首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
测绘学   2篇
大气科学   3篇
地球物理   3篇
海洋学   3篇
天文学   1篇
  2018年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2009年   2篇
  2001年   2篇
  2000年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
The Powder River Basin (PRB) of Wyoming and Montana contains significant coal and coal bed natural gas (CBNG) resources. CBNG extraction requires the production of large volumes of water, much of which is discharged into existing drainages. Compared to surface waters, the CBNG produced water is high in sodium relative to calcium and magnesium, elevating the sodium adsorption ratio (SAR). To mitigate the possible impact this produced water may have on the quality of surface water used for irrigation, the State of Montana passed water anti‐degradation legislation, which could affect CBNG production in Wyoming. In this study, we sought to determine the proportion of CBNG produced water discharged to tributaries that reaches the Powder River by implementing a four end‐member mixing model within a Bayesian statistical framework. The model accounts for the 87Sr/86Sr, δ13CDIC, [Sr] and [DIC] of CBNG produced water and surface water interacting with the three primary lithologies exposed in the PRB. The model estimates the relative contribution of the end members to the river water, while incorporating uncertainty associated with measurement and process error. Model results confirm that both of the tributaries associated with high CBNG activity are mostly composed of CBNG produced water (70–100%). The model indicates that up to 50% of the Powder River is composed of CBNG produced water downstream from the CBNG tributaries, decreasing with distance by dilution from non‐CBNG impacted tributaries from the point sources to ~10–20% at the Montana border. This amount of CBNG produced water does not significantly affect the SAR or electrical conductivity of the Powder River in Montana. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
2.
Previous research has demonstrated that soil carbon sequestration through adoption of conservation tillage can be economically profitable depending on the value of a carbon offset in a greenhouse gas (GHG) emissions market. However adoption of conservation tillage also influences two other potentially important factors, changes in soil N2O emissions and CO2 emissions attributed to changes in fuel use. In this article we evaluate the supply of GHG offsets associated with conservation tillage adoption for corn-soy-hay and wheat-pasture systems of the central United States, taking into account not only the amount of carbon sequestration but also the changes in soil N2O emission and CO2 emissions from fuel use in tillage operations. The changes in N2O emissions are derived from a meta-analysis of published studies, and changes in fuel use are based on USDA data. These are used to estimate changes in global warming potential (GWP) associated with adoption of no-till practices, and the changes in GWP are then used in an economic analysis of the potential supply of GHG offsets from the region. Simulation results demonstrate that taking N2O emissions into account could result in substantial underestimation of the potential for GHG mitigation in the central U.S. wheat pasture systems, and large over-estimation in the corn-soy-hay systems. Fuel use also has quantitatively important effects, although generally smaller than N2O. These findings suggest that it is important to incorporate these two effects in estimates of GHG offset potential from agricultural lands, as well as in the design of GHG offset contracts for more complete accounting of the effect that no-till adoption will have on greenhouse gas emissions.  相似文献   
3.
Marine debris, particularly debris that is composed of lost or abandoned fishing gear, is recognized as a serious threat to marine life, vessels, and coral reefs. The goal of the GhostNet project is the detection of derelict nets at sea through the use of weather and ocean models, drifting buoys and satellite imagery to locate convergent areas where nets are likely to collect, followed by airborne surveys with trained observers and remote sensing instruments to spot individual derelict nets. These components of GhostNet were first tested together in the field during a 14-day marine debris survey of the Gulf of Alaska in July and August 2003. Model, buoy, and satellite data were used in flight planning. A manned aircraft survey with visible and IR cameras and a LIDAR instrument located debris in the targeted locations, including 102 individual pieces of debris of anthropogenic or terrestrial origin.  相似文献   
4.
Sequence stratigraphy of fluvial deposits is a controversial topic because changes in relative sea level will eventually have indirect impact on the spatial and temporal distribution of depositional facies. Changes in the relative sea level may influence the accommodation space in fluvial plains, and hence have impact on types of fluvial system, frequency of avulsion, and style of vertical and lateral accretion. This study aims to investigate whether depositional facies and changes in the fluvial system of the Lower Triassic Petrohan Terrigenous Group sandstones (NW Bulgaria) in response to changes in the relative sea level have an impact on the spatial and temporal distribution of diagenetic alterations.  相似文献   
5.
