首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
For Probabilistic Tsunami Hazard Analysis (PTHA), we propose a logic-tree approach to construct tsunami hazard curves (relationship between tsunami height and probability of exceedance) and present some examples for Japan for the purpose of quantitative assessments of tsunami risk for important coastal facilities. A hazard curve is obtained by integration over the aleatory uncertainties, and numerous hazard curves are obtained for different branches of logic-tree representing epistemic uncertainty. A PTHA consists of a tsunami source model and coastal tsunami height estimation. We developed the logic-tree models for local tsunami sources around Japan and for distant tsunami sources along the South American subduction zones. Logic-trees were made for tsunami source zones, size and frequency of tsunamigenic earthquakes, fault models, and standard error of estimated tsunami heights. Numerical simulation rather than empirical relation was used for estimating the median tsunami heights. Weights of discrete branches that represent alternative hypotheses and interpretations were determined by the questionnaire survey for tsunami and earthquake experts, whereas those representing the error of estimated value were determined on the basis of historical data. Examples of tsunami hazard curves were illustrated for the coastal sites, and uncertainty in the tsunami hazard was displayed by 5-, 16-, 50-, 84- and 95-percentile and mean hazard curves.  相似文献   

2.
We calculated tsunami runup probability (in excess of 0.5 m) at coastal sites throughout the Caribbean region. We applied a Poissonian probability model because of the variety of uncorrelated tsunami sources in the region. Coastlines were discretized into 20 km by 20 km cells, and the mean tsunami runup rate was determined for each cell. The remarkable ~500-year empirical record compiled by O’Loughlin and Lander (2003) was used to calculate an empirical tsunami probability map, the first of three constructed for this study. However, it is unclear whether the 500-year record is complete, so we conducted a seismic moment-balance exercise using a finite-element model of the Caribbean-North American plate boundaries and the earthquake catalog, and found that moment could be balanced if the seismic coupling coefficient is c = 0.32. Modeled moment release was therefore used to generate synthetic earthquake sequences to calculate 50 tsunami runup scenarios for 500-year periods. We made a second probability map from numerically-calculated runup rates in each cell. Differences between the first two probability maps based on empirical and numerical-modeled rates suggest that each captured different aspects of tsunami generation; the empirical model may be deficient in primary plate-boundary events, whereas numerical model rates lack backarc fault and landslide sources. We thus prepared a third probability map using Bayesian likelihood functions derived from the empirical and numerical rate models and their attendant uncertainty to weight a range of rates at each 20 km by 20 km coastal cell. Our best-estimate map gives a range of 30-year runup probability from 0–30% regionally.  相似文献   

3.
We explored the distributional changes in tsunami height along the eastern coast of the Korean Peninsula resulting from virtual and historical tsunami earthquakes. The results confirm significant distributional changes in tsunami height depending on the location and magnitude of earthquakes. We further developed a statistical model to jointly analyse tsunami heights from multiple events, considering the functional relationships; we estimated parameters conveying earthquake characteristics in a Weibull distribution, all within a Bayesian regression framework. We found the proposed model effective and informative for the estimation of tsunami hazard analysis from an earthquake of a given magnitude at a particular location. Specifically, several applications presented in this study showed that the proposed Bayesian approach has the advantage of conveying the uncertainty of the parameter estimates and its substantial effect on estimating tsunami risk.  相似文献   

4.
This study conducts coupled simulation of strong motion and tsunami using stochastically generated earthquake source models. It is focused upon the 2011 Tohoku, Japan earthquake. The ground motion time-histories are simulated using the multiple-event stochastic finite-fault method, which takes into account multiple local rupture processes in strong motion generation areas. For tsunami simulation, multiple realizations of wave profiles are generated by evaluating nonlinear shallow water equations with run-up. Key objectives of this research are: (i) to investigate the sensitivity of strong motion and tsunami hazard parameters to asperities and strong motion generation areas, and (ii) to quantify the spatial variability and dependency of strong motion and tsunami predictions due to common earthquake sources. The investigations provide valuable insights in understanding the temporal and spatial impact of cascading earthquake hazards. Importantly, the study also develops an integrated strong motion and tsunami simulator, which is capable of capturing earthquake source uncertainty. Such an advanced numerical tool is necessary for assessing the performance of buildings and infrastructure that are subjected to cascading earthquake–tsunami hazards.  相似文献   

