首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The geochemical data of Hualalai tholeiitic basalts allow extension of the temporal variations established at Mauna Loa back in time, and provide important information for the long-term temporal variation of the Hawaiian lavas. We report new Hf, Pb, Nd, and Sr isotope compositions for 32 Hualalai tholeiitic basalts collected from deep submarine portions of the North Kona region. The samples were collected from the lower section of the North Kona bench (dives K218 and K219), a submarine stratigraphic section at Hualalai volcano's northwest rift zone (dive S690), and an elongate ridge outboard of the central section of the bench (dive S692), during two JAMSTEC Hawaii cruises in 2001 and 2002. The Hualalai shield-stage tholeiitic basalts have magma source isotopic signatures similar to Mauna Loa. The new data shows temporal Pb and Sr isotope trends that correspond to the long-term temporal variations in Loa-trend lavas, and the Hualalai–Mauna Loa lavas seem to show inter-shield geochemical excursions. Variation in Pb and Sr isotopes at Hualalai appears to take place over a longer time scale than at Mauna Loa. The merged Hualalai–Mauna Loa isotopic trends support models where heterogeneous material in the plume conduit is distributed chaotically, with variable cross-sectional density and length scale.  相似文献   

2.
Marine shallow-water to emergent volcanoes have been described in detail, but comparable englacial centres are not well documented. Brown Bluff is a Pleistocene, shallow water, alkali basaltic volcano whose deposits were ponded within an englacial lake, enclosed by ice >400 m thick. Its evolution is divided chronologically into pillow volcano, hyalotuff cone, slope failure and hyaloclastite delta/subaerial stages. Seventeen lithofacies and five structural units (A-E) are recognised and described. The pillow volcano stage (Unit A) is similar to those of many submarine seamount volcanoes. It comprises extrusive and intrusive pillow lavas draped by slumped hyaloclastite. Units B and D define the hyalotuff cone stage, which was centred on a summit vent(s), and comprises slumped, poorly sorted hyalotuffs redeposited downslope by sediment gravity flows and ponded against an ice barrier. This stage also includes water-cooled subaerial lavas and massive hyalotuffs ponded within a crater. Cone construction was interrupted by drainage of the lake and slope failure of the northeast flank, represented by debris avalanche-type deposits (Unit C). Unit E represents the youngest stage and consists of a Gilbert-type hyaloclastite delta(s), which prograded away from a summit vent(s), and compound subaerial lavas. A second drainage episode allowed subaerial lavas to accumulate in the surrounding trough.  相似文献   

3.
An exceptionally well-exposed, ancient, intra-arc basin in the Permian Takitimu Group of New Zealand contains 14 km of interbedded primary volcanic and marine volcaniclastic rocks of basaltic to rhyodacitic composition. These are the products of subaerial and submarine arc volcanism and closely associated turbidite sedimentation. The Takitimu oceanic arc/basin setting formed a dynamic closed sedimentary system in which large volumes of volcaniclastic material generated at the arc was rapidly redeposited in marine basins flanking the eruptive centres. Volcanism probably included (1) moderate- to deep-water extrusion of lava and deposition of hyaloclastite, (2) extrusive and explosive eruptions from shallow marine to marginally emergent volcanoes in or on the margin of the basin, and (3) Plinian and phreato-Plinian eruptions from more distant subaerial vents along the arc. Much of the newly erupted material was rapidly transported to the adjacent marine basin by debris flows, slumping and sliding. Hemipelagic sedimentation predominated on the outer margin of the basin, infrequently interrupted by deposition of ash from the most explosive arc volcanism and the arrival of extremely dilute turbidites. Turbidite sedimentation prevailed in the remainder of the basin, producing a thick prograding volcaniclastic apron adjacent to the arc. The volcaniclastic strata closely resemble classic turbidite deposits, and show similar lateral facies variations to submarine fan deposits. Study of such sequences provides insight into poorly understood processes in modern arc-related basins.  相似文献   

