首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Extremely alkaline ground water has been found underneath many shuttered steel mills and slag dumps and has been an impediment to the cleanup and economic redevelopment of these sites because little is known about the geochemistry. A large number of these sites occur in the Lake Calumet region of Chicago, Illinois, where large-scale infilling of the wetlands with steel slag has created an aquifer with pH values as high as 12.8. To understand the geochemistry of the alkaline ground water system, we analyzed samples of ground water and the associated slag and weathering products from four sites. We also considered several potential remediation schemes to lower the pH and toxicity of the water. The principal cause of the alkaline conditions is the weathering of calcium silicates within the slag. The resulting ground water at most of the sites is dominated by Ca2+ and OH- in equilibrium with Ca(OH)2. Where the alkaline ground water discharges in springs, atmospheric CO2 dissolves into the water and thick layers of calcite form. Iron, manganese, and other metals in the metallic portion of the slag have corroded to form more stable low-temperature oxides and sulfides and have not accumulated in large concentrations in the ground water. Calcite precipitated at the springs is rich in a number of heavy metals, suggesting that metals can move through the system as particulate matter. Air sparging appears to be an effective remediation strategy for reducing the toxicity of discharging alkaline water.  相似文献   

2.
Passive multilevel samplers (MLS) containing a solid matrix for microbial colonization were used as in situ microcosms in conjunction with a push-pull biostimulation experiment designed to promote biological U(VI) and Tc(VII) reduction. MLS were deployed at 24 elevations in the injection well and two downgradient wells to investigate the spatial variability in microbial community composition and growth prior to and following biostimulation. The microbial community was characterized by real-time quantitative polymerase chain reaction (Q-PCR) quantification of bacteria, NO(3)(-)-reducing bacteria (nirS and nirK), delta-proteobacteria, Geobacter sp., and methanogens (mcrA). Pretest cell densities were low overall but varied substantially with significantly greater bacterial populations detected at circumneutral pH (t-test, alpha= 0.05), suggesting carbon substrate and low pH limitations of microbial activity. Although pretest cell densities were low, denitrifying bacteria were dominant members of the microbial community. Biostimulation with an ethanol-amended ground water resulted in concurrent NO(3)(-) and Tc(VII) reduction, followed by U(VI) reduction. Q-PCR analysis of MLS revealed significant (1 to 2 orders of magnitude, Mann-Whitney U-test, alpha= 0.05) increases in cell densities of bacteria, denitrifiers, delta-proteobacteria, Geobacter sp., and methanogens in response to biostimulation. Traditionally, characterization of sediment samples has been used to investigate the microbial community response to biostimulation; however, collection of sediment samples is expensive and not conducive to deep aquifers or temporal studies. The results presented demonstrate that push-pull tests with passive MLS provide an inexpensive approach to determine the effect of biostimulation on contaminant concentrations, geochemical conditions, and the microbial community composition and function.  相似文献   

3.
To better constrain sampling strategies for observing biologically sensitive parameters in ground water, we vigorously pumped for 120 h a lightly pumped well completed in a confined glacial aquifer while observing how various physical and chemical parameters evolve in the water produced. The parameters commonly monitored when sampling a well stabilized within about an hour, after 5 wellbore volumes were produced; these parameters include temperature, pH, dissolved oxygen, oxidation-reduction potential (Eh), and electrical conductivity. The concentrations of ferrous iron, sulfide, and sulfate and various biological or biologically sensitive parameters, including the concentrations of dissolved hydrogen and methane, direct cell counts, and the microbial community profile, in contrast, required more than 8 h or 36 well volumes to stabilize. We interpret this result to mean that the zone of influence of the wellbore on biologic processes in the aquifer extends beyond the commonly recognized zone where physical properties are affected. A second period of adjustment of these biologically sensitive parameters began after about 50 h of pumping, following displacement of 230 wellbore volumes, and continued to the end of the experiment. During this period, the cell density and the composition of the microbial community suspended in the water samples changed. This finding indicates that the microbial community in and near the wellbore changed in response to pumping and the changes affected aspects of the composition of water produced from the well. The study demonstrates the importance of allowing adequate pumping time when sampling ground water for the analysis of biologically sensitive parameters.  相似文献   