5.
海啸及其在核电厂选址中的安全评价   总被引:3,自引:0,他引:3       下载免费PDF全文
王健  时振梁 《地震地质》1993,15(4):364-368
海啸大小的量度应包括关于海啸“源”处大小的描述,“源”处海啸的大小与地壳形变规模和方式有着直接的关系。在海啸与地震的关系中,除了地震震级外,强调了震源破裂方式这一因素。阐述了关于核电厂选址安全评价中历史资料的整理、分析,对未来海啸“源”的预测、海啸传播路径的调查和分析以及综合评价等4个方面进行了讨论  相似文献   

6.
The 27 December 1722 Algarve earthquake destroyed a large area in southern Portugal generating a local tsunami that inundated the shallow areas of Tavira. It is unclear whether its source was located onshore or offshore and, in any case, what was the tectonic source responsible for the event. We analyze available historical information concerning macroseismicity and the tsunami to discuss the most probable location of the source. We also review available seismotectonic knowledge of the offshore region close to the probable epicenter, selecting a set of four candidate sources. We simulate tsunamis produced by these candidate sources assuming that the sea bottom displacement is caused by a compressive dislocation over a rectangular fault, as given by the half-space homogeneous elastic approach, and we use numerical modeling to study wave propagation and run-up. We conclude that the 27 December 1722 Tavira earthquake and tsunami was probably generated offshore, close to 37°01′N, 7°49′W.  相似文献   

7.
快速准确的海啸源模型是近场海啸精确预警的关键.尽管目前还没有办法直接对其进行正演定量计算,但是可以通过多源地震、海啸观测数据进行反演或联合反演推算.不同的海啸源可能导致不同的预警结论,了解不同类型海啸源适用性、评估海啸源特征差异对近场海啸的影响,无论对于海啸预警还是海啸模拟研究尤为重要.本文评估分析了6种不同同震断层模型对2011年3月11日日本东北地震海啸近场数值预报的影响,重点对比分析了有限断层模型与均一滑动场模型对近场海啸产生、传播、淹没特征的影响及各自的误差.研究表明:近场海啸波能量分布主要取决于海啸源分布特征,特别是走向角的差异对海啸能量分布影响较大;有限断层模型对海啸灾害最为严重的39°N以南沿岸地区的最大海啸爬坡高度明显优于均一滑动场模型结果;综合对比DART浮标、GPS浮标及近岸潮位站共32个站次的海啸波幅序列结果发现有限断层模型整体平均绝对/相对误差比均一滑动场模型平均误差要低,其中Fujii海啸源的平均绝对/相对误差最小,分别是0.56m和26.71%.UCSB海啸源的平均绝对/相对误差次之.3个均一滑动场模型中USGSCMT海啸源模拟精度最高.相对于深海、浅海观测站,有限断层模型比均一滑动场模型对近岸观测站计算精度更高.海啸源误差具有显著的方向性,可能与反演所采用的波形数据的代表性有关;谱分析结果表明Fujii海啸源对在12至60min主频波谱的模拟要优于UCSB海啸源.海啸源中很难真实反映海底地震破裂过程,然而通过联合反演海啸波形数据推算海啸源的方法可以快速确定海啸源,并且最大限度的降低地震破裂过程与海啸产生的不确定性带来的误差.  相似文献   