4.
Lava flows from Mauna Loa and Huallai volcanoes are a major volcanic hazard that could impact the western portion of the island of Hawaii (e.g., Kona). The most recent eruptions of these two volcanoes to affect Kona occurred in a.d. 1950 and ca. 1800, respectively. In contrast, in eastern Hawaii, eruptions of neighboring Klauea volcano have occurred frequently since 1955, and therefore have been the focus for hazard mitigation. Official preparedness and response measures are therefore modeled on typical eruptions of Klauea.The combinations of short-lived precursory activity (e.g., volcanic tremor) at Mauna Loa, the potential for fast-moving lava flows, and the proximity of Kona communities to potential vents represent significant emergency management concerns in Kona. Less is known about past eruptions of Huallai, but similar concerns exist. Future lava flows present an increased threat to personal safety because of the short times that may be available for responding.Mitigation must address not only the specific characteristics of volcanic hazards in Kona, but also the manner in which the hazards relate to the communities likely to be affected. This paper describes the first steps in developing effective mitigation plans: measuring the current state of peoples knowledge of eruption parameters and the implications for their safety. We present results of a questionnaire survey administered to 462 high school students and adults in Kona. The rationale for this study was the long lapsed time since the last Kona eruption, and the high population growth and expansion of infrastructure over this time interval. Anticipated future growth in social and economic infrastructure in this area provides additional justification for this work.The residents of Kona have received little or no specific information about how to react to future volcanic eruptions or warnings, and short-term preparedness levels are low. Respondents appear uncertain about how to respond to threatening lava flows and overestimate the minimum time available to react, suggesting that personal risk levels are unnecessarily high. A successful volcanic warning plan in Kona must be tailored to meet the unique situation there.  相似文献   

5.
A major carbonate reef which drowned 13 ka is now submerged 150 m below sea level on the west coast of the island of Hawaii. A 25-km span of this reef was investigated using the submersibleMakali'i. The reef occurs on the flanks of two active volcanoes, Mauna Loa and Hualalai, and the lavas from both volcanoes both underlie and overlie the submerged reef. Most of the basaltic lava flows that crossed the reef did so when the water was much shallower, and when they had to flow a shorter distance from shoreline to reef face. Lava flows on top of the reef have protected it from erosion and solution and now occur at seaward-projecting salients on the reef face. These relations suggest that the reef has retreated shoreward as much as 50 m since it formed. A 7-km-wide shadow zone occurs where no Hualalai lava flows cross the reef south of Kailua. These lava flows were probably diverted around a large summit cone complex. A similar shadow zone on the flank of Mauna Loa volcano in the Kealakekua Bay region is downslope from the present Mauna Loa caldera, which ponds Mauna Loa lava and prevents it from reaching the coastline. South of the Mauna Loa shadow zone the - 150 m reef has been totally covered and obscured by Mauna Loa lava. The boundary between Hualalai and Mauna Loa lava on land occurs over a 6-km-wide zone, whereas flows crossing the - 150 m reef show a sharper boundary offshore from the north side of the subaerial transition zone. This indicates that since the formation of the reef, Hualalai lava has migrated south, mantling Mauna Loa lava. More recently, Mauna Loa lava is again encroaching north on Hualalai lava.  相似文献   

