首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Brinck EL  Frost CD 《Ground water》2007,45(5):554-568
Water introduced to surface drainages, such as agricultural and roadway runoff, mine drainage, or coalbed natural gas (CBNG)-produced water, potentially can be of environmental concern. In order to mitigate potential environmental effects, it may be important to be able to trace water discharged to the surface as it infiltrates and interacts with near-surface aquifers. We have chosen to study water withdrawn during CBNG production for isotope tracing in the hyporheic zone because it poses a variety of economic, environmental, and policy issues in the Rocky Mountain states. Ground water quality must be protected as CBNG water is added to semiarid ecosystems. Strontium (Sr) isotopes are effective fingerprints of the aquifer from which water originates. In this study, CBNG water was found to have a higher (87)Sr/(86)Sr ratio than the local alluvial aquifer water. This measurable difference allows the strontium isotope ratio and concentration to be used as tracers of CBNG water following its discharge to the surface. The dissolution and mobilization of salts from soil are an important contributor to ground water quality degradation. In the Powder River basin of Wyoming, the soils are calcium carbonate-buffered systems. The chemical similarity of strontium to calcium allows it to substitute into calcium minerals and enabled us to use strontium isotopes to identify calcium salts mobilized from the soil. Strontium isotopes are an effective monitor of the source of ions and the volume and direction of introduced water flow in the hyporheic zone.  相似文献   

2.
Strontium (Sr) concentrations and isotopic ratios have been measured in a series of water and rock samples from most of the major tributaries of the Lake Qinghai basin on the north‐eastern Tibetan Plateau. Dissolved Sr and 87Sr/86Sr show ranges of 488–12 240 nmol/l and 0·710497–0·716977, respectively. These data, together with measurements of major cations and anions in rivers and their tributaries and various lithologies of the catchment, were used to determine the contributions of Sr and its isotopic expense to rivers and lakes. Our results demonstrate that the chemical components and 87Sr/86Sr ratios of the alkaline waters are derived from mixing of carbonate and silicate sources, with the former contributing 72 ± 18% dissolved Sr to rivers. The difference in tributary compositions stems from the lithology of different river systems and low weathering intensity under a semi‐arid condition. Variation in 87Sr/86Sr ratios places constraint on the Sr‐isotopic compositions of the main tributaries surrounding Lake Qinghai. The water chemistry of the Buha River, the largest river within the catchment underlain by the late Paleozoic marine limestone and sandstones, dominates Sr isotopic composition of the lake water, being buffered by the waters from the other rivers and probably by groundwater. However, the characteristic chemical composition of the lake itself differs remarkably from the rivers, which can be attributed to precipitation of authigenic carbonates (low‐magnesium calcite, aragonite, and dolomite), though this does not impact the Sr isotope signature, which may remain a faithful indicator in paleo‐records. Regarding the potential role of groundwater input within the Lake Qinghai systems in the water budget and water chemistry, we have also determined the Sr concentration and 87Sr/S6Sr ratio of groundwater from diverse environments. This has allowed us to further constrain the Sr isotope systematic of this source. A steady‐state calculation gives an estimate for the groundwater flux of 0·19 ± 0·03 × 108 m3/yr, accounting for about 8% of contemporary lake Sr budget. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Understanding the carbon cycle of the Han River system in Korea is of prime interest in managing and preserving this valuable water resource for more than 20 million residents in the area. As a part of a comprehensive carbon cycling study for the Han River system, this report focuses on the carbon isotope compositions of dissolved inorganic carbon (DIC) in its two major tributaries, the North and the South Han Rivers. The major difference in carbonate chemistry of the tributaries originates primarily from the lithology of the catchment areas. The South Han River, draining a carbonate‐dominant terrain, has much higher alkalinities and DIC concentrations, whereas the lower concentrations in the North Han River indicate little influence of carbonate weathering. Likewise, δ13CDIC values in the South Han River indicate that the DIC input from the carbonate rocks is important in controlling carbon isotope ratios of DIC. For the North Han River, the oxidation of organic material influences the amount of riverine DIC and δ13CDIC values to a greater extent. Overall, remarkable seasonal and spatial variations of river chemistry and carbon isotope compositions of DIC reflect the variability in geo‐hydrologic characteristics, in the water regime, and in metabolic activities in the river water and/or the drainage areas. