首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Methods for predicting and attenuating water-bottom multiples by wavefield extrapolation have been discussed by several investigators. Because these prediction methods operate on shot records, boundary conditions must be specified for every shot record. The approach presented operates in the common-offset plane; a model of expected water-bottom multiples is generated from the observed surface wavefield using a finite-difference wave-equation migration algorithm with an offset term. An accurate water-depth profile is required, but there is no restriction on the shape of the water bottom other than a dip limit of approximately 18–20°. In generating a multiple model, the water-bottom primary and each water-bottom multiple reflection of the observed surface wavefield are extrapolated to a higher order. Thus, the extrapolated water-bottom primary of the model is lined up with a water-bottom multiple in the data and each multiple in the model is lined up with a higher-order (or later) multiple in the data. Prestack multiple attenuation is achieved, for one offset at a time, by first adapting the model of expected multiples to the observed data and then subtracting the predicted multiple energy. An error-constrained adaptation algorithm is proposed in order to control instabilities. No assumptions are made about primary reflections and no subwater-bottom velocities are required. Computational efficiency of modelling and adaptation can be improved by applying this method only to near and intermediate offsets as the stacking process usually provides sufficient multiple attenuation at far offsets. A field data example demonstrates the potential of the proposed method for improving the primary-to-multiple ratio in prestack and post-stack data.  相似文献   

2.
Long leg multiples can be suppressed by a method which provides an alternative to weighted common-depth-point stacking and multichannel stacking filtering. The suppression is achieved by coherency weighting whereby the time-dependent weighting factor decreases as the semblance of the multiple reflections increases. The algorithm of the method is described. Its efficiency is discussed in relation to the input data and results of its application to marine seismic data are presented. For practical application, the stacking velocity of the multiples has to be known. As the process is based on stacking velocities, different types of multiples can be handled, for instance water-bottom multiples or internal multiples. The parameter analysis shows that the degree of multiple suppression can easily be controlled by adapting the parameters of the procedure to the field conditions. During the suppression of multiples, the primaries are saved according to the moveout differences between the two. The non-linear behaviour of the process causes signal suppression and distortion effects, which have to be corrected by AGC normalization and low-pass filtering. Among the various applications available, only the suppression of long leg water-bottom multiples is treated here. The results show that their suppression on the basis of moveout differences is efficient even when standard length streamers are used in regions with water depth of up to 1500 m and more, if the stacking velocity of the primaries is about 10 to 20% higher than that of the multiples. Even if those parts of the primaries which are masked by the multiples are suppressed in the individual common-depth-point gathers by the procedure, the remaining primaries in the AGV stacked section are largely uncovered by the multiple suppression.  相似文献   

3.
地震资料含有各种类型多次波,而传统成像方法仅利用地震一次反射波成像,在地震成像前需将多次波去除.然而,多次波携带了丰富的地下结构信息,多次波偏移能够提供除反射波外的额外地下照明.修改传统逆时偏移方法,用包含一次反射波和多次波的原始记录代替震源子波,将SRME方法预测的表面多次波代替一次反射波作为输入数据,可将表面多次波成像.多次波成像的挑战和困难在于大量串扰噪声的产生,针对表面多次波成像中的成像噪声问题,将最小二乘逆时偏移方法与多次波分阶思想结合起来,发展可控阶数的表面多次波反演成像方法,有望初步实现高精度的表面多次波成像.在消除原始记录中的表面多次波后,通过逆散射级数方法预测得到层间多次波,将层间多次波作为逆时偏移方法的输入数据可将其准确归位到地下反射位置.数值实验表明,多次波成像能够有效地为地下提供额外照明,而可控阶表面多次波最小二乘逆时偏移成像方法几乎完全避免成像噪声.  相似文献   

