首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-resolution sampling,measurements of organic carbon contents and 14C signatures of selected four soil profiles in the Haibei Station situated on the northeast Tibetan Plateau,and application of 14C tracing technology were conducted in an attempt to investigate the turnover times of soil organic car-bon and the soil-CO2 flux in the alpine meadow ecosystem. The results show that the organic carbon stored in the soils varies from 22.12×104 kg C hm-2 to 30.75×104 kg C hm-2 in the alpine meadow eco-systems,with an average of 26.86×104 kg C hm-2. Turnover times of organic carbon pools increase with depth from 45 a to 73 a in the surface soil horizon to hundreds of years or millennia or even longer at the deep soil horizons in the alpine meadow ecosystems. The soil-CO2 flux ranges from 103.24 g C m-2 a-1 to 254.93 gC m-2 a-1,with an average of 191.23 g C m-2 a-1. The CO2 efflux produced from microbial decomposition of organic matter varies from 73.3 g C m-2 a-1 to 181 g C m-2 a-1. More than 30% of total soil organic carbon resides in the active carbon pool and 72.8%―81.23% of total CO2 emitted from or-ganic matter decomposition results from the topsoil horizon (from 0 cm to 10 cm) for the Kobresia meadow. Responding to global warming,the storage,volume of flow and fate of the soil organic carbon in the alpine meadow ecosystem of the Tibetan Plateau will be changed,which needs further research.  相似文献   

2.
Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau   总被引:9,自引:0,他引:9  
Alpine cold ecosystem with permafrost environment is quite sensitive to climatic changes and the changes in permafrost can significantly affect the alpine ecosystem. The vegetation coverage, grassland biomass and soil nutrient and texture are selected to indicate the regime of alpine cold ecosystems in the Qinghai-Tibet Plateau. The interactions between alpine ecosystem and permafrost were investigated with the depth of active layer, permafrost thickness and mean annual ground temperature (MAGTs). Based on the statistics model of GPTR for MAGTs and annual air temperatures, an analysis method was developed to analyze the impacts of permafrost changes on the alpine ecosystems. Under the climate change and human engineering activities, the permafrost change and its impacts on alpine ecosystems in the permafrost region between the Kunlun Mountains and the Tanggula Range of Qinghai-Tibet Plateau are studied in this paper. The results showed that the per- mafrost changes have a different influence on different alpine ecosystems. With the increase in the thickness of active layer, the vegetation cover and biomass of the alpine cold meadow exhibit a significant conic reduction, the soil organic matter content of the alpine cold meadow ecosystem shows an exponential decrease, and the surface soil materials become coarse and gravelly. The alpine cold steppe ecosystem, however, seems to have a relatively weak relation to the permafrost environment. Those relationships resulted in the fact that the distribution area of alpine cold meadow decreased by 7.98% and alpine cold swamp decreased by 28.11% under the permafrost environment degradation during recent 15 years. In the future 50 years the alpine cold meadow ecosystems in different geomorphologic units may have different responses to the changes of the permafrost under different climate warming conditions, among them the alpine cold meadow and swamp ecosystem located in the low mountain and plateau area will have a relatively serious degradation. Furthermore, from the angles of grassland coverage and biological production the variation characteristics of high-cold eco- systems in different representative regions and different geomorphologic units under different climatic conditions were quantitatively assessed. In the future, adopting effective measures to protect permafrost is of vital importance to maintaining the stability of permafrost engineering and alpine cold eco- systems in the plateau.  相似文献   

3.
The Tibetan Plateau, the Roof of the World, is the highest plateau with a mean elevation of 4000 m. It is characterized by high levels of solar radiation, low air temperature and low air pressure compared to other regions around the world. The alpine grassland, a typical ecosystem in the Tibetan Plateau, is distributed across regions over the elevation of 4500 m. Few studies for carbon flux in alpine grassland on the Tibetan Plateau were conducted due to rigorous natural conditions. A study of soil respiration under alpine grassland ecosystem on the Tibetan Plateau from October 1999 to October 2001 was conducted at Pangkog County, Tibetan Plateau (31.23°N, 90.01°E, elevation 4800 m). The measurements were taken using a static closed chamber technique, usually every two weeks during the summer and at other times at monthly intervals. The obvious diurnal variation of CO2 emissions from soil with higher emission during daytime and lower emission during nighttime was discovered. Diurnal CO2 flux fluctuated from minimum at 05:00 to maximum at 14:00 in local time. Seasonal CO2 fluxes increased in summer and decreased in winter, representing a great variation of seasonal soil respiration. The mean soil CO2 fluxes in the alpine grassland ecosystem were 21.39 mgCO2 · m-2 · h-1, with an average annual amount of soil respiration of 187.46 gCO2 · m-2 · a-1. Net ecosystem productivity is also estimated, which indicated that the alpine grassland ecosystem is a carbon sink.  相似文献   