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Coalbed methane (CBM) development raises serious environmental concerns and concerted efforts have been made to collect chemistry, salinity, and sodicity data on CBM produced water. A model is sorely needed to make use of this data to quantify potential changes in stream water quality resulting from directly and/or indirectly receiving CBM produced water, on which little information is available in the literature. However, the application of existing hydrodynamic and water quality models such as CE‐QUAL‐W2 is not straightforward because the number of outfalls is usually large and the channels poorly defined for intermittent streams in semiarid areas such as the Powder River watershed, located in the states of Wyoming and Montana. Hence, the objectives of this study were to: (1) develop a CBM produced water routing (CBMPRO) model, and (2) apply the new CBMPRO model, along with a CE‐QUAL‐W2 model, to examine potential changes in stream water quality due to CBM development in the Powder River watershed. The CBMPRO model was developed and used to chart the CBM discharge and the transport of its associated constituents (e.g. total dissolved solids and alkalinity) from an outfall to its inclusive subwatershed outlet. In turn, the outputs from the CBMPRO model were applied as inputs into the CE‐QUAL‐W2 model to predict changes in the water quantity and quality along the Powder River mainstem. The results indicate that discharges from CBM developments adversely affect the stream water quality. Compared with the baseline conditions, the developments would increase the stream flows as well as make the stream water warmer and more saline. In addition, the impacts were predicted to undergo seasonal and spatial variations and to become smaller with time, as expected. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
An injectable permeable reactive barrier (PRB) technology was developed to sequester 90Sr in groundwater through the in situ formation of calcium‐phosphate mineral phases, specifically apatite that incorporates 90Sr into the chemical structure. This injectable barrier technology extends the PRB concept to sites where groundwater contaminants are too deep or where site conditions otherwise preclude the application of more traditional trench‐emplaced barriers. An integrated, multiscale development and testing approach was used that included laboratory bench‐scale experiments, an initial pilot‐scale field test, and the emplacement and evaluation of a 300‐feet‐long treatability‐test‐scale PRB. The apatite amendment formulation uses two separate precursor solutions, one containing a Ca‐citrate complex and the other a Na‐phosphate solution, to form apatite precipitate in situ. Citrate is needed to keep calcium in solution long enough to achieve a more uniform and areally extensive distribution of precipitate formation. In the summer of 2008, the apatite PRB technology was applied as a 91‐m‐long (300 feet) PRB on the downgradient edge of a 90Sr plume beneath the Hanford Site in Washington State. The technology was deployed to reduce 90Sr flux discharging to the Columbia River. Performance assessment monitoring data collected to date indicate that the barrier is meeting treatment objectives (i.e., 90% reduction in 90Sr concentration). The average reduction in 90Sr concentrations at four downgradient compliance monitoring locations was 95% relative to the high end of the baseline range approximately 1 year after treatment, and continues to meet remedial objectives more than 4 years after treatment.  相似文献   

6.
The Kaluvelly watershed is a coastal area (Tamil Nadu, India) where water abstraction has resulted in a dramatic fall in the level of the water table and a piezometric depression in the most exploited aquifer, the Vanur aquifer. In addition, intensification/mechanization of agriculture may have affected the quality of recharge water. An initial hydrodynamic study showed that the Vanur aquifer is highly vulnerable to salinization due to potential seawater intrusion, and our aim was to determine the source of salinity recorded in the groundwater of this multilayered aquifer. Our approach involved the use of existing boreholes and of a moderate number of samples, with the aim of developing appropriate water resource management techniques. Major element, 18O/16O, 2H/1H and 87Sr/86Sr, ratios were measured in rainwater, surface water and groundwater collected during five sampling campaigns over a 2‐year period. Geochemical data indicate that the Vanur aquifer is recharged and that small mixings between aquifers fluctuate according to monsoon intensity. There was no evidence of seawater intrusion. The range of recorded salinity originated mainly from water–rock interaction but a disconnection of some deeper parts of the aquifer was apparent. Strontium isotopic ratios in the recharge area suggest an anthropogenic influence, possibly related to fertilizer use. A high SO4/Cl ratio was observed in the aquifer; in the deeper parts, the influence of a formation containing lignite is hypothesized, whereas near the surface, sulphate may partly originate from fertilizer use and fossil fuel combustion. Water isotopic data suggest that the origin of precipitation in this region has been unchanged for several hundreds or thousands of years. