首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Based on the rupture models of the 2015 Pishan MW6.4 earthquake and half space homogeneous elastic model, the Coulomb stress changes generated by the earthquake are calculated on the active faults near the earthquake region. The horizontal stress changes and the displacement field are estimated on the area around the epicenter. Results show that:(1)The Coulomb stress is decreased in the west of the western Kunlun frontal thrust fault(9.5×103Pa), and increased in the east of the western Kunlun frontal thrust fault and the middle of the Kangxiwa faults. More attention should be taken to the seismic rick of the east of the western Kunlun frontal thrust fault; (2)Based on the analysis on the location of the aftershocks, it is found that most of the aftershocks are triggered by the earthquake. In the region of increased Coulomb attraction, the aftershock distribution is more intensive, and in the area of the Coulomb stress reduction, the distribution of aftershocks is relatively sparse; (3)The horizontal area stress increases in the north and south of the earthquake(most part of the Qaidam Basin and the northwest of the Qinghai-Tibet plateau), and decreases in the east and west of the earthquake(northern part of the Qinghai-Tibet plateau and eastern part of the Pamir Mountains). In the epicenter area, the principal compressive stress presents nearly NS direction and the principal extensional stress presents nearly EW direction. The principal compressive stress shows an outward radiation pattern centered on the epicenter with the principal extensional stress along the direction of concentric circles. The principal compressive stress presents NW direction to the west of the epicenter, and NE to the east of the epicenter. With the increase of radius, the stress level gradually decays with 107Pa in the epicenter and hundreds Pa in the Maidan Fault which is in the north of the Qaidam Basin.  相似文献   

2.
Using the focal mechanism solutions of 24 moderately strong earthquakes in the northern Tianshan area, we carried out system cluster and stress field inversion analysis. The result indicates that, the focal mechanism solutions of moderately strong earthquakes are mainly dipslip reverse faulting in the northern Tianshan area. The principal rupture planes of earthquakes are NW-oriented. It is basically consistent with the strike of earthquake structure in its adjacent area. The direction of the principal compression stress P axis is nearly NS, and its inclination angle is small; while the inclination angle of the principal extensional stress T axis is large. It shows that the regional stress field is mainly controlled by the near-NS horizontal compressive stress. The direction of the maximum principal stress shows a gradation process of NNE-NS-NW from east to west.  相似文献   

3.
新疆地震活动分布区域广,主要分布在南北天山、西昆仑、阿尔泰、阿尔金山与塔里木盆地和准噶尔盆地的衔接地带。各地震带地震活动水平不尽相同,其中南天山与北天山地震带以及帕米尔一西昆仑地震带的地震活动水平较高,地震活动呈西强东弱的特点。自2011年以来新疆境内地震活动呈现出5级地震连发,6级地震活动频繁,且各地震带均有分布的特点。利用新疆历史地震目录,分析新疆境内各片区发生地震活动是否具有相关性,并从中获得各片区地震活动相关性的量度,以此可以将这些量度作为新疆境内各片区地震中长期预报的辅助性分析方法。  相似文献   

4.
卫星重力资料揭示的新疆天山地区构造动力学状态   总被引:5,自引:1,他引:4       下载免费PDF全文
楼海  王椿镛  王飞 《地震学报》2000,22(5):482-490
利用最新的地球重力场模型,计算了新疆及邻近地区的自由空气重力异常、大地水准面扰动异常、地壳和上地幔平均密度异常以及地幔对流引起的岩石层底界面粘滞应力场分布.根据计算结果,对新疆天山地区的构造动力学特征进行了分析和推断,认为天山处于地幔对流形成的挤压沉降环境中,在南北不对称的挤压应力作用下快速隆升,挤压应力场中心在天山以南.这种应力场特征有利于塔里木板块向天山之下俯冲的观点.天山南北两侧的准噶尔盆地南缘和塔里木盆地北缘,是地壳内质量缺失区,是由于南北两侧地壳向天山下挤压而弯曲造成的.中国天山东段的深部密度分布特征与中段和西段的不同,可能是地幔对流分布的东西向差异造成的.   相似文献   