6.
Geomorphologic analysis of submarine and subaerial surface features using a combined topographic/bathymetric digital elevation model coupled with onshore geological and geophysical data constrain the age and geometry of giant landslides affecting the north flank of Tenerife. Shaded relief and contour maps, and topographic profiles of the submarine north flank, permit the identification of two generations of post-shield landslides. Older landslide materials accumulated near the shore (<40-km) and comprise 700 km3 of debris. Thickening towards a prominent axis suggests one major landslide deposit. Younger landslide materials accumulated 40–70 km offshore and comprise the products of three major landslides: the La Orotava landslide complex, the Icod landslide and the East Dorsal landslide complex, each with an onshore scar, a proximal submarine trough, and a distal deposit lobe. Estimated lobe volumes are 80, 80 and 100 km3, respectively. The old post-shield landslide scar is an amphitheatre, 20–25 km wide, partly submarine, now completely filled with younger materials. Age–width relationships for Tenerife's coastal platform plus onshore geological constraints suggest an age of ca. 3 Ma for the old collapse. Young landslides are all less than 560 ka old. The La Orotava and Icod slides involved failures of slabs of subaerial flank to form the subaerial La Orotava and Icod valleys. Offshore, they excavated troughs by sudden loading and basal erosion of older slide debris. The onshore East Dorsal slide also triggered secondary failure of older debris offshore. The slab-like geometry of young failures was controlled by weak layers, deep drainage channels and flank truncation by marine erosion. The (partly) submarine geometry of the older amphitheatre reflects the absence of these features. Relatively low H/L ratios for the young slides are attributed to filling of the slope break at the base of the submarine edifice by old landslide materials, low aspect ratios of the failed slabs and channelling within troughs. Post-shield landslides on Tenerife correlate with major falls in sea level, reflecting increased rates of volcanism and coastal erosion, and reduced support for the flank. Landslide head zones have strongly influenced the pattern of volcanism on Tenerife, providing sites for major volcanic centres.  相似文献   

7.
 Pliocene–Recent volcanic outcrops at Seal Nunataks and Beethoven Peninsula (Antarctic Peninsula) are remnants of several monogenetic volcanoes formed by eruption of vesiculating basaltic magma into shallow water, in an englacial environment. The diversity of sedimentary and volcanic lithofacies present in the Antarctic Peninsula outcrops provides a clear illustration of the wide range of eruptive, transportational and depositional processes which are associated with englacial Surtseyan volcanism. Early-formed pillow lava and glassy breccia, representing a pillow volcano stage of construction, are draped by tephra erupted explosively during a tuff cone stage. The tephra was resedimented around the volcano flanks, mainly by coarse-grained sediment gravity flows. Fine-grained lithofacies are rare, and fine material probably bypassed the main volcanic edifice, accumulating in the surrounding englacial basin. The pattern of sedimentation records variations in eruption dynamics. Products of continuous-uprush eruptions are thought to be represented by stacks of poorly bedded gravelly sandstone, whereas better bedded, lithologically more diverse sequences accumulated during periods of quiescence or effusive activity. Evidence for volcano flank failure is common. In Seal Nunataks, subaerial lithofacies (mainly lavas and cinder cone deposits) are volumetrically minor and occur at a similar stratigraphical position to pillow lava, suggesting that glacial lake drainage may have occurred prior to or during deposition of the subaerial lithofacies. By contrast, voluminous subaerial effusion in Beethoven Peninsula led to the development of laterally extensive stratified glassy breccias representing progradation of hyaloclastite deltas. Received: 5 February 1996 / Accepted: 17 January 1997  相似文献   

8.
We show how a stochastic version of a general load-and-discharge model for volcanic eruptions can be implemented. The model tracks the history of the volcano through a quantity proportional to stored magma volume. Thus large eruptions can influence the activity rate for a considerable time following, rather than only the next repose as in the time-predictable model. The model can be fitted to data using point-process methods. Applied to flank eruptions of Mount Etna, it exhibits possible long-term quasi-cyclic behavior, and to Mauna Loa, a long-term decrease in activity. An extension to multiple interacting sources is outlined, which may be different eruption styles or locations, or different volcanoes. This can be used to identify an ‘average interaction’ between the sources. We find significant evidence that summit eruptions of Mount Etna are dependent on preceding flank eruptions, with both flank and summit eruptions being triggered by the other type. Fitted to Mauna Loa and Kilauea, the model had a marginally significant relationship between eruptions of Mauna Loa and Kilauea, consistent with the invasion of the latter's plumbing system by magma from the former.  相似文献   