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Dissolved major ions, Sr concentrations and 87Sr/86Sr ratios of 10 coastal lakes from the Larsemann Hills, East Antarctica have been studied to constrain their solute sources, transport and glacial weathering patterns in their catchments. In absence of perennial river/streams, lakes serve as only reliable archive to study land surface processes in these low-temperature regions. The lake water chemistry is mostly Na-Cl type and it does not show any significant depth variations. Sr isotope compositions of these lakes vary from 0.7110 to 0.7211 with an average value of 0.7145, which is higher than modern seawater value. In addition to oceanic sources, major ions and Sr isotopic data show appreciable amount of solute supply from chemical weathering of silicate rocks in lake catchments and dissolution of Ca-Mg rich salts produced during the freezing of seawaters. The role of sulphide oxidation and carbonate weathering are found to be minimal on lake hydro-chemistry in this part of Antarctica. Inverse model calculations using this chemical dataset provide first-order estimates of dissolved cations and Sr; they are mostly derived from oceanic (seawater + snow) sources (cations approximately 76%) and (Sr approximately 92%) with minimal supplies from weathering of silicates (cations approximately 15%); (Sr approximately 2%) and Ca-rich minerals (cations approximately 9%); (Sr approximately 7%). The silicate weathering rate and its corresponding atmospheric CO2 consumption rate estimates for Scandrett lake catchment (3.6 ± 0.3 tons/km2/year and 0.5 × 105 moles/km2/year), are lower than that of reported values for the average global river basins (5.4 tons/km2/year and 0.9 × 105 tons/km2/year) respectively. The present study provides a comprehensive report of chemical weathering intensity and its role in atmospheric CO2 consumption in low-temperature pristine environment of Antarctica. These estimates underscore the importance of Antarctica weathering on atmospheric CO2 budget, particularly during the past warmer periods when the large area was exposed and available for intense chemical weathering.  相似文献   

8.
This paper presents the use of stable isotopes of water for hydrological characterization and flow component partitioning in the Red River Delta (RRD), the downstream section of the Red River. Water samples were collected monthly during 2015 from the mainstream section of the river and its right bank tributaries flowing through the RRD. In general, δ18O and δ2H river signatures were depleted in summer–autumn (May–October) and elevated in winter–spring (November–April), displaying seasonal variation in response to regional monsoon air mass contest. The Pacific equatorial–maritime air mass dominates in summer and the northern Asia continental air mass controls in winter. Results show that water of the RRD tributaries stems solely from local sources and is completely separated from water arriving from upstream subbasins. This separation is due to the extensive management of the RRD (e.g., dykes and dams) for the purposes of irrigation and inundation prevention. Mainstream river section δ18O and δ2H compositions range from ?10.58 and ?73.74‰ to ?6.80 and ?43.40‰, respectively, and the corresponding ranges inside the RRD were from ?9.35 and ?64.27‰ to ?2.09 and ?15.80‰. A combination of data analysis and hydrological simulation confirms the role of upstream hydropower reservoirs in retaining and mixing upstream water. River water inside the RRD experienced strong evaporation characterized by depleted d‐excess values, becoming negative in summer. On the other hand, the main stream of the Red River has d‐excess values around 10‰, indicating moderate evaporation. Hydrograph separation shows that in upstream subbasins, the groundwater fraction dominates the river flow composition, especially during low flow regimes. Inside the RRD, the river receives groundwater during the dry season, whereas groundwater replenishment occurs in the rainy season. Annual evaporation obtained from this hydrograph separation computation was about 6.3% of catchment discharge, the same order as deduced from the difference between subbasin precipitation and discharge values. This study shows the necessity to re‐evaluate empirical approaches in large river hydrology assessment schemes, especially in the context of climate change.  相似文献   

9.
Sharma S  Frost CD 《Ground water》2008,46(2):329-334
Recovery of hydrocarbons commonly is associated with coproduction of water. This water may be put to beneficial use or may be reinjected into subsurface aquifers. In either case, it would be helpful to establish a fingerprint for that coproduced water so that it may be tracked following discharge on the surface or reintroduction to geologic reservoirs. This study explores the potential of using δ13C of dissolved inorganic carbon (DIC) of coalbed natural gas (CBNG)–coproduced water as a fingerprint of its origin and to trace its fate once it is disposed on the surface. Our initial results for water samples coproduced with CBNG from the Powder River Basin show that this water has strongly positive δ13CDIC (12‰ to 22‰) that is readily distinguished from the negative δ13C of most surface and ground water (−8‰ to −11‰). Furthermore, the DIC concentrations in coproduced water samples are also high (more than 100 mg C/L) compared to the 20 to 50 mg C/L in ambient surface and ground water of the region. The distinctively high δ13C and DIC concentrations allow us to identify surface and ground water that have incorporated CBNG-coproduced water. Accordingly, we suggest that the δ13CDIC and DIC concentrations of water can be used for long-term monitoring of infiltration of CBNG-coproduced water into ground water and streams. Our results also show that the δ13CDIC of CBNG-coproduced water from two different coal zones are distinct leading to the possibility of using δ13CDIC to distinguish water produced from different coal zones.  相似文献   

10.