4.
The Sole Source Aquifer Program has helped prevent contamination of many community drinking water supplies. If an aquifer supplies the sole or principal source of a community's drinking water, a local ground water user may petition the Environmental Protection Agency (EPA) under the Safe Drinking Water Act for its designation and protection as a "sole source aquifer." Since 1974, residents and officials of 65 communities and multi-community areas have petitioned and received assistance from the EPA to prevent contamination of their local ground water source of drinking water. This designation means that EPA may review federal financially assisted projects to determine if they would contaminate the aquifer and cause a public health hazard. If they could cause contamination, EPA can request that the project be modified or stopped. The significance of this program in terms of population served and funds affected has been substantial, indicating the Sole Source Aquifer Program has been an important local tool for protecting ground water used as a source of drinking water. Information is given on three different examples of sole source aquifer designations protected under this program: the New Jersey Coastal Plain Aquifer System, the Great Miami River Buried Valley Aquifer System (Ohio), and the Eastern Snake River Plain Aquifer (Idaho), serving populations of 543,000, 921,000, and 275,000, respectively. In all three examples, preventing ground water contamination through the Sole Source Aquifer Program has protected the community drinking water supply.  相似文献   

5.
It is important that indicators of fecal pollution are reliable. Coliform bacteria are a commonly used indicator of fecal pollution. As other investigators have reported elsewhere, we observed a seasonal pattern of coliform bacteria detections in domestic wells in New Jersey. Examination of a statewide database of 10 years of water quality data from 93,447 samples, from 78,207 wells, generated during real estate transactions, revealed that coliform bacteria were detected in a higher proportion of wells during warm weather months. Further examination of the seasonal pattern of other data, including well water pH, precipitation, ground and surface water temperatures, surface water coliform bacteria concentrations, and vegetation, resulted in the hypothesis that these bacteria may be derived from nonfecal (or environmentally adapted) as well as fecal sources. We provide evidence that the coliform seasonality may be the result of seasonal changes in groundwater extraction volumes (and to a lesser extent precipitation), and temperature‐driven changes in the concentration of surface or near‐surface coliform sources. Nonfecal coliform sources may not indicate the presence of fecal wastes and hence the potential presence of pathogens, or do so in an inconsistent fashion. Additional research is needed to identify the sources of the coliforms detected in groundwater.  相似文献   

6.
Nutrient fluxes across terrestrial-aquatic boundaries and their subsequent integration into lake nutrient cycles are currently a major topic of aquatic research. Although pollen represents a good substrate for microorganisms, it has been neglected as a terrestrial source of organic matter in lakes. In laboratory experiments, we incubated pollen grains of Pinus sylvestris in water of lakes with different trophy and pH to estimate effects of pollen input and its subsequent microbial degradation on nutrient dynamics. In this ex situ experiment, we measured concentrations of organic carbon, phosphorus and nitrogen in the surrounding water as well as microbial dynamics (bacteria and fungal sporangia) at well-controlled conditions. Besides leaching, chemical and microbial decomposition of pollen was strongest within the first week of incubation. This led to a marked increase of soluble reactive phosphorus and total dissolved nitrogen (up to 0.04 and 1.5 mg L−1, respectively, after 5 days of incubation) in the ambient water. In parallel, pollen grains were rapidly colonized by heterotrophic bacteria and aquatic fungi. Leaching and microbial degradation of pollen accounted for ≥80, ≥40, ≥50% for organic C, N and P, respectively, and did not significantly differ among water samples from the studied lakes. Thus, pollen introduces high amounts of bio-available terrestrial organic matter and nutrients into surface waters within a short time. A rough calculation on P input into oligotrophic Lake Stechlin indicates that pollen plays an important ecological role in nutrient cycling of temperate lakes. This requires further attention in aquatic ecology.  相似文献   

