首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several important equilibrium Si isotope fractionation factors among minerals,organic molecules and the H_4SiO_4 solution are complemented to facilitate the explanation of the distributions of Si isotopes in Earth's surface environments.The results reveal that,in comparison to aqueous H_4SiO_4,heavy Si isotopes will be significantly enriched in secondary silicate minerals.On the contrary,quadra-coordinated organosilicon complexes are enriched in light silicon isotope relative to the solution.The extent of ~(28)Si-enrichment in hyper-coordinated organosilicon complexes was found to be the largest.In addition,the large kinetic isotope effect associated with the polymerization of monosilicic acid and dimer was calculated,and the results support the previous statement that highly ~(28)Sienrichment in the formation of amorphous quartz precursor contributes to the discrepancy between theoretical calculations and field observations.With the equilibrium Si isotope fractionation factors provided here,Si isotope distributions in many of Earth's surface systems can be explained.For example,the change of bulk soil δ~(30)Si can be predicted as a concave pattern with respect to the weathering degree,with the minimum value where allophane completely dissolves and the total amount of sesquioxides and poorly crystalline minerals reaches their maximum.When,under equilibrium conditions,the well-crystallized clays start to precipitate from the pore solutions,the bulk soil δ~(30)Si will increase again and reach a constant value.Similarly,the precipitation of crystalline smectite and the dissolution of poorly crystalline kaolinite may explain the δ~(30)Si variations in the ground water profile.The equilibrium Si isotope fractionations among the quadracoordinated organosilicon complexes and the H_4SiO_4solution may also shed light on the Si isotope distributions in the Si-accumulating plants.  相似文献   

2.
An anomalous isotope effect exists in many heavy element isotope systems(e.g., Sr, Gd, Zn, U). This effect used to be called the ‘‘odd–even isotope effect'because the odd mass number isotopes behave differently from the even mass number isotopes. This mass-independent isotope fractionation driving force, which originates from the difference in the ground-state electronic energies caused by differences in nuclear size and shape, is currently denoted as the nuclear field shift effect(NFSE). It is found that the NFSE can drive isotope fractionation of some heavy elements(e.g., Hg, Tl, U) to an astonishing degree, far more than the magnitude caused by the conventional mass-dependent effect(MDE). For light elements, the MDE is the dominant factor in isotope fractionation, while the NFSE is neglectable. Furthermore,the MDE and the NFSE both decrease as temperatures increase, though at different rates. The MDE decreases rapidly with a factor of 1/T2, while the NFSE decreases slowly with a factor of 1/T. As a result, even at high temperatures, the NFSE is still significant for many heavy element isotope systems. In this review paper, we begin with an introduction of the basic concept of the NSFE,including its history and recent progress, and follow with the potential implications of the inclusion of the NFSE into the kinetic isotope fractionation effect(KIE) and heavy isotope geochronology.  相似文献   

3.
Equilibrium isotope fractionation of thallium(Tl) includes the traditional mass-dependent isotope fractionation effect and the nuclear volume effect(NVE). The NVE dominates the overall isotope fractionation, especially at high temperatures. Heavy Tl isotopes tend to be enriched in oxidized Tl^3+-bearing species. Our NVE fractionation results of oxidizing Tl^+ to Tl^3+ can explain the positive enrichments observed in ferromanganese sediments. Experimental results indicate that there could be0.2–0.3 e-unit fractionation between sulfides and silicates at 1650 ℃. It is consistent with our calculation results,which are in the range of 0.17–0.38 e-unit. Importantly,Tl’s concentration in the bulk silicate Earth(BSE) can be used to constrain the amount of materials delivered to Earth during the late veneer accretion stage. Because the Tl concentration in BSE is very low and its Tl isotope composition is similar with that of chondrites, suggesting either no Tl isotope fractionation occurred during numerous evaporation events, or the Tl in current BSE was totally delivered by late veneer. If it is the latter, the Tl-contentbased estimation could challenge the magnitude of late veneer which had been constrained by the amount of highly siderophile elements in BSE. Our results show that the lateaccreted mass is at least five-times larger than the previously suggested magnitude, i.e., 0.5 wt% of current Earth’s mass. The slightly lighter 205 Tl composition of BSE relative to chondrites is probable a sign of occurrence of Tlbearing sulfides, which probably were removed from the mantle in the last accretion stage of the Earth.  相似文献   