5.
李杰  刘代芹  王琪  王晓强  朱治国 《地震研究》2012,35(1):59-65,157
利用GPS数据研究南天山地区地壳运动特征,截取了该区域2005 ~ 2009年GPS数据,在统一框架下进行解算,并绘制出不同时段的主应变、剪应变以及基线变化速率等图像,研究表明该区域的地壳形变具有自西向东、自南向北减弱的特点,主压应变主要表现为受印度板块向北推挤而形成的近南北向压性应力场.2005~2009年基线变化速率表明,以喀什沿经线南北向为界,其东部区域基本上为压缩区,其西部区域基本上为拉张区,东部的基线缩短平均速率(4.84 mm/a)大于西部基线伸长的平均速率(3.06 mm/a),以喀什沿纬线东西向为界,其南部区域基线变化平均速率(5.58 mm/a)明显高于北部区域基线变化平均速率(3.52 mm/a),且伸长、压缩变化速率最大基线均在南部地区,说明南部区域受到塔里木块体和青藏高原挤压比较强烈,表明喀什南部区域地壳运动相对活跃.  相似文献   

6.
利用1999—2007年和2009—2013年两期GPS速度场资料, 采用最小二乘配置方法分别计算了2008年和2014年新疆两次于田MS7.3地震前新疆及周边地区的主应变率、 面应变率及最大剪应变率, 分析了该区域的变形动态特征, 并结合速度剖面分析方法给出了震源区的构造变形特征. 速度场及应变率场动态结果表明: 新疆天山地区的地壳变形特征整体表现为由南向北缩短, 相对运动速率表现为由南向北、 由西向东逐渐减小; 震源区东侧的左旋剪切变形明显大于西侧; 2008年与2014年两次于田MS7.3地震的震源区均处于拉张与挤压变形的过渡地带, 易于强地震的发生; 2008年于田MS7.3地震的张性兼有少量剪性破裂的发生使得阿尔金断裂的左旋剪切变形增强. GPS速度场剖面分析结果表明, 2014年于田MS7.3地震前震源区西侧的变形宽度大于东侧, 剪切应变积累程度西侧高于东侧. 综合分析认为, 震源周边构造区应变积累的差异性有利于强震的孕育, 2008年于田MS7.3地震对2014年于田MS7.3地震可能有促进作用.   相似文献   

7.
本文利用美国国家地震信息中心(NEIC)提供的1973~2006年地震目录,哈佛大学提供的1978-2005年地震机制解资料,研究了帕米尔-兴都库什地区印度板块与欧亚板块的碰撞形态,分析了印度板块向北俯冲对地震活动及其区域应力场的影响。地震震源三维图象显示:欧亚板块与印度板块在帕米尔"结"附近碰撞强烈,地震活动明显增强,震源剖面显示"V"字型分布形态;在帕米尔"结"东侧,随着印度板块俯冲动力减弱,地震活动也明显减弱,印度板块向北俯冲的剖面形态逐渐消失,欧亚板块向东南俯冲的剖面形态越加清晰;印度板块向北俯冲具有由浅向深、由南向北反复迁移的特征,可能反映印度板块向北俯冲→断离、再俯冲→再断离的过程。由于印度板块与欧亚板块间的强烈碰撞挤压作用,帕米尔-兴都库什地区处于以近南北向的挤压构造应力状态,逆断层数量约占70%,正断层数量约占11%,走滑断层数量约占19%。P轴优势方位显示帕米尔-兴都库什地区主压应力近南北向,倾角近水平,呈现由南向北倾斜;T轴倾角较大,近垂直,整体接近俯冲带的倾向。帕米尔-兴都库什地区应力场特征表明,印度板块向北的主动推挤,是形成这一区域应力场的主动力,向南倾的欧亚板块处于一种被动的被挤压状态。  相似文献   

8.
2014年2月12日在新疆于田发生7.3级地震,震中位于阿尔金断裂西段,这是继2008年3月21日于田7.3级地震后在塔里木盆地南侧发生的第2次7级地震。这次于田7.3级地震的余震主体沿NE向分布,余震区的西南段呈近SN向分布;绝大部分余震与前震在余震区西南密集分布,强余震(全部的5级以上地震和81%的4级地震)绝大多数都分布在这个区域,第1天的余震主要在这个区域呈近SN向分布,余震由西向东扩展。在这次于田地震的近SN方向上曾在1982、2011以及2012年先后发生过几次6级左右的地震,而这次地震填补了其中的空段。文中从区域构造环境、地震震源机制解和余震分布特征等方面,分析这次地震的发震过程,认为地震发生在硝尔库勒盆地南缘的分支断裂,受阿尔金断裂带构造应力影响,硝尔库勒盆地受到局部近EW向的拉张作用力,首先沿近SN向破裂,这个构造部位的解锁,促进阿尔金断裂左旋错动,产生NE向破裂,应力向东传递;文中还对有历史记录以来,阿尔金断裂上7级地震的发震构造及其对阿尔金断裂带的影响进行了讨论。  相似文献   