7.
沉水植物附植生物群落生态学研究进展   总被引:6,自引:4,他引:2  
在高等水生植物表面经常附着生长着藻类、真菌和细菌等,这些有机群体组成附植生物群落,在大中型浅水湖泊中普遍存在.附植生物群落具有特定的物种组成和空间结构,并随季节推移和沉水植物生长表现出一定的动态变化特征.附植生物群落与宿主植物及周围水体环境联系密切,不仅能够表征水体营养盐、光照、温度等环境因子特征,与沉水植物、食草动物、浮游植物等水生生物类群也存在不同的相互作用.水生生态系统中,附植生物群落参与水体营养物质转化,在草-藻型湖泊生态系统的相互转化过程中起重要作用;其较高的初级生产力作为水生动物重要的食物来源,增加了食物网的多样性;同时,附植生物群落因其独特的生理生态特征正逐渐被应用于水质净化和水环境质量监测.本文在综述近年来附植生物群落研究进展的基础上,分析了附植生物群落的组成结构和动态变化特征,阐述了附植生物群落在水生生态系统中的功能,可为湖泊富营养化治理,尤其是沉水植被的生态修复和管理提供科学依据.  相似文献   

8.
The effect of chlorine concentration, ground water pH, and contact time on chlorine demand and the inactivation of coliform bacteria, Escherichia coli , was studied in the laboratory using a batch reactor under controlled environmental conditions. Ground water for this study was obtained from 200m deep wells in Bangkok, Thailand. The test results demonstrate that the kinetics of chlorine inactivation of coliforms in ground water consist of an initial rapid kill rate followed by a slower rate. Disinfection was more effective in acidic pH (5.5) than basic pH (8.5). Chlorine demand exerted by ground water increased with chlorine dose, contact time, and hydrogen ion concentration. Based on the applied chlorine dose, inactivation of E. coli by chlorine at neutral pH and room temperature was over two orders of magnitude less effective in ground water than in demand-free water. Because of the high chlorine demand exerted by this ground water, chlorine residuals leaving the treatment plant are likely to be unstable.  相似文献   

9.
Limited by sampling frequency and detection methods, current recreational water monitoring programs often fail to protect public health, especially after heavy rain or flooding, when microbial water quality can change rapidly. In order to assess the variations in the microbial indicators and to develop a scientific warning system, we conducted an intensive sampling project at the No. 1 Bathing Beach. The results show that, during dry weather, the detection rate of Enterococcus was significantly lower than that of Faecal coliform bacteria. On these days, water quality was mainly impacted by pollutants brought in by swimmers than by stormwater outfall. During wet weather, rainfall and microbial bacterial concentrations showed a positive correlation. Trends in the two microbial bacteria were approximately the same. With increasing distance from the shore, the detection rate of microbial bacteria gradually decreased. Microbial bacteria concentrations increased markedly during high tide and under a south wind.  相似文献   

10.
A 1-year cycle of observations was performed in four Sicilian transitional water systems (Oliveri-Tindari, Cape Peloro, Vendicari and Marsala) to characterise their ecological status. A panel of variables among which trophic and microbial (enzyme activities, abundance of hetetrophic bacteria and of bacterial pollution indicators) parameters, were selected. Particulate organic carbon (POC) and nitrogen (PON) and chlorophyll-a (Chl-a) contents defined the trophic state, while microbial hydrolysis rates and abundance gave insights on microbial community efficiency in organic matter transformation and on allochthonous inputs. To classify the trophic state of examined waters, the synthetic trophic state index (TRIX) was calculated.Microbial hydrolysis rates correlated positively with POC and Chl-a, which increased along the eutrophication gradient. The significant relationships among TRIX, trophic and microbial parameters suggested the use of leucine aminopeptidase, alkaline phosphatase and POC as suitable parameters to implement the Water Framework Directive when assessing the ecological status of transitional water systems.  相似文献   

11.
通过2根圆钢管普通混凝土柱与5根圆钢管钢渣混凝土柱在高轴压比下的水平低周反复加载试验,研究圆钢管钢渣混凝土柱的轴压比、钢管壁厚、钢渣砂替代率和长细比对其破坏形态、滞回耗能能力、骨架曲线、延性及耗能、刚度退化的影响规律。研究结果表明:钢渣混凝土试件破坏过程和破坏形态与普通混凝土试件基本相同,主要表现为钢管底部鼓曲的压弯破坏;所有试件滞回曲线饱满,无明显“捏缩”现象;高轴压比试件存在明显承载力突降现象,合理的径厚比(钢管直径/钢管壁厚)对高轴压比试件承载力突降有明显改善作用;低轴压比试件延性系数大于4.0,高轴压比试件延性系数介于1.57~3.76之间,轴压比增大,试件延性下降;试件破坏时等效粘滞阻尼系数ξeq介于0.259~0.437之间;建议采用《钢管混凝土混合结构技术标准》(GB/T51446-2021)或《钢管混凝土结构技术规程》(DBJ/T13-51-2010)计算地震作用下钢管钢渣混凝土柱压弯承载力,但高轴压比钢管钢渣混凝土柱计算结果需乘以折减系数0.8。  相似文献   