We report the results of a detailed study of dissolved Sr isotopes in the Solimões and Beni‐Madeira Rivers of the Amazon basin. This study developed data collected over 8 years indicating large spatial and temporal variations in dissolved Sr isotopes among the rivers of the Amazon basin. The large 87Sr/86Sr variations were found to be correlated with the geology of the source areas of the suspended sediments. The Beni‐Madeira River displays a high average 87Sr/86Sr ratio and large 87Sr/86Sr fluctuations during the hydrological cycle. This large average value and fluctuations were related to the presence of Precambrian rocks and Ordovician sediments in the source area of the suspended sediment of the river. In contrast, the Solimões River displays a narrow range of Sr isotope ratio variations and an average value close to 0.709. This river drains mostly Phanerozoic rocks of northern Peru and Ecuador that are characterized by low Sr isotope ratios. The isotopic fluctuations in the Beni‐Madeira River were observed to propagate downstream at least as far as Óbidos. This signal is characterized by an inverse relationship between the concentration of elemental Sr and its isotopic ratios. We further demonstrate that the Sr isotopic composition and content in the Beni‐Madeira River is controlled by suspended sediments derived from the Andes. Despite draining areas underlain by Precambrian rocks and having high 87Sr/86Sr ratios, such rivers as the Negro and Tapajós play a minor role in the total Sr budget of the Amazon basin. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
This study uses Sr isotope composition (87Sr/86Sr) and Sr content of waters of the Oder, one of the largest rivers in central Europe, to fingerprint natural and anthropogenic contributions to its Sr budget and to evaluate water mixing processes in its hydrological system. It also demonstrates a simple method of quantifying natural and anthropogenic Sr inputs in the watershed. The method has potential for environmental and archaeological research because past Sr geochemistry of river water can easily be reconstructed. For the first time, a catchment‐scale impact of anthropogenic sources on the Sr budget of a middle‐size river is shown in a quantitative way. The water of the Oder is characterized by a relatively uniform Sr isotope composition, from 0.7100 to 0.7108, contrasting with strong variations in Sr concentration, from 0.25 to 1.27 mg/L. There is a general seasonal trend in variability, with waters becoming more radiogenic and dilute with respect to the Sr in the spring time. This Sr systematics differs significantly from the Sr budgets of the majority of the Oder tributaries that exhibit more radiogenic composition and systematically lower Sr concentrations. A mixing scenario in the Oder involves Sr contribution from four principal water sources: (a) shallow ground waters with Sr derived from near‐surface weathering of silicates, (b) moderately radiogenic mine waters from the Upper Silesian Coal Basin, (c) unradiogenic mine waters from the Permian sequence of the copper district, and (d) unradiogenic ground waters from shallow‐seated Palaeogene, Neogene, and Mesozoic aquifers. The Sr budget of the Oder is primarily controlled by inputs of dissolved Sr from anthropogenic sources, which overprint the natural background, controlled by geology. Thus, about 47.5% of Sr originates from agriculture, industrial, and municipal additions, 31.5% from mine water inputs, and only 21% from natural sources, that is, rock weathering and atmospheric precipitation. Reconstruction of the past Sr chemistry of the Oder reveals that its present‐day Sr isotope composition is temporary and significantly different from that of the preindustrial times.  相似文献   

12.