4.
The key processes in marine seismic imaging include (i) removing from seismic data all seismic events (free-surface multiples and ghosts) which contain at least one reflection at the sea surface in their wave-propagation path, and leaving those with no reflection at the free surface (internal multiples and primaries), (ii) removing events with at least two reflections in the subsurface (internal multiples), and leaving events with only one reflection in the subsurface (primaries), and then (iii) locating the scattering points and reflectors inside the subsurface which are the sources of primaries and internal multiple events. All these processes are here explained, derived, and optimized via scattering diagrams (diagrammatica) in a way similar to the way the quantum field theory is often explained via Feynman diagrams. Our discussion of the removal of events with free-surface reflections from the data will be brief, as the diagrammatica of these events are now well understood.The main focus of this paper is the diagrammatica of internal multiples and primaries. Although these events do not contain any reflection at the sea surface, it is important to reconstruct them with scattering points near the sea surface, where seismic data are recorded. So our diagrammatica of primaries and internal multiples include events which are not directly recorded in seismic data but which can be constructed from seismic data. These events have allowed us to construct scattering diagrams of primaries and internal multiples with scattering points near the sea surface. Furthermore, these new diagrammatica of internal multiples and primaries can be used to remove internal multiples from the data.  相似文献   

5.
地震资料叠前去噪技术的现状与未来   总被引:26,自引:10,他引:26  
地震资料叠前去噪是勘探地震资料处理的关键问题之一,但这个问题长期以来一直没有得到很好的解决,是提高地震资料分辨率的一个主要障碍,其中,如何有效地消除产生与地层间的多次反射波又是地震资料叠前去噪的核心问题。为此,人们进行了长期不懈的努力,以更好地消除多次波。本文着重概述现今实生常中常用的几种比较有效的消除多次波方法,包括拉冬变换,F-K方法和聚束滤波方法;同时也概述了预测反积消除水层混响和用K-L变换方法消除随机噪音提高信噪比等方法;最后,还讨论了近年发展的地震资料叠前去噪新方法及其发展趋势。  相似文献   

6.
Surface‐related multiples are attenuated for one sail line and one streamer of a 3D data set (courtesy of Compagnie Générale de Géophysique). The survey was carried out in the Gulf of Mexico in the Green Canyon area where salt intrusions close to the water‐bottom are present. Because of the complexity of the subsurface, a wavefield method incorporating the full 3D volume of the data for multiple removal is necessary. This method comprises modelling of the multiples, where the data are used as a prediction operator, and a subtraction step, where the model of the multiples is adaptively removed from the data with matching filters. The accuracy of the multiple model depends on the source/receiver coverage at the surface. When this coverage is not dense enough, the multiple model contains errors that make successful subtraction more difficult. In these circumstances, one can either (1) improve the modelling step by interpolating the missing traces, (2) improve the subtraction step by designing methods that are less sensitive to modelling errors, or (3) both. For this data set, the second option is investigated by predicting the multiples in a 2D sense (as opposed to 3D) and performing the subtraction with a pattern‐based approach. Because some traces and shots are missing for the 2D prediction, the data are interpolated in the in‐line direction using a hyperbolic Radon transform with and without sparseness constraints. The interpolation with a sparseness constraint yields the best multiple model. For the subtraction, the pattern‐based technique is compared with a more standard, adaptive‐subtraction scheme. The pattern‐based approach is based on the estimation of 3D prediction‐error filters for the primaries and the multiples, followed by a least‐squares estimation of the primaries. Both methods are compared before and after prestack depth migration. These results suggest that, when the multiple model is not accurate, the pattern‐based method is more effective than adaptive subtraction at removing surface‐related multiples while preserving the primaries.  相似文献   

7.
The South China Sea where water depth is up to 5000 m is the most promising oil and gas exploration area in China in the future.The seismic data acquired in the South China Sea contain various types of multiples that need to be removed before imaging can be developed.However,compared with the conventional reflection migration,multiples carry more information of the underground structure that helps provide better subsurface imaging.This paper presents a method to modify the conventional reverse time migration so that multiple reflections can migrate to their correct locations in the subsurface.This approach replaces the numerical impulsive source with the recorded data including primaries and multiples on the surface,and replaces the recorded primary reflection data with multiples.In the reverse time migration process,multiples recorded on the surface are extrapolated backward in time to each depth level,while primaries and multiples recorded on the surface are extrapolated forward in time to the same depth levels.By matching the difference between the primary and multiple images using an objective function,this algorithm improves the primary resultant image.Synthetic tests on Sigsbee2 B show that the proposed method can obtain a greater range and better underground illumination.Images of deep water in the South China Sea are obtained using multiples and their matching with primaries.They demonstrate that multiples can make up for the reflection illumination and the migration of multiples is an important research direction in the future.  相似文献   