12.
With most existing methods, transverse dispersion coefficients are difficult to determine. We present a new, simple, and robust approach based on steady-state transport of a reacting agent, introduced over a certain height into the porous medium of interest. The agent reacts with compounds in the ambient water. In our application, we use an alkaline solution injected into acidic ambient water. Threshold values of pH are visualized by adding standard pH indicators. Since aqueous-phase acid-base reactions can be considered practically instantaneous and the only process leading to mixing of the reactants is transverse dispersion, the length of the plume is controlled by the ratio of transverse dispersion to advection. We use existing closed-form expressions for multidimensional steady-state transport of conservative compounds in order to evaluate the concentration distributions of the reacting compounds. Based on these results, we derive an easy-to-use expression for the length of the reactive plume; it is proportional to the injection height squared, times the velocity, and inversely proportional to the transverse dispersion coefficient. Solving this expression for the transverse dispersion coefficient, we can estimate its value from the length of the alkaline plume. We apply the method to two experimental setups of different dimension. The computed transverse dispersion coefficients are rather small. We conclude that at slow but realistic ground water velocities, the contribution of effective molecular diffusion to transverse dispersion cannot be neglected. This results in plume lengths that increase with increasing velocity.  相似文献   

13.
Tang  Kaihao  Zhan  Waner  Zhou  Yiqing  Xu  Tao  Chen  Xiaoqing  Wang  Weiquan  Zeng  Zhenshun  Wang  Yan  Wang  Xiaoxue 《中国科学:地球科学(英文版)》2020,63(1):157-166
Scleractinian corals host numerous microbial symbionts with different types of interactions. The gastric cavity of scleractinian coral, as a semiclosed subenvironment with distinct chemical characteristics(e.g., dissolved O2, pH, alkalinity, and nutrients), harbors a distinct microbial community and a diverse array of bacteria that can be pathogenic or beneficial. Galaxea fascicularis is one of the dominant massive scleractinian coral species on inshore fringing reefs in the northern South China Sea.Although the abundance of coral-associated bacteria has been investigated in G. fascicularis, less is known about the microorganisms in the gastric cavity. In this study, we specially isolated cultivable bacterial strains from the gastric cavity of G.fascicularis collected from Hainan Island using a noninvasive sampling approach. Among the 101 representative bacterial strains, one Vibrio coralliilyticus strain, SCSIO 43001, was found to be a temperature-dependent opportunistic pathogen of G.fascicularis. The antagonistic activity between the 100 strains and V. coralliilyticus SCSIO 43001 was tested using a modified Burkholder diffusion assay. Our results showed that V. coralliilyticus SCSIO 43001 inhibits the growth of Erythrobacter flavus and Sphingomonas yabuuchiae. Additionally, we found that three Pseudoalteromonas strains showed moderate to high antibacterial activity against V. coralliilyticus SCSIO 43001 and several other coral-associated Gram-negative bacterial strains.These results suggest that competition between the coral pathogen and other bacteria also occurs in the gastric cavity of coral, and Pseudoalteromonas strains in the gastric cavity of G. fascicularis may provide a protective role in the defense against coinhabiting coral pathogens at elevated temperature.  相似文献   

14.
区分"源兆"与"场兆",系地震预测探索中的重要课题。根据云南4组6级以上地震的地下流体前兆异常资料,系统分析了强震源兆的流体前兆异常特征。结果表明,在6级多强震的源兆区,即震中距100 km范围内,异常项目计有水位、水温、水氡、水汞及气汞;以中期、短期异常为主,临震异常很少;源兆异常台站和台项的比例均高于场兆。这些流体源兆特征的认识,可为利用流体异常判断地震危险区提供一定依据。  相似文献   