8.
9.
This paper presents a comprehensive comparison of different dynamic and static approaches for assessing building performance under sequential earthquakes and tsunami. A 10-storey reinforced concrete seismically designed Japanese vertical evacuation structure is adopted as a case study for the investigation. The case study building is first assessed under sequential earthquake and tsunami nonlinear response history analyses: the first time this is done in the literature. The resulting engineering demand parameters are then compared with those obtained when the analysis procedure is systematically simplified by substituting different static approaches for the nonlinear response history analyses in both the earthquake and tsunami loading phases. Different unloading approaches are also tested for the cases when an earthquake pushover is adopted. The results show that an earthquake nonlinear response history analysis, followed by a transient free vibration and a tsunami variable depth pushover, provides the best alternative to full dynamic analyses in terms of accuracy and computational efficiency. This structural analysis combination is recommended and has the advantage that it does not require the tsunami inundation time history to be known in advance. The proposed double pushover approach is instead deemed only suitable for the collapse assessment of regular low to mid-rise buildings and for the development of collapse fragility functions. An important observation made is that sustained earthquake damage seems not to affect the tsunami resistance of the case study building when the fully dynamic analysis is carried out for the sequential loading. This observation will be the subject of future work.  相似文献   

10.
We develop stochastic approaches to determine the potential for tsunami generation from earthquakes by combining two interrelated time series, one for the earthquake events, and another for the tsunami events. Conditional probabilities for the occurrence of tsunamis as a function of time are calculated by assuming that the inter-arrival times of the past events are lognormally distributed and by taking into account the time of occurrence of the last event in the time series. An alternative approach is based on the total probabilitiy theorem. Then, the probability for the tsunami occurrence equals the product of the ratio, r (= tsunami generating earthquakes/total number of earthquakes) by the conditional probability for the occurrence of the next earthquake in the zone. The probabilities obtained by the total probability theorem are bounded upwards by the ratio r and, therefore, they are not comparable with the conditional probabilities. The two methods were successfully tested in three characteristic seismic zones of the Pacific Ocean: South America, Kuril-Kamchatka and Japan. For time intervals of about 20 years and over the probabilities exceed 0.50 in the three zones. It has been found that the results depend on the approach applied. In fact, the conditional probabilities of tsunami occurrence in Japan are slightly higher than in the South America region and in Kuril-Kamchatka they are clearly lower than in South America. Probabilities calculated by the total probability theorem are systematically higher in South America than in Japan while in Kuril-Kamchatka they are significantly lower than in Japan. The stochastic techniques tested in this paper are promising for the tsunami potential assessment in other tsunamigenic regions of the world.  相似文献   

11.
Simplified approaches for examining structural system response under sequential earthquake and tsunami loading are helpful for understanding response trends. To aid understanding, nonlinear (constant‐ductility) response spectra are developed for elastoplastic single degree of freedom systems subjected to seismic loads followed by hydrodynamic tsunami loads. The forcing function is composed of long‐duration earthquake motion concatenated with a range of tsunami hydrodynamic forces that are proportional to the pseudo‐spectral acceleration produced by the earthquake motion. The constant‐ductility spectra are thus constructed for scenarios where the loading imposed by one hazard is not dominant over the other. The spectra and basic intensity measures indicate that the amplification of response for sequential earthquake and tsunami loading over the earthquake only case is most significant for systems with long natural periods and high‐ductility capacity under seismic loading. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
采用球坐标系下非线性浅水波方程, 研究日本本州M9.0大地震引发的海啸对中国东南沿海的影响, 并计算了冲绳海槽构造带上3个不同段落可能发生潜在地震引发的海啸, 分析这些海啸与日本大海啸的浪高和走时关系. 结果表明, 日本地震海啸模拟结果与日本当地报道及中国东南沿海7个验潮站的报道结果相符. 冲绳海槽构造带中段可能发生的3次不同震级(M7.0, M7.5, M8.0)潜在地震引发的海啸到达中国东南沿海的时间比日本海啸提前约4个小时, 从震源区传播3个多小时即可到达华东沿海部分验潮站. 冲绳海槽M7.5潜在地震海啸在验潮站上计算的波高与日本海啸相当, 中冲绳海槽M8.0潜在地震海啸在大陈站的波高将超过0.9 m, 在坎门站波高将超过1.8 m. 北冲绳海槽的潜在地震海啸威胁主要集中在江苏盐城、 上海一带, 南冲绳海啸主要对台湾东北部和浙江沿海产生威胁. 本文对冲绳海槽构造带上潜在地震引发海啸的模拟结果, 可为中国东南沿海地区的防震减灾、 海啸预警提供有意义的参考.   相似文献   