8.
一阶多次波聚焦变换成像   总被引:2,自引:2,他引:0       下载免费PDF全文
将多次波转换成反射波并按传统反射波偏移算法成像,是多次波成像的一种方法.聚焦变换能准确的将多次波转换为纵向分辨率更高的新波场记录,其中一阶多次波转换为反射波.本文对聚焦变换提出了两点改进:1)提出局部聚焦变换,以减小存储量和计算量,增强该方法对检波点随炮点移动的采集数据的适应性;2)引入加权矩阵,理论上证明原始记录的炮点比检波点稀疏时,共检波点道集域的局部聚焦变换可以将多次波准确转换成炮点与检波点有相同采样频率的新波场记录.本文在第一个数值实验中对比了对包含反射波与多次波的原始记录做局部聚焦变换和直接对预测的多次波做局部聚焦变换两种方案,验证了第二种方案转换得到的波场记录信噪比更高且避免了第一个方案中切聚焦点这项比较繁杂的工作.第二个数值实验表明:在炮点采样较为稀疏时,该方法能有效的将一阶多次波转换成反射波;转换的反射波能提供更丰富的波场信息,成像结果更均衡、在局部有更高的信噪比,以及较高的纵向分辨率.  相似文献   

9.
In seismic exploration for coal data resolution is a fundamental problem. Modeling helps to understand those details of the geology that can be interpreted from the seismic image. For single seam exploration, the vertical resolution of a seismic section is defined by the bandwidth of the signals. If there are several seams, each seam acts as a high-pass filter for reflections and as a low-pass filter for transmitted waves. Synthetic seismograms show that reflections from deep seams have a low frequency content. Within a layered sequence of coal seams, many multiples are generated which disturb later primary reflections. The ratio of primaries to multiples depends on the frequency content of the seismic data and on the number of overlying seams. The multiple problem is more severe with high frequencies. Primary reflections from deep coal seams within a sequence can be detected only if low-frequency signals are used. However, the use of low-frequency signals reduces the resolution of the deeper data.  相似文献   

10.
A strategy for multiple removal consists of estimating a model of the multiples and then adaptively subtracting this model from the data by estimating shaping filters. A possible and efficient way of computing these filters is by minimizing the difference or misfit between the input data and the filtered multiples in a least‐squares sense. Therefore, the signal is assumed to have minimum energy and to be orthogonal to the noise. Some problems arise when these conditions are not met. For instance, for strong primaries with weak multiples, we might fit the multiple model to the signal (primaries) and not to the noise (multiples). Consequently, when the signal does not exhibit minimum energy, we propose using the L1‐norm, as opposed to the L2‐norm, for the filter estimation step. This choice comes from the well‐known fact that the L1‐norm is robust to ‘large’ amplitude differences when measuring data misfit. The L1‐norm is approximated by a hybrid L1/L2‐norm minimized with an iteratively reweighted least‐squares (IRLS) method. The hybrid norm is obtained by applying a simple weight to the data residual. This technique is an excellent approximation to the L1‐norm. We illustrate our method with synthetic and field data where internal multiples are attenuated. We show that the L1‐norm leads to much improved attenuation of the multiples when the minimum energy assumption is violated. In particular, the multiple model is fitted to the multiples in the data only, while preserving the primaries.  相似文献   

11.
自由表面多次波压制是海底地震仪(Ocean Bottom Seismometer,OBS)数据处理和成像中的难点,OBS数据多次波能量强,周期长,严重影响深层一次反射波的处理和成像.不同于常规拖缆观测系统,OBS数据站点一般相隔较远,仅仅利用检波点稀疏的波场信息难以压制OBS数据中的自由表面多次波.本文采用拖缆数据与OBS数据联合,利用稀疏反演估计(Estimation of Primaries and Multiples by Sparse Inversion,EPSI)方法,研究了OBS数据自由表面多次波压制理论,分析了OBS多次波产生的机理,详细推导了拖缆数据与OBS数据联合预测OBS多次波的EPSI方法基本原理.通过利用拖缆数据的信息,实现了OBS检波点稀疏数据多次波的压制问题.EPSI方法通过稀疏反演直接估计一次反射波,避免了SRME(Surface Related Multiple Elimination)方法中自适应相减对有效信号的损害,保真了一次反射有效信号,理论模拟OBS数据验证了方法的有效性.  相似文献   