4.
The high soil organic carbon(SOC) content in alpine meadow can significantly change soil hydrothermal properties and further affect the soil temperature and moisture as well as the surface water and energy budget. Therefore, this study first introduces a parameterization scheme to describe the effect of SOC content on soil hydraulic and thermal parameters in a land surface model(LSM), and then the SOC content is estimated by minimizing the difference between observed and simulated surface-layer soil moisture. The accuracy of the estimated SOC content was evaluated using in situ observation data at a soil moisture and temperature-measuring network in Naqu, central Tibetan Plateau. Sensitivity experiments show that the optimum time window for stabilizing the estimation results cannot be shorter than three years. In the experimental area, the estimated SOC content can generally reflect the spatial distribution of the measurements, with a root mean square error of 0.099 m^3 m-3, a mean bias of 0.043 m^3 m-3, and a correlation coefficient of 0.695. The estimated SOC content is not sensitive to the temporal frequency of the soil moisture data input. Even if the temporal frequency is as low as that of current soil moisture products derived from passive microwave satellites, the estimation result is still stable. Therefore, by combining a high-quality satellite soil moisture product and a parameter optimization method, it is possible to obtain grid-scale effective parameter values, such as SOC content,for an LSM and improve the simulation ability of the LSM.  相似文献   

5.
Spatiotemporal dynamic simulation of grassland carbon storage in China   总被引:1,自引:0,他引:1  
Based on the Terrestrial Ecosystem Model(TEM 5.0), together with the data of climate(temperature, precipitation and solar radiation) and environment(grassland vegetation types, soil texture, altitude, longitude and latitude, and atmospheric CO2 concentration data), the spatiotemporal variations of carbon storage and density, and their controlling factors were discussed in this paper. The results indicated that:(1) the total carbon storage of China's grasslands with a total area of 394.93×104 km2 was 59.47 Pg C. Among them, there were 3.15 Pg C in vegetation and 56.32 Pg C in soil carbon. China's grasslands covering 7.0–11.3% of the total world's grassland area had 1.3–11.3% of the vegetation carbon and 9.7–22.5% of the soil carbon in the world grasslands. The total carbon storage increased from 59.13 to 60.16 Pg C during 1961–2013 with an increasing rate of 19.4 Tg C yr~(-1).(2) The grasslands in the Qinghai-Tibetan Plateau contributed most to the total carbon storage during 1961–2013, accounting for 63.2% of the total grassland carbon storage, followed by Xinjiang grasslands(15.8%) and Inner Mongolia grasslands(11.1%).(3) The vegetation carbon storage showed an increasing trend, with the average annual growth rate of 9.62 Tg C yr~(-1) during 1961–2013, and temperature was the main determinant factor, explaining approximately 85% of its variation. The vegetation carbon storage showed an increasing trend in most grassland regions, however, a decreasing trend in the central grassland in the southern China, the western and central parts of the Inner Mongolian grasslands as well as some parts on the Qinghai-Tibetan Plateau. The soil carbon storage showed a significantly increasing trend with a rate of 7.96 Tg C yr~(-1), which resulted from the interaction of more precipitation and low temperature in the 1980 s and 1990 s. Among them, precipitation was the main determinant factor of increasing soil carbon increases of China's grasslands.  相似文献   