9.
At Rakiraki in northeastern Viti Levu, the Pliocene Ba Volcanic Group comprises gently dipping, pyroxene-phyric basaltic lavas, including pillow lava, and texturally diverse volcanic breccia interbedded with conglomerate and sandstone. Three main facies associations have been identified: (1) The primary volcanic facies association includes massive basalt (flows and sills), pillow lava and related in-situ breccia (pillow-fragment breccia, autobreccia, in-situ hyaloclastite, peperite). (2) The resedimented volcaniclastic facies association consists of bedded, monomict volcanic breccia and scoria lapilli-rich breccia. (3) The volcanogenic sedimentary facies association is composed of bedded, polymict conglomerate and breccia, together with volcanic sandstone and siltstone-mudstone facies. Pillow lava and coarse hyaloclastite breccia indicate a submarine depositional setting for most of the sequence. Thick, massive to graded beds of polymict breccia and conglomerate are interpreted as volcaniclastic mass-flow deposits emplaced below wave base. Well-rounded clasts in conglomerate were reworked during subaerial transport and/or temporary storage in shoreline or shallow water environments prior to redeposition. Red, oxidised lava and scoria clasts in bedded breccia and conglomerate also imply that the source was partly subaerial. The facies assemblage is consistent with a setting on the submerged flanks of a shoaling basaltic seamount. The coarse grade and large volume of conglomerate and breccia reflect the high supply rate of clasts, and the propensity for collapse and redeposition on steep palaeoslopes. The clast supply may have been boosted by vigorous fragmentation processes accompanying transition of lava from subaerial to submarine settings. The greater proportion of primary volcanic facies compared with resedimented volcaniclastic and volcanogenic sedimentary facies in central and northwestern exposures (near Rakiraki) indicates they are more proximal than those in the southeast (towards Viti Levu Bay). The proximal area coincides with one of two zones where NW-SE-trending mafic dykes are especially abundant, and it is close to several, small, dome-like intrusions of intermediate and felsic igneous rocks. The original surface morphology of the volcano is no longer preserved, though the partial fan of bedding dip azimuths in the south and east and the wide diameter (exceeding 20 km) are consistent with a broad shield.  相似文献   

10.
Lava flows of the Ninole Basalt, the oldest rocks exposed on the south side of the island of Hawaii, provide age and compositional constraints on the evolution of Mauna Loa volcano and the southeastward age progression of Hawaiian volcanism. Although the tholeiitic Ninole Basalt differs from historic lavas of Mauna Loa volcano in most major-element contents (e.g., variably lower K, Na, Si; higher Al, Fe, Ti, Ca), REE and other relatively immobile minor elements are similar to historic and prehistoric Mauna Loa lavas, and the present major-element differences are mainly due to incipient weathering in the tropical environment. New K-Ar whole-rock ages, from relatively fresh roadcut samples, suggest that the age of the Ninole Basalt is approximately 0.1–0.2 Ma, although resolution is poor because of low contents of K and radiogenic Ar. Originally considered the remnants of a separate volcano, the Ninole Hills are here interpreted as faulted remnants of the old south flank of Mauna Loa. Deep canyons in the Ninole Hills, eroded after massive landslide failure of flanks of the southwest rift zone, have been preserved from burial by younger lava due to westward migration of the rift zone. Landslide-induced depressurization of the southwest rift zone may also have induced phreatomagmatic eruptions that could have deposited widespread Basaltic ash that overlies the Ninole Basalt. Subaerial presence of the Ninole Basalt documents that the southern part of Hawaii Island had grown to much of its present size above sea level by 0.1–0.2 Ma, and places significant limits on subsequent enlargement of the south flank of Mauna Loa.  相似文献   