13.
The giant Tohoku-Oki earthquake of 11 March 2011 in offshore Japan did not only generate tsunami waves in the ocean but also infrasound (or acoustic–gravity) waves in the atmosphere. We identified ultra-long-period signals (>500 s) in the recordings of infrasound stations in northeast Asia, the northwest Pacific, and Alaska. Their source was found close to the earthquake epicenter. Therefore, we conclude that in general, infrasound observations after a large offshore earthquake are evidence that the surface and the floor of the sea have been significantly vertically displaced by the earthquake and that a tsunami must be expected. Since infrasound is traveling faster than the tsunami, such information may be used for tsunami early warnings.  相似文献   

14.
地震海啸监测预警现状与进展   总被引:3,自引:2,他引:1  
杨马陵 《华南地震》2005,25(2):22-29
2004年12月26日印度洋地震大海啸引起了全世界公众的关注和政府的重视,如何预防地震海啸造成的灾害,建立有效的预警机制,成为政府和社会关注的话题。介绍了国内外地震海啸监测预警的历史、现状与当前的发展方向。  相似文献   

15.
本文假设马尼拉海沟北段为潜在海啸源,基于中国地震台网对马尼拉海沟地区震级测定偏差,采用COMCOT(comell Multi-grid Coupled Tsunami Model)海啸数值模型,模拟南海海啸波传播.选取南海北缘3个特定地点,其中两个位于华南近海区域,另一个位于台湾岛南端近海区域,此外还在临近马尼拉海沟北段的深海地区选取了1个特定地点.分析这些特定地点最大海啸波以及最大海啸波到时对于震级测定偏差的敏感性.结果表明:马尼拉海沟北段地震如触发海啸,华南近海区域以及台湾岛南部近海区域最大海啸波振幅对震级偏差敏感,但最大海啸波振幅到时对于震级测定偏差不敏感;振幅最大的海啸波,二十几分钟即可波及台湾岛南端近岸区域,大约1小时后波及大陆华南近海北部区域.  相似文献   

16.
以马尼拉海沟的北断层发生MW8.0地震在南海引发海啸为假想的模拟情景, 利用E-FAST法定量分析了COMCOT海啸数值模型输出(最大海啸波高)对震级, 震源深度, 震中位置和断层走向、 倾角、 滑动角等震源参数的敏感性, 以及各震源参数间的交互效应对最大海啸波高的影响. 结果表明, 观测点B1( 20.1°N, 119.4°E)、 B2(18.4°N, 118.1°E)和B3(13.5°N, 117.6°E)的最大海啸波高都对震级十分敏感, 对震中位置、 断层走向和倾角较为敏感. 敏感的震源参数在影响上述3个观测点的最大海啸波高时, 与其它震源参数产生了较强的交互效应. 但是对于不同的观测点, 各震源参数的重要度排序则存在一定的差异. 该分析结果有助于更好地认识海啸波高与潜在海啸源参数之间的关系.   相似文献   

17.
Evaluating Tsunami Hazard in the Northwestern Indian Ocean   总被引:1,自引:0,他引:1  
We evaluate here the tsunami hazard in the northwestern Indian Ocean. The maximum regional earthquake calculated from seismic hazard analysis, was used as the characteristic earthquake for our tsunami hazard assessment. This earthquake, with a moment magnitude of M w 8.3 and a return period of about 1000 years, was moved along the Makran subduction zone (MSZ) and its possible tsunami wave height along various coasts was calculated via numerical simulation. Both seismic hazard analysis and numerical modeling of the tsunami were validated using historical observations of the Makran earthquake and tsunami of the 1945. Results showed that the possible tsunami may reach a maximum height of 9.6 m in the region. The distribution of tsunami wave height along various coasts is presented. We recommend the development of a tsunami warning system in the region, and emphasize the value of education as a measure to mitigate the death toll of a possible tsunami in this region.  相似文献   