6.
The alpine tundra on Changbai Mountain was formed as a left-over ‘island’ in higher elevations after the glacier retrieved from the mid-latitude of Northern Hemisphere to the Arctic during the fourth ice age. The alpine tundra on Changbai Mountain also represents the best-reserved tundra ecosystems and the highest biodiversity in northeast Eurasia. This paper examines the quantity of carbon assimilation, litters, respiration rate of soil, and storage of organic carbon within the alpine tundra ecosystems on Changbai Mountain. The annual net storage of organic carbon was 2092 t/a, the total storage of organic carbon was 33457 t, the annual net storage of organic carbon in soil was 1054 t/a, the total organic carbon storage was 316203 t, and the annual respiration rate of soil was 92.9% and was 0.52 times more than that of the Arctic. The tundra-soil ecosystems in alpine Changbai Mountain had 456081 t of carbon storage, of which, organic carbon accounted for 76.7% whereas the mineral carbon accounted for 23.3%.  相似文献   

7.
抚仙湖、洱海、滇池浮游藻类功能群1960s以来演变特征   总被引:8,自引:4,他引:4  
董静  李根保  宋立荣 《湖泊科学》2014,26(5):735-742
作为主要的初级生产者,浮游植物在水生生态系统中扮演着重要的角色,浮游植物的时空分布反映了生态环境的变化.依据浮游植物的形态、生理、生态特点而定义的浮游藻类功能群对藻类的耐受性和敏感性进行了描述,因而浮游藻类功能群的组成是生境特征的良好指示者.对1960s至今抚仙湖、洱海、滇池3个高原湖泊的浮游藻类组成进行分析,并首次将功能群理论运用到这3个湖泊.结果表明,3个湖泊的浮游藻类优势功能群组成在近50~60年间发生了明显的改变:抚仙湖的浮游藻类优势功能群演变过程为C、X2、Lo、F、P(1960s)-H1、C、P(1980s)-P、C、T(1990s)-T(2000年以后);洱海的浮游藻类优势功能群演变过程为J、Lo、MP、C、H1(1960s)-C、H1(1980s)-C、H1(1990s)-C、H1、M(2000年以后);滇池的浮游藻类优势功能群演变过程为J、N、P、MP、Lo(1960s)-J、P、MP、M(1980s)-J、M(1990s)-M(2000年以后).抚仙湖、洱海、滇池水体内的藻类功能群演替趋势特征,即耐低温物种的减少以及喜营养物种的增加,表明3个高原湖泊在近几十年可能受到了气候变暖和营养程度增加的影响.  相似文献   

8.
High-resolution sampling, measurements of organic carbon contents and 14C signatures of selected four soil profiles in the Haibei Station situated on the northeast Tibetan Plateau, and application of 14C tracing technology were conducted in an attempt to investigate the turnover times of soil organic carbon and the soil-CO2 flux in the alpine meadow ecosystem. The results show that the organic carbon stored in the soils varies from 22.12×104 kg C hm−2 to 30.75×104 kg C hm−2 in the alpine meadow ecosystems, with an average of 26.86×104 kg C hm−2. Turnover times of organic carbon pools increase with depth from 45 a to 73 a in the surface soil horizon to hundreds of years or millennia or even longer at the deep soil horizons in the alpine meadow ecosystems. The soil-CO2 flux ranges from 103.24 g C m−2 a−1 to 254.93 gC m−2 a−1, with an average of 191.23 g C m−2 a−1. The CO2 efflux produced from microbial decomposition of organic matter varies from 73.3 g C m−2 a−1 to 181 g C m−2 a−1. More than 30% of total soil organic carbon resides in the active carbon pool and 72.8%281.23% of total CO2 emitted from organic matter decomposition results from the topsoil horizon (from 0 cm to 10 cm) for the Kobresia meadow. Responding to global warming, the storage, volume of flow and fate of the soil organic carbon in the alpine meadow ecosystem of the Tibetan Plateau will be changed, which needs further research. Supported by the National Natural Science Foundation of China (Grant Nos. 40231015, 40471120 and 40473002) and the Guangdong Provincial Natural Science Foundation of China (Grant No. 06300102)  相似文献   