4.
Previous theoretical studies have found that the concentration variations within a certain range have a prominent effect on inter-mineral equilibrium isotope fractionation(10^3 lna).Based on the density functional theory,we investigated how the average Ca–O bond length and the reduced partition function ratios(10^3 lnb)and103lna of 44 Ca/40 Ca in forsterite(Fo)are affected by its Ca concentration.Our results show that Ca–O bond length in forsterite ranges from 2.327 to 2.267 A with the Ca/(Ca+Mg)varying between a narrow range limited by an upper limit of 1/8 and a lower limit of 1/64.However,outside this narrow range,i.e.,Ca/(Ca+Mg)is lower than1/64 or higher than 1/8,Ca–O bond length becomes insensitive to Ca concentration and maintains to be a constant.Because the 10^3 lnb is negatively correlated with Ca–O bond length,the 10^3lnb significantly increases with decreasing Ca/(Ca+Mg)when 1/64相似文献   

5.
Miocene(16―10 Ma) basalts,together with significantly well-preserved fossils(including animal and plant fossils) in the contemporaneously tephra-rich Maar sediments,are located in Shanwang volcanic region,Shandong Province,China.Distribution area of the basaltic eruption products is about 240 km2.Detailed field observations indicate that most of basaltic rocks are fissure eruptive products and some are central eruptives constrained by linear faults.The well-preserved fossils in the lacustrine deposits have been considered to be a result of mass mortalities.Based on physically volcanologic modeling results,eruption column of the basaltic fissure activities in the Shanwang volcanic region is estimated to have entered the stratosphere.Petrographic observations indicate that the basalts have porphyritic textures with phenocrysts of olivine,pyroxene,plagioclase feldspar and alkali feldspar setting in groundmass of plagioclase feldspar,alkali feldspar,quartz,apatite and glass.Based on observations of tephra,tuff and tuffites collected in the Maar sediments of the Shanwang area,we determined major element oxide concentrations and volatile composition of melt inclusions in phenocrysts and matrix glasses by electron microprobe analysis.Volatile(including S,Cl,F and H2O) concentrations erupted into the stratosphere were estimated by comparing pre-and post-eruptive volatile concentrations.Our determination results show that contents of S,Cl,F and H2O emitted into the stratosphere were 0.18%― 0.24%,0.03%―0.05%,0.03%―0.05% and 0.4%―0.6%,respectively,which was characterized by high-S contents erupted.Amounts of volatiles emitted in the Shanwang volcanic region are much higher than those in eruptions which had a substantial effect on climate and environment.According to the com-positions and amounts of the volatiles erupted from the Miocene basaltic volcanism in Shanwang,we propose a hypothesis that volatile-rich basaltic volcanism could result in the mass mortalities by in-jecting volatiles(e.g.,SO2,H2S,HCl,HF and H2O) into the stratosphere that would have triggered abrupt environmental changes(including formation of acid rain,temperature decline,ozone depletion,etc.) and altered lake chemistry,and subsequently volcanic ash fall buried and covered the dead animals and plants,forming well-preserved fossils in Shanwang Maar sediments.  相似文献   

6.
The migration of strong earthquakes is an important research topic because the migration phenomena reflect partly the seismic mechanism and involve the prediction of tendency of seismic activity. Research on migration of strong earthquakes has mostly focused on finding the phenomena. Some attempts on getting regularity were comparatively subjective. This paper suggests that there should be indices of migration in earthquake dataset and the indexes should have statistical meaning if there is regularity in the migration of strong earthquakes. In this study, three derivative attributes of migration, i.e., migration orientation, migration distance and migration time interval, were statistically analyzed. Results in the North China region show that the migration of strong earthquakes has statistical meaning. There is a dominant migration orientation (W by S to E by N), a dominant distance ( ≤ 100kin and on the confines of 300 ~ 700km), and a dominant time interval ( ≤ la and on the confines of 3 - 4a). The results also show that the migration will differ slightly with different magnitude range or earthquake activity phase.  相似文献   