18.
—The 1994 great Kuril earthquake generated an unusual tsunami that was observed at five tide gauges on the Hokkaido coast of the Okhotsk Sea. The tsunami arrived at tide gauges considerably earlier than the expected time, calculated on the assumption that the tsunami source area coincides with the aftershock area. Numerical simulation of the tsunami shows that the first wave of the tsunami in the Okhotsk Sea was generated by the significant subsidence north of the Kuril Islands. It is assumed that this subsidence is due to the earthquake. The coseismic deformation area of the ocean bottom extended over a vastly larger area than the aftershock area or the rupture area for the Kuril earthquake. The numerical simulation also shows that the tsunami observed at Utoro during the first hour after the origin time of the earthquake was mainly generated by the horizontal movement of the sloping ocean bottom near the Shiretoko Peninsula.  相似文献   

19.
On December 12, 1992 a large earthquake (M s 7.5) occurred just north of Flores Island, Indonesia which, along with the tsunami it generated, killed more than 2,000 people. In this study, teleseismicP andSH waves, as well asPP waves from distances up to 123°, are inverted for the orientations and time histories of multiple point sources. By repeating the inversion for reasonable values of depth, time separation and spatial separation, a 2-fault model is developed. Next, the vertical deformation of the seafloor is estimated from this fault model. Using a detailed bathymetric model, linear and nonlinear tsunami propagation models are tested. The data consist of a single tide gauge record at Palopo (650 km to the north), as well as tsunami runup height measurements from Flores Island and nearby islands. Assuming a tsunami runup amplification factor of two, the two-fault model explains the tide gauge record and the tsunami runup heights on most of Flores Island. It cannot, however, explain the large tsunami runup heights observed near Leworahang (on Hading Bay) and Riangkroko (on the northeast peninsula). Massive coastal slumping was observed at both of these locations. A final model, which in addition to the two faults, includes point sources of large vertical displacement at these two locations explains the observations quite well.  相似文献   

20.
Modeling of the 2011 Japan Tsunami: Lessons for Near-Field Forecast   总被引:2,自引:0,他引:2  
During the devastating 11 March 2011 Japanese tsunami, data from two tsunami detectors were used to determine the tsunami source within 1.5 h of earthquake origin time. For the first time, multiple near-field tsunami measurements of the 2011 Japanese tsunami were used to demonstrate the accuracy of the National Oceanic and Atmospheric Administration (NOAA) real-time flooding forecast system in the far field. To test the accuracy of the same forecast system in the near field, a total of 11 numerical models with grids telescoped to 2 arcsec (~60 m) were developed to hindcast the propagation and coastal inundation of the 2011 Japanese tsunami along the entire east coastline of Japan. Using the NOAA tsunami source computed in near real-time, the model results of tsunami propagation are validated with tsunami time series measured at different water depths offshore and near shore along Japan’s coastline. The computed tsunami runup height and spatial distribution are highly consistent with post-tsunami survey data collected along the Japanese coastline. The computed inundation penetration also agrees well with survey data, giving a modeling accuracy of 85.5 % for the inundation areas along 800 km of coastline between Ibaraki Prefecture (north of Kashima) and Aomori Prefecture (south of Rokkasho). The inundation model results highlighted the variability of tsunami impact in response to different offshore bathymetry and flooded terrain. Comparison of tsunami sources inferred from different indirect methods shows the crucial importance of deep-ocean tsunami measurements for real-time tsunami forecasts. The agreement between model results and observations along Japan’s coastline demonstrate the ability and potential of NOAA’s methodology for real-time near-field tsunami flooding forecasts. An accurate tsunami flooding forecast within 30 min may now be possible using the NOAA forecast methodology with carefully placed tsunameters and large-scale high-resolution inundation models with powerful computing capabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号