11.
The volcanic island of Milos, Greece, comprises an Upper Pliocene –Pleistocene, thick (up to 700 m), compositionally and texturally diverse succession of calc-alkaline, volcanic, and sedimentary rocks that record a transition from a relatively shallow but dominantly below-wave-base submarine setting to a subaerial one. The volcanic activity began at 2.66±0.07 Ma and has been more or less continuous since then. Subaerial emergence probably occurred at 1.44±0.08 Ma, in response to a combination of volcanic constructional processes and fault-controlled volcano-tectonic uplift. The architecture of the dominantly felsic-intermediate volcanic succession reflects contrasts in eruption style, proximity to source, depositional environment and emplacement processes. The juxtaposition of submarine and subaerial facies indicates that for part of the volcanic history, below-wave base to above-wave base, and shoaling to subaerial depositional environments coexisted in most areas. The volcanic facies architecture comprises interfingering proximal (near vent), medial and distal facies associations related to five main volcano types: (1) submarine felsic cryptodome-pumice cone volcanoes; (2) submarine dacitic and andesitic lava domes; (3) submarine-to-subaerial scoria cones; (4) submarine-to-subaerial dacitic and andesitic lava domes and (5) subaerial lava-pumice cone volcanoes. The volcanic facies are interbedded with a sedimentary facies association comprising sandstone and/or fossiliferous mudstone mainly derived from erosion of pre-existing volcanic deposits. The main facies associations are interpreted to have conformable, disconformable, and interfingering contacts, and there are no mappable angular unconformities or disconformities within the volcanic succession.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

12.
The Highway–Reward massive sulphide deposit is hosted by a silicic volcanic succession in the Cambro-Ordovician Seventy Mile Range Group, northeastern Australia. Three principal lithofacies associations have been identified in the host succession: the volcanogenic sedimentary facies association, the primary volcanic facies association and the resedimented syn-eruptive facies association. The volcanogenic sedimentary facies association comprises volcanic and non-volcanic siltstone and sandstone turbidites that indicate submarine settings below storm wave base. Lithofacies of the primary volcanic facies association include coherent rhyolite, rhyodacite and dacite, and associated non-stratified breccia facies (autoclastic breccia and peperite). The resedimented volcaniclastic facies association contains clasts that were initially formed and deposited by volcanic processes, but then redeposited by mass-flow processes. Resedimentation was more or less syn-eruptive so that the deposits are essentially monomictic and clast shapes are unmodified. This facies association includes monomictic rhyolitic to dacitic breccia (resedimented autoclastic facies), siltstone-matrix rhyolitic to dacitic breccia (resedimented intrusive hyaloclastite or resedimented peperite) and graded lithic-crystal-pumice breccia and sandstone (pumiceous and crystal-rich turbidites). The graded lithic-crystal-pumice breccia and sandstone facies is the submarine record of a volcanic centre(s) that is not preserved or is located outside the study area. Pumice, shards, and crystals are pyroclasts that reflect the importance of explosive magmatic and/or phreatomagmatic eruptions and suggest that the source vents were in shallow water or subaerial settings.The lithofacies associations at Highway–Reward collectively define a submarine, shallow-intrusion-dominated volcanic centre. Contact relationships and phenocryst populations indicate the presence of more than 13 distinct porphyritic units with a collective volume of 0.5 km3. Single porphyritic units vary from <10 to 350 m in thickness and some are less than 200 m in diameter. Ten of the porphyritic units studied in the immediate host sequence to the Highway–Reward deposit are entirely intrusive. Two of the units lack features diagnostic of their emplacement mechanism and could be either lavas and intrusions. Direct evidence for eruption at the seafloor is limited to a single partly extrusive cryptodome. However, distinctive units of resedimented autoclastic breccia indicate the presence nearby of additional lavas and domes.The size and shape of the lavas and intrusions reflect a restricted supply of magma during eruption/intrusion, the style of emplacement, and the subaqueous emplacement environment. Due to rapid quenching and mixing with unconsolidated clastic facies, the sills and cryptodomes did not spread far from their conduits. The shape and distribution of the lavas and intrusions were further influenced by the positions of previously or concurrently emplaced units. Magma preferentially invaded the sediment, avoiding the older units or conforming to their margins. Large intrusions and their dewatered envelope may have formed a barrier to the lateral progression and ascent of subsequent batches of magma.  相似文献   