9.
Agroforestry systems are promoted for providing a number of ecosystem services and environmental benefits, including soil protection and carbon sequestration. This study proposes a modelling approach to quantify the impact of soil redistribution on soil organic carbon (SOC) storage in a temperate hedgerow landscape. Evolution of SOC stocks at the landscape scale was examined by simulating vertical and horizontal SOC transfers in the 0–105 cm soil layer due to soil redistribution by tillage and water processes. A spatially explicit SOC dynamics model (adapted from RothC‐26.3) was used, coupled with a soil‐redistribution model (LandSoil). SOC dynamics were simulated over 90 years in an agricultural hedgerow landscape dedicated to dairy farming, with a mix of cropping and grasslands. Climate and land use were simulated considering business‐as‐usual scenarios derived from existing information on the study area. A net decrease in SOC stocks was predicted at the end of the simulation period. Soil redistribution induced a net SOC loss equivalent to 2 kg C ha?1 yr?1 because of soil exportation out of the study site and an increase in SOC mineralization. Hedgerows and woods were the only land use in which soil redistribution induced net SOC storage. Soil tillage was the main process that induced soil redistribution within cultivated fields. Soil exportation out of the study area was due to erosion by water, but remained low because of the protective role of the hedgerow network. These soil transfers redistributed SOC stocks in the landscape, mostly within cultivated fields. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The advanced process-based model, National Integrated Catchment-based Eco-hydrology (NICE)-BGC, which incorporates the whole process of carbon cycling in land, was modified to include the feedback between soil organic content and overland carbon fluxes. It is a crucial and difficult task to evaluate the balance of the terrestrial carbon budget including the effect of inland water robustly. To accomplish this purpose, NICE-BGC was applied to quantify the global biogeochemical carbon cycle closely associated with the complex hydrological cycle during the 36 years between 1980 and 2015. The model demonstrated that the inter-annual variations of carbon cycle have been greatly affected by the extreme weather patterns. In particular, spatial distribution of temporal trends in riverine carbon fluxes and their relation to soil organic carbon (SOC) were analysed between different biomes and major river basins. Although there was a positive relationship between SOC and riverine flux of dissolved organic carbon and particulate organic carbon in the northern boreal region, it is difficult to see this relation in other regions. Further, the evaluation of potential controlling factors of temporal trends in SOC and fluvial carbon exports was also helpful to quantify the inter-annual variation or temporal trend caused by the various effects. SOC was more influenced by temperature variations, whereas riverine carbon exports were mainly determined by precipitation variations. Finally, net land flux including inland water (−1.49 ± 0.50 PgC/year) showed a slight decrease in the carbon sink in comparison with previous values (−2.33 ± 0.50 PgC/year). These results help to distinguish the carbon cycle in different river basins and to re-evaluate carbon cycle change explicitly including the effect of inland water because this effect has been so far implicitly included within the range of uncertainty in the Earth's global carbon cycle comprising land, oceans, and atmosphere.  相似文献   

11.
Soil organic carbon (SOC) is an important component of the global carbon cycle yet is rarely quantified adequately in terms of its spatial variability resulting from losses of SOC due to erosion by water. Furthermore, in drylands, little is known about the effect of widespread vegetation change on changes in SOC stores and the potential for water erosion to redistribute SOC around the landscape especially during high‐magnitude run‐off events (flash floods). This study assesses the change in SOC stores across a shrub‐encroachment gradient in the Chihuahuan Desert of the south‐west USA. A robust estimate of SOC storage in surface soils is presented, indicating that more SOC is stored beneath vegetation than in bare soil areas. In addition, the change in SOC storage over a shrub‐encroachment gradient is shown to be nonlinear and highly variable within each vegetation type. Over the gradient of vegetation change, the heterogeneity of SOC increases, and newer carbon from C3 plants becomes dominant. This increase in the heterogeneity of SOC is related to an increase in water erosion and SOC loss from inter‐shrub areas, which is self‐reinforcing. Shrub‐dominated drylands lose more than three times as much SOC as their grass counterparts. The implications of this study are twofold: (1) quantifying the effects of vegetation change on carbon loss via water erosion and the highly variable effects of land degradation on soil carbon stocks is critical. (2) If landscape‐scale understanding of carbon loss by water erosion in drylands is required, studies must characterize the heterogeneity of ecosystem structure and its effects on ecosystem function across ecotones subject to vegetation change. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Shrub species are considered the dominant plants in arid desert ecosystems, unlike in semiarid steppe zones or in grassland ecosystems. On the Alxa Plateau, northern China, sparse vegetation with cover ranging from 15% to 30% is characterized mainly by multifarious shrubs because herbaceous species are strongly restricted by the extreme drought climate, wind erosion, overgrazing and sand burial. Patterns in shrub species richness and species abundance in relation to environmental conditions were examined by DCA (detrended correspondence analysis) and interpreted by a biplot. The relationships between species diversity and environmental factors were examined using regression analyses. Our results show that the distributions of the shrub species in response to environmental conditions can be grouped into four ecological types, corresponding with the biological traits of the shrubs and their responses to the gradients of soil texture and soil water content. Patterns in species richness and species abundance were mainly determined by the deeper soil water content, instead of the soil texture as hypothesized by numerous studies in semiarid grasslands. With exception of the deeper soil water content, soil organic matter and total N content were positively correlated with species abundance, while pH was negatively correlated with it. These findings imply that it is vital for current shrub diversity conservation to reduce agricultural water use in the middle reaches of the Heihe River, which supplies water for the lower reaches in the western parts of the plateau, and to reduce the amount of groundwater exploitation and urban and oasis water use, to increase the water supply from Helan Mountain to the eastern desert of the Alxa Plateau. Supported by National Key Technology R & D Program (Grant Nos. 2007BAD46B03, 2006BAD26B0201) and National Natural Science Foundation of China (Gant No. 40825001)  相似文献   