7.
We studied the fluid inclusions of the Jiguanshan Mo deposit in China, which is a large porphyry deposit located in the southern Xilamulun Metallogenic Belt. The irregular Mo ore body with various types of hydrothermal veinlets is hosted by Late Jurassic granite porphyry. Intense hydrothermal alterations in the deposit from the core to margin are silicification–potassium feldspar alteration,pyrite–quartz–sericite–fluorite alteration, and propylitic alteration. Based on the mineral assemblages and crosscutting relationships of ore veins, the ore-forming process were divided into three stages and two substages: quartz–pyrite veins(stage I) associated with potassic alteration;quartz–molybdenite–chalcopyrite–pyrite veins(substage Ⅱ-1) and quartz–molybdenite–fluorite veins(substage Ⅱ-2)associated with phyllic alteration; and fluorite–quartz–carbonate veins(stage Ⅲ) with carbonation. Five majorfluid inclusions(FIs) types were distinguished in the quartz associated with oxide and sulfide minerals, i.e. polyphase brine(Pb-type), opaque-bearing brine(Ob-type), solid halite(S-type), two-phase aqueous(A-type), and vapor(Vtype) inclusions. The FIs of stage I were composed of liquid-rich S-, A-, and V-type FIs with homogenization temperatures and salinities of 490 to 511 °C and 8.9 to 56.0 wt% NaCl equiv., respectively. The FIs of substage Ⅱ-1 are composed of Pb-, Ob-, S-, A-, and V-type FIs with homogenization temperatures and salinities of 352 to460 °C and 3.7 to 46.1 wt% NaCl equiv, respectively. The FIs of substage Ⅱ-2 are Ob-, S-, A-, and V-type FIs with homogenization temperatures and salinities of 234 to309 °C and 3.7 to 39.2 wt% NaCl equiv, respectively. The FIs of stage Ⅲ are A-type FIs with homogenization temperatures and salinities of 136 to 172 °C and 1.1 to 8.9 wt%NaCl equiv, respectively. Fluid boiling, which resulted in the precipitation of sulfides, occurred in stages I and Ⅱ. The initial ore-forming fluids of the Jiguanshan deposit had high temperature, high salinity, and belonged to an F-rich NaCl ± KCl–H_2O system. The fluids gradually evolved to low temperature, low salinity, and belonged to a NaCl–H_2O system. Studies of the hydrogen and oxygen isotope compositions of quartz(δ~(18)O_(H2O)=-7.3 to 6.3%,δD_(H2O)=-104.3 to-83.3%) show that the ore-formingfluids gradually evolved from magmatic water to meteoric water.  相似文献   

8.
Natural nitrogen isotope composition(δ~(15)N) is an indicator of nitrogen sources and is useful in the investigation of nitrogen cycling in organisms and ecosystems. δ~(15)N is also used to study assimilation of inorganic nitrogen. However, the foliar δ~(15)N of intact plants, which is a consequence of nitrate assimilation occurring in the roots and shoots, is not suited for studying nitrate assimilation in cases where nitrate is the sole nitrogen source. In this study, Orychophragmus violaceus(Ov) and Brassica napus(Bn) plantlets, in which nitrate assimilation occurred in the leaves, were used to study the relationship between foliar δ~(15)N and nitrate assimilation.The plantlets were grown in vitro in culture media with different nitrate concentrations, and no root formation occurred for the plantlets during the multiplication stage.Nitrogen isotope fractionation occurred in both the Ov and the Bn plantlets under all treatments. Furthermore, the foliar nitrogen content of both the Ov and Bn plantlets increased with increasing nitrate concentration. Foliar nitrogen isotope fractionation was negatively correlated with foliar nitrogen content for both the Ov and Bn plantlets. Our results suggest that the foliar nitrogen isotope fractionation value could be employed to evaluate nitrate assimilation ability and leaf nitrate reductase activity.Moreover, high external nitrate concentrations couldcontribute to improved foliar nitrogen content and enhanced nitrate assimilation ability.  相似文献   