13.
Lava flows of the Ninole Basalt, the oldest rocks exposed on the south side of the island of Hawaii, provide age and compositional constraints on the evolution of Mauna Loa volcano and the southeastward age progression of Hawaiian volcanism. Although the tholeiitic Ninole Basalt differs from historic lavas of Mauna Loa volcano in most major-element contents (e.g., variably lower K, Na, Si; higher Al, Fe, Ti, Ca), REE and other relatively immobile minor elements are similar to historic and prehistoric Mauna Loa lavas, and the present major-element differences are mainly due to incipient weathering in the tropical environment. New K-Ar whole-rock ages, from relatively fresh roadcut samples, suggest that the age of the Ninole Basalt is approximately 0.1–0.2 Ma, although resolution is poor because of low contents of K and radiogenic Ar. Originally considered the remnants of a separate volcano, the Ninole Hills are here interpreted as faulted remnants of the old south flank of Mauna Loa. Deep canyons in the Ninole Hills, eroded after massive landslide failure of flanks of the southwest rift zone, have been preserved from burial by younger lava due to westward migration of the rift zone. Landslide-induced depressurization of the southwest rift zone may also have induced phreatomagmatic eruptions that could have deposited widespread Basaltic ash that overlies the Ninole Basalt. Subaerial presence of the Ninole Basalt documents that the southern part of Hawaii Island had grown to much of its present size above sea level by 0.1–0.2 Ma, and places significant limits on subsequent enlargement of the south flank of Mauna Loa.  相似文献   

14.
The majority of tephra generated during the paroxysmal 1883 eruption of Krakatau volcano, Indonesia, was deposited in the sea within a 15-km radius of the caldera. Two syneruptive pyroclastic facies have been recovered in SCUBA cores which sampled the 1883 subaqueous pyroclastic deposit. The most commonly recovered facies is a massive textured, poorly sorted mixture of pumice and lithic lapilli-to-block-sized fragments set in a silty to sandy ash matrix. This facies is indistinguishable from the 1883 subaerial pyroclastic flow deposits preserved on the Krakatau islands on the basis of grain size and component abundances. A less common facies consists of well-sorted, planarlaminated to low-angle cross-bedded, vitric-enriched silty ash. Entrance of subaerial pyroclastic flows into the sea resulted in subaqueous deposition of the massive facies primarily by deceleration and sinking of highly concentrated, deflated components of pyroclastic flows as they traveled over water. The basal component of the deposit suggests no mixing with seawater as inferred from retention of the fine ash fraction, high temperature of emplacement, and lack of traction structures, and no significant hydraulic sorting of components. The laminated facies was most likely deposited from low-concentration pyroclastic density currents generated by shear along the boundary between the submarine pyroclastic flows and seawater. The Krakatau deposits are the first well-documented example of true submarine pyroclastic flow deposition from a modern eruption, and thus constitute an important analog for the interpretation of ancient sequences where subaqueous deposition has been inferred based on the facies characteristics of encapsulating sedimentary sequences.  相似文献   

15.
The origin of dike-like bodies along the Hilina fault scarp on the south flank of Kilauea Volcano. Hawaii has been the subject of recent controversy. Some geologists favour an origin by intrusion of magma from below, others favour « intrusion » of lava derived from above — lava derived from fluid surface flows which poured down open cracks. In order to distinguish between deep versus surface sources for the bodies, a suite of dike and other samples were analyzed for S, H2O, and Cl. All surface flows are degassed, whereas known dikes are volatile-rich. Samples of the Hilina dikes, and dikes from the Ninole Formation, Mauna Loa are degassed, indicating that these dikes were surface-fed — formed by magma which had been de-volatized by surface transport. A model is presented whereby the Hilina dikes form in talus and lava cones that drape the Hilina fault scarp. Seismic activity during eruption may have played an important role in the formation of the Hilina dikes. Similar dikes in the Ninole Formation probably formed in a similar environment.  相似文献   