15.
Mangroves are threatened ecosystems that provide numerous ecosystem services, especially through their wide biodiversity, and their bioremediation capacity is a challenging question in tropical areas. In a mangrove in Mayotte, we studied the potential role of microbial biofilm communities in removing nutrient loads from pre-treated wastewater. Microbial community samples were collected from tree roots, sediments, water, and from a colonization device, and their structure and dynamics were compared in two areas: one exposed to sewage and the other not. The samples from the colonization devices accurately reflected the natural communities in terms of diversity. Communities in the zone exposed to sewage were characterized by more green algae and diatoms, higher bacteria densities, as well as different compositions. In the area exposed to sewage, the higher cell densities associated with specific diversity patterns highlighted adapted communities that may play a significant role in the fate of nutrients.  相似文献   

16.
The ability of bioremediation to treat a source area containing trichloroethene (TCE) present as dense nonaqueous phase liquid (DNAPL) was assessed through a laboratory study and a pilot test at Launch Complex 34, Cape Canaveral Air Force Center. The results of microcosm testing indicate that the indigenous microbial community was capable of dechlorinating TCE to ethene if amended with electron donor; however, bioaugmentation with a dechlorinating culture (KB-1; SiREM, Guelph, Ontario, Canada) significantly increased the rate of ethene formation. In microcosms, the activity of the dechlorinating organisms in KB-1 was not inhibited at initial TCE concentrations as high as 2 mM. The initially high TCE concentration in ground water (1.2 mM or 155 mg/L) did not inhibit reductive dechlorination, and at the end of the study, the average concentration of ethene (2.4 mM or 67 mg/L) was in stoichiometric excess of this initial TCE concentration. The production of ethene in stoichiometric excess in comparison to the initial TCE concentration indicates that the bioremediation treatment enhanced the removal of TCE mass (either sorbed to soil or present as DNAPL). Detailed soil sampling indicated that the bioremediation treatment removed greater than 98.5% of the initial TCE mass. Confirmatory ground water samples collected 22 months after the bioremediation treatment indicated that chloroethene concentrations had continued to decline in the absence of further electron donor addition. The results of this study confirm that dechlorination to ethene can proceed at the high TCE concentrations often encountered in source areas and that bioremediation was capable of removing significant TCE mass from the test plot, suggesting that enhanced bioremediation is a potentially viable remediation technology for TCE source areas. Dehalococcoides abundance increased by 2 orders of magnitude following biostimulation and bioaugmentation.  相似文献   

17.
Seismic acquisition can be costly and inefficient when using spiked geophones. In most cases, such as the desert, the most practical solution is the use of flat bases, where geophone‐ground coupling is based on an optimal choice of the mass and area of contact between the receiver and the ground. This optimization is necessary since areas covered by sand are loose sediments and poor coupling occurs. Other cases include ground coupling in stiff pavements, for instance urban areas and ocean‐bottom nodes. We consider three different approaches to analyse coupling and model the geophone with a flat base (plate) resting on an elastic half‐space. Two existing models, based on the full‐wave theory, which we refer to as the Wolf and Hoover‐O'Brien models, predict a different behaviour with respect to the novel method introduced in this work. This method is based on the transmission coefficient of upgoing waves impinging in the geophone‐ground contact, where the ground is described as an anelastic half‐space. The boundary conditions at the contact have already been used to model fractures and are shown here to provide the equation of the damped oscillator. This fracture‐contact model depends on the stiffness characteristic of the contact between the geophone base plate and the ground. The transmission coefficient from the ground to the plate increases for increasing weight and decreasing base plate area. The new model predicts that the resonant frequency is independent of the geophone weight and plate radius, while the recorded energy increases with increasing weight and decreasing base plate area (as shown from our own experiments and measurements by Krohn) which is contrary to the theories developed by Wolf and Hoover‐O'Brien. The transient response is obtained by an inverse Fourier transform. Optimal geophone‐ground coupling and energy transmission are required, the first concept meaning that the geophone is following the motion of the ground and the second one that the signal is detectable. As a final example, we simulate seismic acquisition based on the novel theory, showing the differences between optimal and poor ground‐to‐geophone energy transmission.  相似文献   