9.
The stable carbon isotope values of coalbed methane range widely, and also are gener- ally lighter than that of gases in normal coal-formed gas fields with similar coal rank. There exists strong carbon isotope fractionation in coalbed methane and it makes the carbon isotope value lighter. The correlation between the carbon isotope value and Ro in coalbed methane is less obvious. The coaly source rock maturity cannot be judged by coalbed methane carbon isotope value. The carbon isotopes of coalbed methane become lighter in much different degree due to the hydrodynamics. The stronger the hydrodynamics is, the lighter the CBM carbon isotopic value becomes. Many previous investigations indicated that the desorption-diffusion effects make the carbon isotope value of coalbed methane lighter. However, the explanation has encountered many problems. The authors of this arti- cle suggest that the flowing groundwater dissolution to free methane in coal seams and the free methane exchange with absorbed one is the carbon isotope fractionation mechanism in coalbed methane. The flowing groundwater in coal can easily take more 13CH4 away from free gas and com- paratively leave more 12CH4. This will make 12CH4 density in free gas comparatively higher than that in absorbed gas. The remaining 12CH4 in free gas then exchanges with the adsorbed methane in coal matrix. Some absorbed 13CH4 can be replaced and become free gas. Some free 12CH4 can be ab- sorbed again into coal matrix and become absorbed gas. Part of the newly replaced 13CH4 in free gas will also be taken away by water, leaving preferentially more 12CH4. The remaining 12CH4 in free gas will exchange again with adsorbed methane in the coal matrix. These processes occur all the time. Through accumulative effect, the 12CH4 will be greatly concentrated in coal. Thus, the stable carbon isotope of coalbed methane becomes dramatically lighter. Through simulation experiment on wa- ter-dissolved methane, it had been proved that the flowing water could fractionate the carbon isotope of methane, and easily take heavy carbon isotope away through dissolution.  相似文献   

10.
Hydrogen isotopes in lipid biomarkers can trace past changes in the hydrologic cycle. Recent studies have revealed the potential of hydrogen isotopes in microalgal lipids for quantitatively reconstructing water δ~2H(δD) values and salinity. In this study we collected suspended particles along a salinity gradient from the Changjiang River Estuary(CRE), and measured δD values in fatty acids in these particles. The results indicated that δD values of water were correlated highly with salinity from the CRE, in agreement with the results from other estuaries. δD values in palmitic acid and stearic acid had a positive correlation with δD values of water from the CRE. Nevertheless, in the CRE, hydrogen isotope fractionation in fatty acids relative to water increased as salinity increased, opposite the trend in hydrogen isotope fractionation with salinity found in microalgal culture and field studies. We attribute the increase in hydrogen isotope fractionation as salinity increased to light availability, which was likely lower in the particle rich mixing zone at the end of the estuary, and potentially as well to multiple sources of fatty acids in the CRE.  相似文献   