12.
一种改进的基于非高斯性最大化的预测反褶积算法   总被引:3,自引:1,他引:2  
The predictive deconvolution algorithm (PD), which is based on second-order statistics, assumes that the primaries and the multiples are implicitly orthogonal. However, the seismic data usually do not satisfy this assumption in practice. Since the seismic data (primaries and multiples) have a non-Gaussian distribution, in this paper we present an improved predictive deconvolution algorithm (IPD) by maximizing the non-Gaussianity of the recovered primaries. Applications of the IPD method on synthetic and real seismic datasets show that the proposed method obtains promising results.  相似文献   

13.
Recent advances in the demultiple technique have shown that a multidimensional convolution of a portion of data containing only primaries with the whole data (containing both primaries and multiples) can allow us to predict and attenuate all orders of free‐surface multiples that are relevant for practical purposes. One way of constructing the portion of the data containing only primaries is by muting the actual data just above the first free‐surface multiple to arrive. The location of the mute is generally known as the bottom‐multiple‐generator (BMG) reflector; the portion of the data containing only primaries required for constructing the free‐surface multiples is located above the BMG. The outstanding question about this method is how effective can the technique be when the BMG cuts through several seismic events, as is the case in long‐offset data or in very complex shallow geology. We present new results which demonstrate the fact that the BMG location may cut through several seismic events without affecting the accuracy or the cost of demultiple.  相似文献   

14.
海水与空气间的强波阻抗界面使得海洋地震数据普遍发育自由表面相关多次波,多次波信息的利用是提高海洋地震资料成像品质的新突破点.近年来发展了一系列多次波成像方法,干涉假象是制约其应用推广的关键问题之一.为了避免假象影响,本文提出了不同阶次自由表面相关多次波预测与成像方法,首先,修改了传统SRME(表面相关多次波衰减)方法中的边界条件,通过多次波升阶次与匹配相减的方法预测出不同阶次自由表面相关多次波;其次,基于单程波偏移算子和"面炮"偏移策略,以一次反射波或第(N-1)阶自由表面相关多次波为下行波场正向延拓,以第1阶多次或第N阶多次波为上行波场逆向延拓,并在每一层互相关成像得到第1阶或N阶多次波单独成像.本方法避免了低阶多次波和高阶多次波产生的相关假象,且相对于全波算子的偏移方法具有较高的计算效率,增强了多次波成像方法的实用性.单层模型和三层模型测试验证了本方法的正确性,并在我国某深海探区实际资料处理中得到了成功应用.相对于传统一次波成像,分阶次多次波成像具有更高的照明均衡度、垂向分辨率和信噪比.本研究表明,海洋多次波成像是一次波成像的有力补充,对于稳定海底沉积的深海地区,具有一定的应用前景.  相似文献   

15.
Migration methods for imaging different-order multiples   总被引:2,自引:0,他引:2  
Multiples contain valuable information about the subsurface, and if properly migrated can provide a wider illumination of the subsurface compared to imaging with VSP primary reflections. In this paper we review three different methods for migrating multiples. The first method is model-based, and it is more sensitive to velocity errors than primary migration; the second method uses a semi-natural Green's function for migrating multiples, where part of the traveltimes are computed from the velocity model, and part of the traveltimes (i.e., natural traveltimes) are picked from the data to construct the imaging condition for multiples; the third method uses cross-correlation of traces. The last two methods are preferred in the sense that they are significantly less sensitive to velocity errors and statics because they use “natural data” to construct part of the migration imaging conditions. Compared with the interferometric (i.e., crosscorrelation) imaging method the semi-natural Green's function method is more computationally efficient and is sometimes less prone to migration artifacts. Numerical tests with 2-D and 3-D VSP data show that a wider subsurface coverage, higher-fold and more balanced illumination of the subsurface can be achieved with multiple migration compared with migration of primary reflections only. However, there can be strong interference from multiples with different orders or primaries when multiples of high order are migrated. One possible solution is to filter primaries and different orders of multiples before migration, and another possible solution is least squares migration of all events. A limitation of multiple migration is encountered for subsalt imaging. Here, the multiples must pass through the salt body more than twice, which amplifies the distortion of the image.  相似文献   

16.
AVO反演的不确定性分析   总被引:3,自引:3,他引:0       下载免费PDF全文
叠前地震数据反演可以得到比常规叠后波阻抗反演更丰富、更有效的岩性信息,但叠前数据体的噪声及其它因素严重影响了AVO反演的稳定性,如何评估AVO反演结果的可靠性显得尤为重要.本文从贝叶斯理论出发,假定均匀先验分布、高斯噪音分布,推出不确定性分析方程,利用协方差矩阵中的方差描述反演问题的不确定性,模型研究显示反演不确定性与叠前信噪比、纵横波速度比、覆盖次数及反演采用的角度范围相关,方法预测的反演误差可定量解释反演结果的可靠性,为解释人员提供有效的质量监控手段.  相似文献   