18.
底泥细菌代谢是城市河道底泥代谢物的主要来源,最终决定城市河道的生态状况.本文研究了黑臭河道底泥经添加硝酸钙、生物促生剂和种植沉水植物处理后底泥中细菌群落结构的响应,以期为城市黑臭河道细菌群落的改善和综合治理提供理论依据.实验结果表明:经过不同生态处理后,上覆水中,添加硝酸钙组总氮(TN)含量显著高于对照组,添加生物促生剂组溶解氧浓度显著高于对照组.沉积物中,所有处理组的氧化还原电位值(ORP)均显著高于对照组,种植沉水植物组和添加硝酸钙组TN含量均显著低于对照组,沉积物理化性质得到一定改善.对不同生态处理组底泥细菌群落的研究发现,处理组底泥细菌群落产生了较大变化,且不同处理组细菌群落变化不同,生物促生剂组底泥中细菌的Sobs指数和Chao 1指数显著高于对照组和硝酸钙组,且生物促生剂组Shannon指数和PD指数显著高于硝酸钙组.Proteobacteria(Deltaproteobacteria、Betaproteobacteria、Gammaproteobacteria)、Chloroflexi、Firmicutes、Bacteroidetes和Spirochaetae是各实验组的主要优势菌门;非度量多维尺度分析表明:硝酸钙和生物促生剂的投加可明显改变底泥细菌群落结构组成.在属水平上,uncultured_Anaerolineaceae、Ferribacterium、uncultured_Xanthomonadales_Incertae_Sedis是导致底泥细菌群落发生变化的主要菌属.冗余分析结果表明,底泥ORP的变化是驱动细菌群落结构变化的关键环境因素.  相似文献   

19.
A composite tape has been developed which can be the link to various sensing devices for measuring ground water parameters. The tape consists of a standard steel engineering tape with two conductors at the edges of the tape, similar to a TV antenna wire. The tape coating is clear Tefzel®, which has outstanding chemical and physical resistance. At the bottom end of the tape is a probe which can sense either water level by conductivity, a layer of organic liquid by an optical device, temperature by advanced semiconductor temperature transducers, pH, dissolved oxygen, absolute conductivity, or any other measurement that can be made with a small in situ probe.
The steel tape itself provides one of three conductors and, because of its thin, flat shape, provides an excellent ground plane for electronic noise reduction. A multiplexing circuit commonly used in the electronics industry is placed inside the probe tip housing and routinely allows up to 16 signals to be transmitted to the hub at ground level. Most probes can be powered with a common 9V rechargeable battery. Signals are given either by low power-consuming light-emitting diodes (LEDs) ∼ 5 milliamperes (mA), piezo-audible alarms ∼ 3mA, or liquid crystal displays ∼ l-2mA
This configuration allows for extremely accurate depth profiles of the desired parameters.  相似文献   

20.
Rains MC  Mount JF 《Ground water》2002,40(5):552-563
In this study, we identify the origin of shallow ground water that supports regionally unique plant and wildlife habitats in a riparian and reservoir-fringe system using isotopic and chemical procedures. This study was conducted where Little Stony Creek flows into East Park Reservoir on the east front of the Coast Range, northern California. Little Stony Creek water, Hyphus Creek water, Franciscan Complex regional ground water, Great Valley Group regional ground water, and local shallow ground water were collected during wet and dry seasons and were analyzed for deuterium, oxygen-18, temperature, pH, redox potential, conductivity, and major cation and anion concentrations. Turnover in the local flow system is rapid indicating that local shallow ground water is dependent on recent recharge. Local shallow ground water is recharged primarily by Little Stony Creek water and Franciscan Complex ground water. In the wet season, Little Stony Creek is the more prominent source of local shallow ground water, and the ratio of Little Stony Creek water to Franciscan Complex ground water decreases with distance from the channel. In the dry season, Franciscan Complex ground water is the more prominent source of local shallow ground water, and the ratio of Little Stony Creek water to Franciscan Complex ground water decreases with distance down the valley. Franciscan Complex ground water discharges to local shallow ground water throughout the year, primarily because the local flow system is a regional low that lies perpendicular to the Franciscan Complex ground water flowpath. Little Stony Creek is a more prominent source of ground water in the wet season than in the dry season because Little Stony Creek flows continuously through the alluvial reach in the wet season and intermittently through the alluvial reach in the dry season. Extensive ground water withdrawals from the Franciscan Complex flow system could reduce the amount of water available to the local flow system, particularly during the dry season, and could substantially reduce the geographic extent of the regionally unique plant and wildlife habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号