11.
The continent is the second largest carbon sink on Earth’s surface.With the diversification of vascular land plants in the late Paleozoic,terrestrial organic carbon burial is represented by massive coal formation,while the development of soil profiles would account for both organic and inorganic carbon burial.As compared with soil organic carbon,inorganic carbon burial,collectively known as the soil carbonate,would have a greater impact on the long-term carbon cycle.Soil carbonate would have multiple carbon sources,including dissolution of host calcareous rocks,dissolved inorganic carbon from freshwater,and oxidation of organic matter,but the host calcareous rock dissolution would not cause atmospheric CO2drawdown.Thus,to evaluate the potential effect of soil carbonate formation on the atmospheric p CO2level,different carbon sources of soil carbonate should be quantitatively differentiated.In this study,we analyzed the carbon and magnesium isotopes of pedogenic calcite veins developed in a heavily weathered outcrop,consisting of limestone of the early Paleogene Guanzhuang Group in North China.Based on the C and Mg isotope data,we developed a numerical model to quantify the carbon source of calcite veins.The modeling results indicate that4–37 wt%of carbon in these calcite veins was derived from atmospheric CO2.The low contribution from atmospheric CO2might be attributed to the host limestone that might have diluted the atmospheric CO2sink.Nevertheless,taking this value into consideration,it is estimated that soil carbonate formation would lower 1 ppm atmospheric CO2within 2000 years,i.e.,soil carbonate alone would sequester all atmospheric CO2within 1 million years.Finally,our study suggests the C–Mg isotope system might be a better tool in quantifying the carbon source of soil carbonate.  相似文献   

12.
The question of whether or not global warming has paused since more than ten years ago, namely "warming hiatus", has attracted the attention of climate science community including the IPCC. Some authors have attributed the "warming hiatus" to the internal changes in the climate system, i.e., the recombination of ocean-atmosphere circulations. Therefore, it is necessary to propose higher requirements on reconstructing circulation background of climate change for the past millennium. However, the analyses of changes in atmospheric circulation over the last millennium as well as the conclusions of related regional climate patterns are so widely different and contradictory, bringing uncertainties to our understanding of regional even global climate change to a great extent. On the other hand, in the last 10 years the high-precision U/Th-dated stalagmite oxygen isotope ratio(δ~(18)O) sequences provided an accurate chronological frame for the paleoclimate study of the middle and late Pleistocene, in which all authors from China took the Chinese stalagmite δ~(18)O as the summer monsoon index without exception. However, this point of view misleads the climate scientists into thinking that the stalagmite δ~(18)O can be as the proxy of precipitation amount. Nevertheless, it is well known that all of these records have a lot in common in the low frequency trend. However, most sequences cannot be calibrated by instrumental precipitation records, and thus the uncertainty of the climate research framework of China and even of the world has increased. Therefore, it is imperative for climatology to clarify the origin of contradiction and to reduce the uncertainty as early as possible. On the basis of analyzing the significance of stalagmite δ~(18)O in the monsoon regions of China, the author tries to propose a new circulation proxy in this paper: integrating the Chinese stalagmite oxygen isotope sequence to reconstruct the tropical Pacific sea surface temperature gradient, i.e., the large-scale ENSO-like state over the past millennium. Furthermore, the author speculates that it was warm in the modern times and the Medieval Period, but the circulation recombination was different in both periods. And this inference could be supported by the longer record since Last Glacial Maximum. In other words, the attribution analysis of the identical low-frequency trends of Chinese stalagmite δ~(18)O on a large scale shows that the ENSO-like state controls the climate change in the monsoon regions of China at different time scales(from interannual to century or even longer time scales). Wherein the important connection of circulations is the western Pacific subtropical high(WPSH), that is to say, besides the interannual and decadal time scales, the WPSH would possess the circulation mode on longer timescales. For example, we may discuss the change of the WPSH in the whole Holocene epoch, i.e., the half precession period. These discussions could make sense to the study of not only the paleoclimate but also the modern climate.  相似文献   

13.
14.
Carbon dynamics of grasslands on the Qinghai-Tibetan Plateau may play an important role in regional and global carbon cycles. The CENTURY model (Version 4.5) is used to examine temporal and spatial variations of soil organic carbon (SOC) in grasslands on the Plateau for the period from 1960 to 2002. The model successfully simulates the dynamics of aboveground carbon and soil surface SOC at the soil depth of 0-20 cm and the simulated results agree well to the measurements. Examination of SOC for eight typical grasslands shows different patterns of temporal variation in different ecosystems in 1960-2002. The extent of temporal variation increases with the increase of SOC of ecosystem. SOC increases first and decreases quickly then during the period from 1990 to 2000. Spatially, SOC density obtained for the equilibrium condition declines gradually from the southeast to the northwest on the plateau and showed a high heterogeneity in the eastern plateau. The results suggest that (i) SOC den-sity in the alpine grasslands shows remarkable response to climate change during the 42 years, and (ii) the net carbon exchange rate between the alpine grassland ecosystems and the atmosphere increases from 1990 to 2000 as compared with that before 1990.  相似文献   