We investigate sources of both dissolved and particulate organic carbon in the St Lawrence River from its source (the Great Lakes outlet) to its estuary, as well as in two of its tributaries. Special attention is given to seasonal interannual patterns by using data collected on a bi‐monthly basis from mid‐1998 to mid‐2003. δ13C measurements in dissolved inorganic carbon, dissolved organic carbon (DOC) and particulate organic carbon (POC), as well as molar C : N in particulate organic matter (POM), are used to bring insight into the dynamic between aquatic versus terrigenous sources. In addition, 14C activities of DOC were measured at the outlet of the St Lawrence River to its estuary to assess a mean age of the DOC exported to the estuary. In the St Lawrence River itself, aquatically produced POC dominates terrestrially derived POC and is depleted in 13C by approximately 12‰ versus dissolved CO2. In the Ottawa River, the St Lawrence River's most important tributary, the present dataset did not allow for convincing deciphering of POC sources. In a small tributary of the St Lawrence River, aquatically produced POC dominates in summer and terrestrially derived POC dominates in winter. DOC seems to be dominated by terrestrially derived organic matter at all sampling sites, with some influence of DOC derived from aquatically produced POC in summer in the St Lawrence River at the outlet of the Great Lakes and in one of its small tributaries. The overall bulk DOC is relatively recent (14C generally exceeding 100% modern carbon) in the St Lawrence River at its outlet to the estuary, suggesting that it derives mainly from recent organic matter from topsoils in the watershed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
To investigate the source, flow paths, and chemistry of rich resources of high‐quality, shallow groundwater in the alluvial fan between the Tedori and Sai rivers in central Japan, we analysed stable isotope ratios of H, O, and Sr and concentrations of major dissolved ions and trace elements in groundwater, river water, and paddy water. The 87Sr/86Sr ratios of the groundwater are related to near‐surface geology: groundwater in sediment from the Tedori River has high 87Sr/86Sr ratios (>0.711), whereas that from the Sai River in the north of the fan has low 87Sr/86Sr ratios (<0.711). δ2H and δ18O values and 87Sr/86Sr ratios indicate that groundwater in the central and southern fans is recharged by the Tedori River, whereas recharge in the north is from the Sai River. Mg2+, Ca2+, Sr2+, HCO3?, and SO42? concentrations and δ2H and δ18O values in the groundwater are high in the central fan and, except for the northern area, tend to increase with distance from the Tedori River. There are linear relationships between 87Sr/86Sr ratio and the reciprocal concentrations of Sr2+, Mg2+, and Ca2+. These geochemical characteristics suggest that as groundwater recharged from the Tedori River flows towards the central fan, it mixes with waters derived from precipitation and paddy water that have become enriched in these components during downward infiltration. These results are consistent with our hydrological analysis and numerical simulation of groundwater flow, thus verifying the validity of the model we used in our simulation of groundwater flow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
δ87Sr values and Ca/Sr ratios were employed to quantify solute inputs from atmospheric and lithogenic sources to a catchment in NW Germany. The aquifer consists primarily of unconsolidated Pleistocene eolian and fluviatile deposits predominated by >90% quartz sand. Accessory minerals include feldspar, glauconite, and mica, as well as disperse calcium carbonate in deeper levels. Decalcification of near-surface sediment induces groundwater pH values up to 4.4 that lead to enhanced silicate weathering. Consequently, low mineralized Ca–Na–Cl- and Ca–Cl-groundwater types are common in shallow depths, while in deeper located calcareous sediment Ca–HCO3-type groundwater prevails. δ87Sr values and Ca/Sr ratios of the dissolved pool range from 7.3 to −2.6 and 88 to 493, respectively. Positive δ87Sr values and low Ca/Sr ratios indicate enhanced feldspar dissolution in shallow depths of less than 20 m below soil surface (BSS), while equilibrium with calcite governs negative δ87Sr values and elevated Ca/Sr ratios in deep groundwater (>30 m BSS). Both positive and negative δ87Sr values are evolved in intermediate depths (20–30 m BSS). For groundwater that is undersaturated with respect to calcite, atmospheric supplies range from 4% to 20%, while feldspar-weathering accounts for 8–26% and calcium carbonate for 62–90% of dissolved Sr2+. In contrast, more than 95% of Sr2+ is derived by calcium carbonate and less than 5% by feldspar dissolution in Ca–HCO3-type groundwater. The surprisingly high content of carbonate-derived Sr2+ in groundwater of the decalcified portion of the aquifer may account for considerable contributions from Ca-containing fertilizers. Complementary tritium analyses show that equilibrium with calcite is restricted to old groundwater sources.  相似文献   

15.