13.
Investigating the spatial and temporal variance in productivity along natural precipitation gradients is one of the most efficient approaches to improve understanding of how ecosystems respond to climate change. In this paper, by using the natural precipitation gradient of the Inner Mongolian Plateau from east to west determined by relatively long-term observations, we analyzed the temporal and spatial dynamics of aboveground net primary productivity (ANPP) of the temperate grasslands covering this region. Across this grassland transect, ANPP increased exponentially with the increase of mean annual precipitation (MAP) (ANPP=24.47e0.005MAP, R2=0.48). Values for the three vegetation types desert steppe, typical steppe, and meadow steppe were: 60.86 gm-2a-1, 167.14 gm-2a-1 and 288.73 gm-2a-1 respectively. By contrast, temperature had negative effects on ANPP. The moisture index (K ), which takes into ac- count both precipitation and temperature could explain the spatial variance of ANPP better than MAP alone (ANPP=2020.34K1.24, R2=0.57). Temporally, we found that the inter-annual variation in ANPP (cal- culated as the coefficient of variation, CV) got greater with the increase of aridity. However, this trend was not correlated with the inter-annual variation of precipitation. For all of the three vegetation types, ANPP had greater inter-annual variation than annual precipitation (PPT). Their difference (ANPP CV/PPT CV) was greatest in desert steppe and least in meadow steppe. Our results suggest that in more arid regions, grasslands not only have lower productivity, but also higher inter-annual variation of production. Climate change may have significant effects on the productivity through changes in precipitation pattern, vegetation growth potential, and species diversity.  相似文献   