15.
To investigate equilibrium mercury(Hg) and lead(Pb) isotope fractionation caused by the nuclear volume effect(NVE) in crystals,the electron densities at nuclei(i.e.,|Ψ(0)|2) for Hg-or Pb-bearing crystalline compounds were investigated by using the relativistic spin orbit zeroth-order regular approximation(ZORA) method with a three-dimensional periodic boundary condition based on the density functional theory(DFT).Many isotope fractionation factors of crystalline compounds are provided for the first time.Our results show,even at1000℃,NVE-driven Hg and Pb isotope fractionation are meaningfully large,i.e.,range from 0.12‰ to 0.49‰(~(202)Hg/~(198)Hg),from-0.20‰ to 0.17‰(~(208)Pb/~(206)Pb) and from-0.08‰ to 0.06‰(~(207)Pb/206 Pb) relative to Hg~0 vapor and Pb~0 vapor,respectively.Specifically,the fractionations range from-0.06‰ to-0.20‰(~(208)Pb/~(206)Pb)and from-0.02‰ to-0.08‰(~(207)Pb/~(206)Pb) for Pb2+-bearing species,from 0.10‰ to 0.17‰(~(208)Pb/~(206)Pb) and from 0.04‰ to 0.06‰(~(207)Pb/~(206)Pb) for Pb~(4+)-bearing species in crystals.All calculated Hg-bearing species in crystals will enrich heavier isotope(~(202)Hg) relative to Hg~0 vapor.Meanwhile,Pb~(4+)-bearing species enrich heavier Pb isotopes(~(208)Pb and ~(207)Pb) than Pb~(2+)-bearing species in crystals,which the enrichment can be up to 0.37‰(~(208-)Pb/~(206)Pb) and 0.14‰(~(207)Pb/~(206)Pb) at 1000 ℃,due to their NVEs are in opposite directions.The NVE-driven MIFs of Hg isotopes,which are compared to the Hg~(202)-Hg~(198)baseline,are up to-0.158‰(Δ_(NV)~(199)Hg),-0.024‰(Δ_(NV)~(200)Hg) and-0.094‰(Δ_(NV)~(201)Hg) relative to Hg~0 vapor at500 0 C.For all studied Hg-bearing species in crystals,the MIFs of two odd-mass isotopes(i.e.,Δ_(NV)~(199)Hg and Δ_(NV)~(201)Hg)will be changed proportionally and their ratio(i.e.,Δ_(NV)~(199)Hg/Δ_(NV)~(201)Hg) will be a constant 1.67.The NVE can also cause mass-independent fractionations for ~(207)Pb and 204 Pb compared to the baseline of ~(208)Pb and ~(206)Pb.The largest NVEdriven MIFs are 0.043‰(Δ_(NV)~(207)Pb) and-0.040‰(Δ_(NV)~(204)Pb) among all the studied species relative to Pb~0 vapor at 500 0 C.The magnitudes of odd-mass isotope MIF(Δ_(NV)~(207)Pb) and even-mass isotope MIF(Δ_(NV)~(204)Pb) are almost the same but with opposite signs,leading to the MIF ratio of them(i.e.,Δ_(NV)~(207)Pb/Δ_(NV)~(204)Pb) is-1.08.  相似文献   

