in the same Thiessen polygon, and the second term is the rainfall (after benchmark correction) difference between the current pixel and the gauged pixel. Our results indicate that the corrected rainfall data outperforms the original TRMM product in the simulations of moderate and low flows and outperforms the sparse raingauges in the simulations of both peak and low flows.

EDITOR A. Castellarin; ASSOCIATE EDITOR S. Huang  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号