16.
New field observations with the submersible ALVIN and photographic evidence from a study of the summits of seamounts near the East Pacific Rise show that hyaloclastite deposits occur commonly. Hyaloclastite outcrops were found on six volcanoes at depths from 1240 to 2500 m. These new observations plus laboratory study of new hyaloclastite specimens extend the results of previous studies. Most of the hyaloclastite samples are of hydrovolcanic eruptive origin, but a few show evidence of a predominantly sedimentary origin. Primarily from morphology, we identify several vent areas from which hyaloclastite presumably erupted. The surface appearance of the hyaloclastite deposits varies with distance to these vents, leading us to propose a facies model for deep-sea hyaloclastites on seamount summits. Hyaloclastites of hydromagmatic origin exhibit weak normal grading and bedding-parallel alignment of platy shards. They consist of blocky, sliver and fluidal basalt glass shards and lithics in a matrix that contains pelagic sediment. The shards themselves are remarkably free of even the tiniest crystals and are usually chemically homogeneous. We propose that the shards form mainly by cooling-contraction granulation, but cannot rule out the possibility of limited steam explosivity. Hyaloclastites are closely associated with submarine pahoehoe and we propose that a very rapid eruption rate, promoting clastic-dominated versus flow-dominated eruptive behavior, is the dominant control on hyaloclastite formation. We propose that shard formation occurs during submarine lava fountaining. Gravitational instability of the resulting slurry of shards, sea water and possibly steam causes gravity flow that carries the shards outward from the vent. Further field and modelling studies are needed to test these ideas and more quantitatively constrain the ascent mechanism, eruption dynamics and deposition of deep-sea hyaloclastites.  相似文献   

17.
南海北部神狐海域是我国首次获取海洋天然气水合物实物样品的海域.然而,陆坡区深水水道和海底峡谷的侵蚀以及频发的沉积物失稳,将会加剧地层对比和沉积相识别的难度,导致目前该区域典型地震相-沉积相特征、沉积体类型、成因机制和空间匹配关系等方面还缺少精细的研究,特别是第四纪以来的沉积演化涉及较少,区域内水合物形成和分布的沉积地质条件尚不清晰.基于海底地形特征的描述、层序地层格架的对比和地震资料的综合解释,本次研究在第四纪以来的沉积充填序列中识别出5种典型的地震相类型,并分析了对应的沉积体类型:进积型的陆坡、第四纪早期发育的小型浊积水道、沉积物失稳(滑移和滑塌)、海底峡谷和伴生的沉积物变形、以及深海沉积-块体流沉积的复合体.通过沉积单元的空间匹配关系,将沉积演化划分为3个阶段:浊积水道侵蚀-沉积物再沉积阶段、陆坡进积-沉积物失稳阶段、海底峡谷的侵蚀-充填阶段.研究结果表明,受第四纪早期小型浊积水道的侵蚀,再沉积的沉积物将在中-下陆坡以"近源"的方式堆积下来,可能具有相对较好的物性条件,从而可被视为适于水合物赋存的有利沉积体.进积型陆坡带来的沉积物易于发生失稳,在研究区内广泛分布,因其具有较小的沉积物颗粒粒度和较好的垂向连续性,可被认为是水合物的区域盖层.大量发育的海底峡谷及伴生的沉积物变形,将会侵蚀和破坏先前沉积的有利沉积体,使其呈现为"斑状/补丁状"的平面展布特征,进而影响了神狐海域水合物的分布.因此,神狐海域第四纪以来的沉积演化是钻探区水合物不均匀性分布的关键控制因素之一.  相似文献   

18.
We present an interpretation of gravity data acquired in 1984 by the French R/V Jean Charcot on the submarine part of the eastern flank of Piton de la Fournaise volcano. We comment on the Bouguer anomaly map and give a quantitative interpretation of three gravity profiles. The main results are that a gravity high over Grand Brûlé, the lower subaerial part of the eastern flank, does not extend far offshore and that an anomalous topographic feature, discovered in 1982 on the submarine eastern flank, is characterized by a large negative anomaly. We propose three hypotheses to explain the origin of this anomaly, i. e., it marks the site of a new volcano, or it is a consequence of lateral volcanism from a volcano older than Piton de la Fournaise, or more probably, it represents a great landslide deposit.  相似文献   