16.
Multiple sulfur and oxygen isotope compositions in Beijing aerosol   总被引:1,自引:0,他引:1  
Multiple sulfur isotopes(32S, 33 S, 34 S, 36S) and oxygen isotopes(16O, 18O) in Beijing aerosols were measured with MAT-253 isotope mass spectrometer. The δ34S values of Beijing aerosol samples range from 1.68‰ to 12.57‰ with an average value of 5.86‰, indicating that the major sulfur source is from direct emission during coal combustion. The δ18O values vary from 5.29‰ to 9.02‰ with an average value of 5.17‰, revealing that the sulfate in Beijing aerosols is mainly composed of the secondary sulfate. The main heterogeneous oxidation of SO2 in atmosphere is related to H2O2 in July and August, whereas H2O2 oxidation and Fe3+ catalytic oxidation with SO2 exist simultaneously in September and October. Remarkable sulfur isotope mass-independent fractionation effect is found in Beijing aerosols, which is commonly attributed to the photochemical oxidation of SO2 in the stratosphere. In addition, thermochemical reactions of sulfur-bearing compounds might be also a source of sulfur isotope anomalies based on the correlation between ?33S and CAPE.  相似文献   

17.
The soil pollution by heavy metals was characterized in the mine tailings and surrounding soils of an old Pb–Zn mine in Huize County. Three hundred and ninety-six samples of agricultural and non-agricultural soil were analyzed for the total metal concentration by acid digestion and sixty-eight selected soil samples were used to determine the chemical fractionation of heavy metals with the modified BCR sequential extraction method. The pollution index of the heavy metals indices for As, Cd, Cr, Cu,Hg, Pb and Zn of non-agricultural soil and agricultural soils in the study area indicated the spreading of heavy metal pollution. Sequential extraction showed that most of Cd existed in an exchangeable form(31.2 %). The available content of Pb, Cu and Zn was mainly distributed in acid extractable fractions and Fe/Mn oxide fractions(27.9, 30 and 27.2 %), and Hg, As and Cr were mainly associated with residual fractions(90.4, 72.9 and 76.8 %). The risks of heavy metals were also evaluated by the risk assessment code(RAC) and potential ecological risk index, respectively. The results of RAC showed a medium and high risk of Cd(45.6 and 54.4 %), medium risk of Zn(100 %), low and medium risk of Cu(41.2 and 58.8 %), largely no risk of Hg(97.1 %), and mainly low risk of As and Pb(92.6and 91.8 %). The range of the potential ecological risk of soil was 58.2–1839.3, revealing a considerably high ecological risk in the study area, most likely related to acid mine drainage and the mining complexes located in the area. The results can be used during the ecological risk screening stage, in conjunction with the total concentrations and metal fractionation values, to better estimate ecological risk.  相似文献   

18.
Plate subduction is an important mechanism for exchanging the mass and energy between the mantle and the crust,and the igneous rocks in subduction zones are the important carriers for studying the recycling of crustal materials and the crust-mantle interaction.This study presents a review of geochronology and geochemistry for postcollisional mafic igneous rocks from the Hong’an-Dabie-Sulu orogens and the southeastern edge of the North China Block.The available results indicate two types of the crust-mantle interaction in the continental subduction zone,which are represented by two types of mafic igneous rocks with distinct geochemical compositions.The first type of rocks exhibit arc-like trace element distribution patterns(i.e.enrichment of LILE,LREE and Pb,but depletion of HFSE)and enriched radiogenic Sr-Nd isotope compositions,whereas the second type of rocks show OIB-like trace element distribution patterns(i.e.enrichment of LILE and LREE,but no depletion of HFSE)and depleted radiogenic Sr-Nd isotope compositions.Both of them have variable zircon O isotope compositions,which are different from those of the normal mantle zircon,and contain residual crustal zircons.These geochemical features indicate that the two types of mafic igneous rocks were originated from the different natures of mantle sources.The mantle source for the second type of rocks would be generated by reaction of the overlying juvenile lithospheric mantle with felsic melts originated from previously subducted oceanic crust,whereas the mantle source for the first type of rocks would be generated by reaction of the overlying ancient lithospheric mantle of the North China Block with felsic melts from subsequently subducted continental crust of the South China Block.Therefore,there exist two types of the crust-mantle interaction in the continental subduction zone,and the postcollisional mafic igneous rocks provide petrological and geochemical records of the slab-mantle interactions in continental collision orogens.  相似文献   