14.
Soil erosion is an important component of the global carbon cycle. However, little attention has been given to the role of aeolian processes in influencing soil organic carbon (SOC) flux and the release of greenhouse gasses, such as carbon dioxide (CO2), to the atmosphere. Understanding the magnitude and mechanisms of SOC enrichment in dust emissions is necessary to evaluate the impact of wind erosion on the carbon cycle. This research examines the SOC content and enrichment of dust emissions measured using Big Spring Number Eight (BSNE) wind‐vane samplers across five land types in the rangelands of western Queensland, Australia. Our results show that sandy soils and finer particulate quartz‐rich soils are more efficient at SOC emission and have larger SOC dust enrichment than clay‐rich aggregated soils. The SOC enrichment ratios of dusts originating from sites with sand‐rich soil ranged from 2·1–41·9, while the mean enrichment ratio for dusts originating from the clay soil was 2·1. We hypothesize that stronger inter‐particle bonds and the low grain density of the aggregated clay soil explain its reduced capacity to release SOC during saltation, relative to the particulate sandy soils. We also show that size‐selective sorting of SOC during transport may lead to further enrichment of SOC dust emissions. Two dust samples from regional transport events were found to contain 15–20% SOC. These preliminary results provide impetus for additional research into dust SOC enrichment processes to elucidate the impact of wind erosion on SOC flux and reduce uncertainty about the role of soil erosion in the global carbon cycle. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Soil carbon storage plays a key role in the global carbon cycle and is important for sustaining forest productivity. Removal of unpaved forest roads has the potential for increasing carbon storage in soils on forested terrain as treated sites revegetate and soil properties improve on the previously compacted road surfaces. We compared soil organic carbon (SOC) content at several depths on treated roads to SOC in adjacent second‐growth forests and old‐growth redwood forests in California, determined whether SOC in the upper 50 cm of soil varies with the type of road treatment, and assessed the relative importance of site‐scale and landscape‐scale variables in predicting SOC accumulation in treated road prisms and second‐growth redwood forests. Soils were sampled at 5, 20, and 50 cm depths on roads treated by two methods (decommissioning and full recontouring), and in adjacent second‐growth and old‐growth forests in north coastal California. Road treatments spanned a period of 32 years, and covered a range of geomorphic and vegetative conditions. SOC decreased with depth at all sites. Treated roads on convex sites exhibited higher SOC than on concave sites, and north aspect sites had higher SOC than south aspect sites. SOC at 5, 20, and 50 cm depths did not differ significantly between decommissioned roads (treated 18–32 years previous) and fully recontoured roads (treated 2–12 years previous). Nevertheless, stepwise multiple regression models project higher SOC developing on fully recontoured roads in the next few decades. The best predictors for SOC on treated roads and in second‐growth forest incorporated aspect, vegetation type, soil depth, lithology, distance from the ocean, years since road treatment (for the road model) and years since harvest (for the forest model). The road model explained 48% of the variation in SOC in the upper 50 cm of mineral soils and the forest model, 54%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.

Knowledge of seasonal variation of net ecosystem CO2 exchange (NEE) and its biotic and abiotic controllers will further our understanding of carbon cycling process, mechanism and large-scale modelling. Eddy covariance technique was used to measure NEE, biotic and abiotic factors for nearly 3 years in the hinterland alpine steppe—Korbresia meadow grassland on the Tibetan Plateau, the present highest fluxnet station in the world. The main objectives are to investigate dynamics of NEE and its components and to determine the major controlling factors. Maximum carbon assimilation took place in August and maximum carbon loss occurred in November. In June, rainfall amount due to monsoon climate played a great role in grass greening and consequently influenced interannual variation of ecosystem carbon gain. From July through September, monthly NEE presented net carbon assimilation. In other months, ecosystem exhibited carbon loss. In growing season, daytime NEE was mainly controlled by photosynthetically active radiation (PAR). In addition, leaf area index (LAI) interacted with PAR and together modulated NEE rates. Ecosystem respiration was controlled mainly by soil temperature and simultaneously by soil moisture. Q 10 was negatively correlated with soil temperature but positively correlated with soil moisture. Large daily range of air temperature is not necessary to enhance carbon gain. Standard respiration rate at referenced 10°C (R 10) was positively correlated with soil moisture, soil temperature, LAI and aboveground biomass. Rainfall patterns in growing season markedly influenced soil moisture and therefore soil moisture controlled seasonal change of ecosystem respiration. Pulse rainfall in the beginning and at the end of growing season induced great ecosystem respiration and consequently a great amount of carbon was lost. Short growing season and relative low temperature restrained alpine grass vegetation development. The results suggested that LAI be usually in a low level and carbon uptake be relatively low. Rainfall patterns in the growing season and pulse rainfall in the beginning and at end of growing season control ecosystem respiration and consequently influence carbon balance of ecosystem.

  相似文献   

17.
In Mediterranean mountain agroecosystems, soil erosion associated with the development of ephemeral gullies is a common environmental problem that contributes to a loss of nutrient-rich topsoil. Little is known about the influence of ephemeral gully erosion on particle size distribution and its effect on soil organic (SOC) and inorganic (SIC) carbon among different sized soil particles in agricultural soils. In this study, laboratory tests were conducted using velocity settling tube experiments to examine the effects of erosion on sediment particle size distributions from an incised ephemeral gully, associated with an extreme event (235 mm). We also consider subsequent deposition on an alluvial fan in order to assess the distribution of SOC and SIC concentrations and dissolved carbon before and after the extreme event. Soil fractionation was carried out on topsoil samples (5 cm) collected along an ephemeral gully in a cultivated field, located in the lower part of a Mediterranean mountain catchment. The results of this study showed that the sediment transported downstream by runoff plays a key role in the particle size distribution and transportability of soil particles and associated carbon distribution in carbonate rich soils. The eroding sediment is enriched in clay and silt-sized particles at upslope positions with higher SOC contents and gradually becomes coarser and enriched in SIC at the end of the ephemeral gully because the finest particles are washed-out of the study field. The extreme event was associated with an accumulation of dissolved organic carbon at the distal part of the depositional fan. Assessment of soil particle distribution using settling velocity experiments provides basic information for a better understanding of soil carbon dynamics in carbonate rich soils. Processes of soil and carbon transport and relationships between soil properties, erodibility and aggregate stability can be helpful in the development of more accurate soil erosion models. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