The passage of jet boats through spawning areas can kill salmon eggs buried in the river bed. By using a jet boat on the Ashley River the pressure gradients created in a redd were determined. At the maximum boat speed investigated (11 m.s‐1) gradients up to 9.32 kPa.m‐1 were recorded. The induced water velocities through the gravel were then estimated from the equation of motion and reproduced in a gravel‐filled tube in the laboratory. For the test conditions discharge velocities ranged from 0.18–0.3 m.s‐1. Studies of the effect of these flows on salmon eggs revealed fatality rates of up to 40% at their most critical stage on the ninth day of development.  相似文献   
6.
The distribution of diagenetic alterations in Triassic fluvio-deltaic, quartzarenitic to sublitharenitic, lowstand systems tract (LST) sandstones of the Grès á Voltzia Formation, anastomosing fluvial, quartzarenitic transgressive systems tract (TST) sandstones of the Grès á Roseaux Formation, and shallow marine, quartzarenitic to sublitharenitic, TST sandstones of the Grès Coquiller Formation, the Paris Basin (France), can be linked to transgression and regression events, and thus to the sequence stratigraphic context. Near-surface eogenetic alterations, which display a fairly systematic link to the depositional facies and sequence stratigraphic framework, include: (i) cementation by meteoric water calcite (δ18O=−8.9‰ and δ13C=−9.1‰) in the fluvio-deltaic, LST sandstones, (ii) cementation by mixed marine–meteoric calcite (δ18O=−5.3‰ to −2.6‰ and δ13C=−3.9‰ to −1.3‰) and dolomite (δ18O=−4.6‰ to −2.6‰ and δ13C=−2.9‰ to −2.3‰) in the foreshore, TST sandstones and below parasequence boundaries (PB), and transgressive surface (TS), and in the shoreface, TST sandstones below maximum flooding surfaces (MFS), being facilitated by the presence of carbonate bioclasts, (iii) dissolution of detrital silicates and precipitation of K-feldspar overgrowths and kaolinite, particularly in the fluvio-deltaic, LST sandstones owing to effective meteoric water circulation, and (vi) formation of autochthonous glauconite, which is increases in abundance towards the top of the fluvio-deltaic, LST sandstones, and along TS, and in the shoreface, TST sandstones, by alteration of micas owing to the flux of seawaters into the sandstones during transgression, whereas parautochthonous glauconite is restricted to the TS sandstones owing to marine reworking. Mesogenetic alterations, which include cementation by quartz overgrowths and illite, display fairly systematic link to fluvio-deltaic, LST sandstones. This study has revealed that linking of diagenesis to transgression and regression events enables a better understanding of the parameters that control the spatial and temporal distribution of diagenetic alterations in sandstones and of their impact on reservoir quality evolution.  相似文献   
7.
The Wind River Range (WRR) of Wyoming has the largest concentration of alpine glaciers in the American Rockies and contributes to several major river systems in the western United States. Declines in the areal extent and volume of these glaciers are well documented, and eventual loss of alpine glaciers will reduce the amount of water available for agricultural and domestic use. The contribution of glacial melt to streamflow remains largely unquantified in Wyoming. We used isotope measurements and Bayesian modeling to estimate the fractional contribution of glacier meltwater to Dinwoody Creek (DC) in the WRR on bi‐weekly and seasonal (spring, summer, and fall) time scales over 2 years. In 2007 and 2008, we made temporally intensive measurements of the stable isotope composition of water from the DC watershed. Samples of the primary sources of streamflow (snowmelt, glacier melt, rain, and baseflow) were collected during field campaigns, and automated collection of stream samples occurred over the melt season. Isotope data (D and 18O) were analyzed within a hierarchical Bayesian framework that incorporated temporal and spatial correlations. Glacial melt contributed a significant proportion (~53–59%) to streamflow in a low‐flow year (2007) or when streamflow was low during a high‐flow year (2008). In 2008, a large and persistent snowpack contributed significantly (~0·42–51%) to streamflow in mid‐summer. The large contribution of glacial melt to streamflow suggests that the loss of glaciers may impact riparian ecosystems and human water supplies in the late summer and in years with low snowpack. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
8.