19.
Understanding the effects of organic acids(OA) on the transformation of Fe and Mn to surface water from the weathering coal gangue is of great bene?t to risk assessment and remediation strategies for contaminated water and soil. Based on the investigation on surface water in the central coal districts of the Guizhou Province, 18 water samples were collected for heavy metal analysis. The results indicated that the p H value of surface water is low(3.11–4.92), and Fe concentration(1.31–5.55 mg L~(-1)) and Mn concentration(1.90–5.71 mg L~(-1)) were, on average,10.86 and 34.33 times the limit of Surface Water Quality Standards, respectively. In order to evaluate the effects of the OA on the dissolution of Fe and Mn from the weathering coal gangue, column elution and batch leaching experiments were conducted. The results show that the low molecular weight of organic acids(LMWOAs, i.e., oxalic,tartaric, malic and citric acids) and fulvic acids signi?-cantly accelerated the dissolution of Fe and Mn; in addition, when the concentration of OA reached 25 mmol L~(-1),the concentrations of Fe, and Mn were 1.14–67.08 and1.11–2.32 times as high as those in 0.5 mmol L~(-1)OA,respectively. Furthermore, the migration of Fe and Mn was signi?cantly in?uenced by the p H and Eh, especially for Fe; the ion Mn was dissolved from the gangue more easily than the ion Fe in the column leaching, which was contrary to the results of batch leaching.  相似文献   

20.
Stable isotope paleoaltimetry has provided unprecedented insights into the topographic histories of many of the world's highest mountain ranges. However, on the Tibetan Plateau(TP), stable isotopes from paleosols generally yield much higher paleoaltitudes than those based on fossils. It is therefore essential when attempting to interpret accurately this region's paleoaltitudes that the empirical calibrations of local stable isotopes and the relations between them are established. Additionally,it is vital that careful estimations be made when estimate how different isotopes sourced from different areas may have been influenced by different controls. We present here 29 hydrogen isotopic values for leaf wax-derived n-alkanes(i.e., δD_(wax) values,and abundance-weighted average δD values of C_(29) and C_(31)) in surface soils, as well as the δD values of soil water(δD_(sw)) samples(totaling 22) from Mount Longmen(LM), on the eastern TP(altitude ~0.8–4.0 km above sea level(asl), a region climatically affected by the East Asian Monsoon(EAM). We compared our results with published data from Mount Gongga(GG). In addition,47 river water samples, 55 spring water samples, and the daily and monthly summer precipitation records(from May to October,2015) from two precipitation observation stations were collected along the GG transect for δD analysis. LM soil δD_(wax) values showed regional differences and responded strongly to altitude, varying from.160‰ to.219‰, with an altitudinal lapse rate(ALR) of.18‰ km~(-1)(R~2=0.83; p0.0001; n=29). These δD_(wax) values appeared more enriched than those from the GG transect by ~40‰. We found that both the climate and moisture sources led to the differences observed in soil δD_(wax) values between the LM and GG transects. We found that, as a general rule, ε_(wax/rw), ε_(wax/p) and εwax/sw values(i.e., the isotopic fractionation of δD_(wax) corresponding to δD_(rw), δD_p and δD_(sw)) increased with increasing altitude along both the LM and GG transects(up to 34‰ and 50‰, respectively). Basing its research on a comparative study of δD_(wax), δD_p, δD_(rw)(δD_(springw)) and δD_(sw), this paper discusses the effects of moisture recycling, glacier-fed meltwater, relative humidity(RH), evapotranspiration(ET), vegetation cover, latitude,topography and/or other factors on ε_(wax/p) values. Clearly, if ε_(wax-p) values at higher altitudes are calculated using smaller ε_(wax-p) values from lower altitudes, the calculated paleowaterδD_p values are going to be more depleted than the actual δD values, and any paleoaltitude would therefore be overestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号