18.
Soil moisture has a fundamental influence on the processes and functions of tundra ecosystems. Yet, the local dynamics of soil moisture are often ignored, due to the lack of fine resolution, spatially extensive data. In this study, we modelled soil moisture with two mechanistic models, SpaFHy (a catchment-scale hydrological model) and JSBACH (a global land surface model), and examined the results in comparison with extensive growing-season field measurements over a mountain tundra area in northwestern Finland. Our results show that soil moisture varies considerably in the study area and this variation creates a mosaic of moisture conditions, ranging from dry ridges (growing season average 12 VWC%, Volumetric Water Content) to water-logged mires (65 VWC%). The models, particularly SpaFHy, simulated temporal soil moisture dynamics reasonably well in parts of the landscape, but both underestimated the range of variation spatially and temporally. Soil properties and topography were important drivers of spatial variation in soil moisture dynamics. By testing the applicability of two mechanistic models to predict fine-scale spatial and temporal variability in soil moisture, this study paves the way towards understanding the functioning of tundra ecosystems under climate change.  相似文献   

19.
青藏高原闪电活动的时空分布特征   总被引:11,自引:1,他引:10       下载免费PDF全文
利用卫星上携带的闪电探测仪所获取的8年闪电资料(1995~2002)对青藏高原闪电活动的时空分布以及高原季风期间闪电活动对地面热力学特征的响应进行了研究.结果表明,高原上的平均闪电密度为3fl·a-1·km-2,并在高原中部(32°N, 88°E)出现闪电密度峰值5.1fl·a-1·km-2.闪电活动主要发生在6~8月,并在6月下旬至7月中旬最为活跃.大部分地区的闪电活动日变化峰值出现在14:00~16:00 LT,在中西部的显著高山地区早于这一时刻,而在显著低海拔的塔里木和柴达木盆地晚于这一时刻.夏季季风期间高原上的闪电活动明显依赖于地表的热力学特征,并与地表鲍恩比和感热通量呈明显的线性正相关,相关系数分别为0.7和0.6,鲍恩比有可能作为调整闪电产生效率的量度.  相似文献   

20.
Rivers are dynamic components of the terrestrial carbon cycle and provide important functions in ecosystem processes. Although rivers act as conveyers of carbon to the oceans, rivers also retain carbon within riparian ecosystems along floodplains, with potential for long‐term (> 102 years) storage. Research in ecosystem processing emphasizes the importance of organic carbon (OC) in river systems, and estimates of OC fluxes in terrestrial freshwater systems indicate that a significant portion of terrestrial carbon is stored within river networks. Studies have examined soil OC on floodplains, but research that examines the potential mechanistic controls on OC storage in riparian ecosystems and floodplains is more limited. We emphasize three primary OC reservoirs within fluvial systems: (1) standing riparian biomass; (2) dead biomass as large wood (LW) in the stream and on the floodplain; (3) OC on and beneath the floodplain surface, including litter, humus, and soil organic carbon (SOC). This review focuses on studies that have framed research questions and results in the context of OC retention, accumulation and storage within the three primary pools along riparian ecosystems. In this paper, we (i) discuss the various reservoirs for OC storage in riparian ecosystems, (ii) discuss physical conditions that facilitate carbon retention and storage in riparian ecosystems, (iii) provide a synthesis of published OC storage in riparian ecosystems, (iv) present a conceptual model of the conditions that favor OC storage in riparian ecosystems, (v) briefly discuss human impacts on OC storage in riparian ecosystems, and (vi) highlight current knowledge gaps. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号