Airborne LiDAR (Light Detection and Ranging) provides opportunities to generate high-quality digital elevation models (DEMs) even in wetland environments. Our project, performed over the Okefenokee Swamp in Georgia during the spring of 2010, shows that several, distinctive factors must be considered to ensure successful wetland LiDAR projects. Some of the challenges include selecting optimal flight times in accordance with weather variability and water levels, having effective and quality control protocols, applying and developing filtering and interpolation algorithms, breaklines in swamps and accounting for data striping and noise. While some of these issues are faced in any airborne LiDAR acquisition, many of these require special consideration in a low-slope wetland environment with water saturated soils, widespread shallow water, and sediments and extensive vegetation. An examination of these issues and how they were handled will help in ensuring the success of future LiDAR acquisitions and, in particular, will advance knowledge of producing quality DEMs in wetland environments.  相似文献   
9.
Gap models have been used extensively in ecological studies of forest structure and succession, and they should be useful tools for studying potential responses of forests to climatic change. There is a wide variety of gap models with different degrees of physiological detail, and the manner in which the effects of climatic factors are analyzed varies across that range of detail. Here we consider how well the current suite of gap models can accommodate climatic-change issues, and we suggest what physiological attributes and responses should be added to better represent responses of aboveground growth and competition. Whether a gap model is based on highly empirical, aggregated growth functions or more mechanistic expressions of carbon uptake and allocation, the greatest challenge will be to express allocation correctly. For example, incorporating effects of elevated CO2 requires that the fixed allometry between stem volume and leaf area be made flexible. Simulation of the effects of climatic warming should incorporate the possibility of a longer growing season and acclimation of growth processes to changing temperature. To accommodate climatic-change factors, some of the simplicity of gap models must be sacrificed by increasing the amount of physiological detail, but it is important that the capability of the models to predict competition and successional dynamics not be sacrificed.  相似文献   
10.
Comparing the Performance of Forest gap Models in North America   总被引:6,自引:0,他引:6  
Forest gap models have a long history in the study of forest dynamics, including predicting long-term succession patterns and assessing the potential impacts of climate change and air pollution on forest structure and composition. In most applications, existing models are adapted for the specific question at hand and little effort is devoted to evaluating alternative formulations for key processes, although this has the potential to significantly influence model behavior. In the present study, we explore the implications of alternative formulations for selected ecological processes via the comparison of several gap models. Baseline predictions of forest biomass, composition and size structure generated by several gap models are compared to each other and to measured data at boreal and temperate sites in North America. The models ForClim and LINKAGES v2.0 were compared based on simulations of a temperate forest site in Tennessee, whereas FORSKA-2V, BOREALIS and ForClim were compared at four boreal forest sites in central and eastern Canada. Results for present-day conditions were evaluated on their success in predicting forest cover, species composition, total biomass and stand density, and allocation of biomass among species. In addition, the sensitivity of each model to climatic changes was investigated using a suite of six climate change scenarios involving temperature and precipitation. In the temperate forest simulations, both ForClim and LINKAGES v2.0 predicted mixed mesophytic forests dominated by oak species, which is expected for this region of Tennessee. The models differed in their predictions of species composition as well as with respect to the simulated rates of succession. Simulated forest dynamics under the changed climates were qualitatively similar between the two models, although aboveground biomass and species composition in ForClim was more sensitive to drought than in LINKAGES v2.0. Under a warmer climate, the modeled effects of temperature on tree growth in LINKAGES v2.0 led to the unrealistic loss of several key species. In the boreal forest simulations, ForClim predicted significant forest growth at only the most mesic site, and failed to predict a realistic species composition. In contrast, FORSKA-2V and BOREALIS were successful in simulating forest cover, general species composition, and biomass at most sites. In the climate change scenarios, ForClim was highly sensitive, whereas the other two models exhibited sensitivity only at the drier central Canadian sites. Although the studied sites differ strongly with respect to both the climatic regime and the set of dominating species, a unifying feature emerged from these simulation exercises. The major differences in model behavior were brought about by differences in the internal representations of the seasonal water balance, and they point to an important limitation in some gap model formulations for assessing climate change impacts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号