19.
Flow by flow mapping of the 65-km-long anbaerial part of the southwest rift zone and adjacent flanks of Mauna Loa Volcano, Hawaii, and about 50 new14C dates on charcoal from beneath these flows permit estimates of rates of lava accumulation and volcanic growth over the past 10,000 years. The sequence of historic eraptions along the southwest rift zone, beginning in 1868, shows a general pattern of uprift migration and increasing eruptive volume, culminating in the great 1950 eruption. No event comparable to 1950, in terms of volume or vent length, is evident for at least the previous 1,000 years. Rates of lava accumulation during the historic period were several times higher than the average rate for the preceding few thousand years along the southwest rift zone and adjacent flanks. Rates of lava accumulation along the zone have been subequal to those of Kilauea Volcano during the historic period but they were much lower in late prehistoric time (anpubl. Kilauea data byR.T. Holcomb). Thus, only about 30% of the surface of the southwest side of Mauna Loa has been covered by lava during the last 1,000 years, as contrasted with about 90% of the subaerial surface of Kilauea. Rates of surface covering and volcanic growth have been markedly asymmetric along Mauna Loa’s southwest rift zone. Accumulation rates have been about half again as great on the northwest side of the rift zone in comparison with the southeast side. The difference apparently reflects a westward lateral shift of the rift zone of Mauna Loa away from Kilauea Volcano, which may have acted as a barrier to symmetrical growth of the rift zone.  相似文献   

20.
Rejuvenated-stage tuff cones (Honolulu Volcanics) on Koolau volcano, Oahu, Hawaii, contain xenoliths of Koolau shield basalt. Because Koolau subaerial shield lavas represent a Hawaiian geochemical 'end member', and submarine shield lavas have compositions with some affinities to Mauna Loa and Kilauea, we analyzed 28 xenolithic basalts from Salt Lake and Koko Head cones to determine how these seemingly random samplings of the Koolau profile compare to established Koolau geochemistry. Analyses reveal that 24 are shield tholeiitic basalt—the focus of this study—and 4 are rejuvenated-stage basaltic rocks. The tholeiitic xenoliths represent largely upper Koolau shield lavas, as these samples (8.3 to 5.8 wt% MgO) have, with one exception, overall major- and trace-element compositions that overlap those of Koolau subaerial shield lavas. Secondary processes, however, created some distinctions—namely, enrichments/depletions in K, Ba, Sr, SiO2, and FeO, and, due to zeolitization (chabazite with attending okenite and apophyllite), elevated CaO. One xenolithic basalt with 8.2 wt% MgO has higher Ti, Zr, Nb, and Sc, and lower Zr/Nb than subaerial lavas, and appears to represent relatively early, deeper shield—thereby reinforcing that the Koolau shield source varied temporally. Olivine, orthopyroxene, and plagioclase are the phenocrysts (clinopyroxene is rare), and their core compositions range widely across the suite—Fo87.8–72, orthopyroxene Mg#s 85–72, and An74–60. Several xenolithic basalts have both normally and reversely zoned orthopyroxene and plagioclase with a variety of core compositions (e.g., orthopyroxene-core Mg#s 82, 77, and 72, all in one sample). These compositions and zonations record evidence for wide compositional ranges of replenishment (MgO ~13–8 wt%) and reservoir (MgO ~7 to <5 wt%) magmas mixing in varying proportions; however, extreme MgO lavas (~13 and <5 wt%) are not observed as either subaerial or xenolithic basalt, but are indicated by phenocryst cores of Fo87.8 and orthopyroxene-Mg# 72. The Koolau magma-mixing history resembles that of Kilauea, and is unlike the 'steady-state' mixing known for Mauna Loa. Finally, these basalt samples show that any xenolithic occurrence of Koolau lava is subject to the zeolitization prevalent in the tuff-cone hosts.Editorial handling: M. Carroll  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号