The Nyangqu River, the largest right bank tributary of the Yarlung Zangbo River in the Qinghai–Tibet Plateau, was representative of an alpine riverine carbon cycle experiencing climate change. In this study, dissolved inorganic carbon (DIC) spatial and seasonal variations, as well as their carbon isotopic compositions (δ13CDIC) in river water and groundwater were systematically investigated to provide constraints on DIC sources, recharge and cycling. Significant changes in the δ13CDIC values (from −2.9‰ to −23.4‰) of the water samples were considered to be the result of different contributions of two dominant DIC origins: soil CO2 dissolution and carbonate weathering. Three types of rock weathering (dissolution of carbonate minerals by H2CO3 and H2SO4, and silicate dissolution by H2CO3) were found to control the DIC input into the riverine system. In DIC cycling, groundwater played a significant role in delivering DIC to the surface water, and DIC supply from tributaries to the main stream increased from the dry season to the wet season. Notably, the depleted δ13CDIC ‘peak’ around the 88.9° longitude, especially in the September groundwater samples, indicated the presence of ‘special’ DIC, which was attributed to the oxidation of methane from the Jiangsa wetland located nearby. This wetland could provide large amounts of soil organic matter available for bacterial degradation, producing 13C-depleted methane. Our study provided insights regarding the role of wetlands in riverine carbon cycles and highlighted the contribution of groundwater to alpine riverine DIC cycles.  相似文献   

16.
The headwaters of the Ganga (the Alaknanda, Bhagirathi and the Ganga) were analysed for their dissolved major ions, Sr and 87Sr/86Sr on a biweekly to monthly basis over a period of one year to determine their temporal variations and the factors contributing to them. The concentrations of major ions and Sr show significant seasonal variation with lower values during monsoon period in all the three rivers. A similar trend is also observed for 87Sr/86Sr and Na*/Ca (Na* = Nar? Clr) suggesting relatively lower contribution of Sr and Na from silicates (which are more radiogenic in Sr) during monsoon. Budget calculations show that silicate derived dissolved Sr (Srs) in the river Ganga, Alaknanda and the Bhagirathi varied from 10 ± 4 to 27 ± 11, 7 ± 3 to 30 ± 12, 16 ± 6 to 57 ± 23% of measured Sr respectively with lower values during monsoon. The relative decrease in silicate erosion compared to carbonate during monsoon can result from several factors, these include higher dissolution kinetics of the carbonates, lower water–rock interaction time and availability of larger area for weathering. The annual discharge weighted Sr flux derived from the time series data is higher by ~20% from that based on peak flow Sr, and lower by ~40% compared to that derived from lean flow Sr concentration. The area‐normalized annual flux of dissolved Sr from the Ganga at Rishikesh is about five times its flux at Rajshahi (Bangladesh) and a few other major global rivers, such as the Amazon, indicating higher erosion rate over the Himalaya. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract Granitoids are widely distributed in the Ryoke belt and have been divided into four main igneous stages based on their field setting. In this paper, we present Rb–Sr isochron ages for the younger Ryoke granitoids (second stage to fourth stage) in the Kinki district. The Yagyu granite (second stage) gave a Rb–Sr whole‐rock isochron age of 74.6 ± 10.9 Ma with an initial 87Sr/86Sr ratio of 0.70938 ± 0.00016, and a Rb–Sr mineral isochron age of 71.8 ± 0.1 Ma. The Narukawa granite (second stage) yielded a Rb–Sr mineral isochron age of 79.5 ± 0.4 Ma. A Rb–Sr whole‐rock isochron age of 78.3 ± 3.0 Ma with an initial 87Sr/86Sr ratio of 0.70764 ± 0.00014 was obtained for the Takijiri adamellite (third stage). The Katsuragi quartzdiorite (fourth stage) gave a Rb–Sr whole‐rock isochron age of 85.1 ± 18.3 Ma (initial 87Sr/86Sr ratio of 0.70728 ± 0.00006), and mineral isochron ages of 76.9 ± 0.5 Ma and 74.8 ± 0.5 Ma. The Minamikawachi granite (fourth stage) gave a Rb–Sr whole‐rock isochron age of 72.8 ± 2.0 Ma with an initial 87Sr/86Sr ratio of 0.70891 ± 0.00021. These age data indicate that the igneous activity in younger Ryoke granitoids of Kinki district occurred between 80 and 70 Ma, except for the Katsuragi quartz diorite. The isotopic data on the various igneous stages in Kinki district correspond with the relative timing from field observations. Based on the initial 87Sr/86Sr ratios, the granitoids of the Ryoke belt in Kinki district are spatially divided into two groups. One is granitoids with initial 87Sr/86Sr ratio of 0.707–0.708, distributed in the southern part of the Ryoke belt. The other is granitoids with initial 87Sr/86Sr ratio of 0.708–0.710 distributed in the northern part of the Ryoke belt. The initial 87Sr/86Sr ratios of granitoids increase with decreasing (becoming younger) Rb–Sr whole‐rock isochron ages.  相似文献   

18.