17.
True-amplitude (TA) migration, which is a Kirchhoff-type modified weighted diffraction stack, recovers (possibly) complex angle-dependent reflection coefficients which are important for amplitude-versus-offset (AVO) inversion. The method can be implemented using existing prestack or post-stack Kirchhoff migration and fast Green's function computation programs. Here, it is applied to synthetic single-shot and constant-offset seismic data that include post-critical reflections (complex reflection coefficients) and caustics. Comparisons of the amplitudes of the TA migration image with theoretical reflection coefficients show that the (possibly complex) angle-dependent reflection coefficients are correctly estimated.  相似文献   

18.
基于单程波偏移算子的地表相关多次波成像   总被引:3,自引:3,他引:0       下载免费PDF全文
在常规地震资料处理中,多次反射波被视为噪声并从地震数据中去除,以免在之后的地震资料解释中造成误解.而事实上,多次波也是地震信号,是照明波场的一部分,能够对地下构造成像的精度做出贡献.本文分析了多次波在传统单程波叠前深度偏移中产生构造假象的机制和表现,为实现基于单程波偏移算子的多次波成像,修改了单程波叠前深度偏移的边界条件,即将输入的震源波场用包含多次波的记录来替代,输入的记录波场用预测出的表层相关多次波来替代,实现了基于单程波偏移算子的地表相关多次波成像,并从理论上给出了其成像依据.通过基于二范式最小能量差原则求取的匹配因子,将多次波成像结果与一次波成像结果进行匹配叠加,应用多次波成像来弥补一次波成像的不足.简单模型验证了基于单程波偏移算子的多次波成像方法的有效性,最后对Sigsbee2B模型进行了一次波与多次波联合成像试算,盐边界高陡构造成像质量得到了明显改善.  相似文献   

19.
基于保幅拉东变换的多次波衰减   总被引:1,自引:1,他引:0       下载免费PDF全文
为在去除多次波时有效保护地震一次反射波数据的AVO现象,给后续反演、解释提供准确的地震数据,本文提出了一种基于保幅拉东变换的多次波衰减方法,该方法是对常规抛物拉东变换的修改,把常规的稀疏拉东变换在拉东域分成两部分:一部分用于模拟零偏移距处的反射波能量,增加的另一部分用于模拟反射波振幅的AVO特性.该方法不仅考虑了反射波同相轴的形状,还考虑了反射波同相轴振幅幅度的变化,从而可把反射波信息进行有效转换,进而有利于多次波的消除,更好地恢复有效波的能量.在把地震数据由时间域转换到拉东域时,本文采用了IRLS算法实现保幅拉东算子的反演.模型数据和实际地震道集的试算分析表明,与常规拉东变换相比,保幅拉东变换在去除多次波的同时可有效保护一次反射波的AVO现象.  相似文献   

20.
数据自相关多次波偏移成像   总被引:1,自引:1,他引:0       下载免费PDF全文
在常规偏移方法中一般都需要压制地震数据中的多次波,仅利用一次波信息成像,把自由表面反射的多次波视为噪声,但是在多次波中也包含着地下结构信息,应该将其充分利用到成像中来.事实上,已经有不少成像方法试图利用多次波信息,但是大部分方法都需要对多次波进行预测.本文提出了基于傅里叶有限差分偏移算子的数据自相关偏移方法.在这种偏移方法中,对含有一次波和多次波的地震数据,分别进行下行和上行延拓,然后直接利用常规的互相关成像条件成像.由于波场延拓采用了傅里叶有限差分算子,其计算效率高,能够很好地对复杂介质中的地震数据进行延拓.在数值试验中,使用了一个含散射点的三层模型和Marmousi模型.合成数据测试结果表明,这种方法可以对更大范围的地下构造成像,比常规的只利用一次波的傅里叶有限差分法照明度更好,并且在浅层可以提供更高的分辨率.我们提出的数据自相关策略易于实现且避免了繁杂的多次波预测,这对于复杂地下构造成像可能有着重大意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号