For many basins, identifying changes to water quality over time and understanding current hydrologic processes are hindered by fragmented and discontinuous water‐quality and hydrology data. In the coal mined region of the New River basin and Indian Fork sub‐basin, muted and pronounced changes, respectively, to concentration–discharge (C–Q) relationships were identified using linear regression on log‐transformed historical (1970s–1980s) and recent (2000s) water‐quality and streamflow data. Changes to C–Q relationships were related to coal mining histories and shifts in land use. Hysteresis plots of individual storms from 2007 (New River) and the fall of 2009 (Indian Fork) were used to understand current hydrologic processes in the basins. In the New River, storm magnitude was found to be closely related to the reversal of loop rotation in hysteresis plots; a peak‐flow threshold of 25 cubic meters per second (m3/s) segregates hysteresis patterns into clockwise and counterclockwise rotational groups. Small storms with peak flow less than 25 m3/s often resulted in dilution of constituent concentrations in headwater tributaries like Indian Fork and concentration of constituents downstream in the mainstem of the New River. Conceptual two or three component mixing models for the basins were used to infer the influence of water derived from spoil material on water quality. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Characterization of stable isotope compositions (δ2H and δ18O) of surface water and groundwater in a catchment is critical for refining moisture sources and establishing modern isotope–elevation relationships for paleoelevation reconstructions. There is no consensus on the moisture sources of precipitation in the Yellow River source region during summer season. This study presents δ2H and δ18O data from 111 water samples collected from tributaries, mainstream, lakes, and groundwater across the Yellow River source region during summertime. Measured δ18O values of the tributaries range from ?13.5‰ to ?5.8‰ with an average of ?11.0‰. Measured δ18O values of the groundwater samples range from ?12.7‰ to ?10.5‰ with an average of ?11.9‰. The δ18O data of tributary waters display a northward increase of 1.66‰ per degree latitude. The δ18O data and d‐excess values imply that moisture sources of the Yellow River source region during summertime are mainly from the mixing of the Indian Summer Monsoon and the Westerlies, local water recycling, and subcloud evaporation. Analysis of tributary δ18O data from the Yellow River source region and streamwater and precipitation δ18O data from its surrounding areas leads to a best‐fit second‐order polynomial relationship between δ18O and elevation over a 4,600 m elevation range. A δ18O elevation gradient of ?1.6‰/km is also established using these data, and the gradient is in consistence with the δ18O elevation gradient of north and eastern plateau. Such relationships can be used for paleoelevation reconstructions in the Yellow River source region.  相似文献   

20.
The Wind River Range (WRR) of Wyoming has the largest concentration of alpine glaciers in the American Rockies and contributes to several major river systems in the western United States. Declines in the areal extent and volume of these glaciers are well documented, and eventual loss of alpine glaciers will reduce the amount of water available for agricultural and domestic use. The contribution of glacial melt to streamflow remains largely unquantified in Wyoming. We used isotope measurements and Bayesian modeling to estimate the fractional contribution of glacier meltwater to Dinwoody Creek (DC) in the WRR on bi‐weekly and seasonal (spring, summer, and fall) time scales over 2 years. In 2007 and 2008, we made temporally intensive measurements of the stable isotope composition of water from the DC watershed. Samples of the primary sources of streamflow (snowmelt, glacier melt, rain, and baseflow) were collected during field campaigns, and automated collection of stream samples occurred over the melt season. Isotope data (D and 18O) were analyzed within a hierarchical Bayesian framework that incorporated temporal and spatial correlations. Glacial melt contributed a significant proportion (~53–59%) to streamflow in a low‐flow year (2007) or when streamflow was low during a high‐flow year (2008). In 2008, a large and persistent snowpack contributed significantly (~0·42–51%) to streamflow in mid‐summer. The large contribution of glacial melt to streamflow suggests that the loss of glaciers may impact riparian ecosystems and human water supplies in the late summer and in years with low snowpack. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号