9.
帕米尔东北缘及塔里木盆地西北部弧形构造的扩展特征   总被引:15,自引:0,他引:15  
归纳了帕米尔东北缘弧形构造的基本特征 ,分析了塔里木盆地西北部EW向逆断裂背斜带与NNW向隐伏走滑断裂之间的关系。通过塔里木盆地与西南天山和帕米尔东北缘变形特征的对比 ,认为塔里木盆地西北部的变形样式与帕米尔东北缘的弧形构造类似 ,弧形构造具有由帕米尔东北缘向塔里木盆地扩展的特征 ,这种构造是帕米尔向北挤入运动所特有的变形样式  相似文献   

10.
We use the Pg seismic phase along the Korla-Jimsar profile across the Tianshan orogen and the 3D finite difference method to inverse the velocity structure of the upper crust beneath the basement of this mountain. Based on the velocity structure, the Korla-Jimsar profile can be divided into three parts, i.e. the north edge of the Tarim basin, the Tianshan orogen, and the south margin of the Junggar basin. Within the Tianshan there is a pattern of four convexities and three concavities, which correspond to the southern Tianshan, the Yanqi basin, the middle Tianshan, the Turpan basin, and the Bogda Mountains. In the north edge of the Tarim basin, the basement is about 10km deep with small lateral variations of velocity. In the Tianshan the velocity varies greatly laterally. The basement depth of the Yanqi basin is 6 km, which becomes shallow rapidly northward, and almost to the surface at the middle Tianshan. South to Kumux there is a small intermountain basin, where the maximum basement depth is 3 km, and also turns very shallow near Kumux. The Luntai fault, which bounds the Tarim basin and Tianshan, has vertical dislocation of about 5 km. The Turpan basin is covered with so thick a sediment that its basement is 7 km deep. The boundary fault between the Tianshan and Turpan is the Bolohoro fault which is characterized by quick deepening basement and 7 km vertical dislocation. In the Junggar basin the basement is 8 km deep. On the Korla-Jimsar profile, the velocity distribution of the upper crust and the structure are featured by NS symmetry on both sides of the axis of the Middle Tianshan, consistent with the deep structure revealed by this profile. It means that the Tarim basin and the Junggar basin underthrust toward the Tianshan from south and north, respectively. Such a structural style is different from that of another profile, i.e. the Xayar-Burjing profile, suggesting that there may be an important tectonic boundary between these two profiles.  相似文献   

11.
利用此次伽师地震序列震相数据,通过走时曲线得到震源区的初始一维速度模型。结合此速度模型,利用单纯形法测定了新疆伽师M S6.4地震参数。使用双差定位方法对伽师地震和M L≥1.8的297次余震事件进行了重新定位,得到结论:①伽师M S6.4地震参数为39.841°N、77.151°E、深度14.4 km。②伽师地震的破裂是非均匀、迁移的。主、余震整体分布呈“T”字型展布,主震位于“T”字底部,“T”字的横长竖短,多数余震向主震的正北方向延伸,余震整体呈近东西方向展布,东西方向长约40 km,南北方向长约20 km。前震、主震发生在震源区近南面的隐伏断层,可能是受塔里木盆地的阻碍,余震并没有向南发展,而是逐渐向北延伸至位于北面的隐伏断层,后又沿北面的断层向东发展。③通过序列整体分布呈“T”字型展布,初步判断伽师地震是一次共轭断层破裂事件。余震一边向主震正北方向发展,一边继续向东发展,表明发震断层是一条近EW向北倾断层,同时证明了塔里木盆地向北插入南天山。④地震震源深度主要集中在10~20 km,占73%,优势破裂深度在中地壳,中地壳积累和释放的能量居多。伽师地震位于塔里木盆地边缘,地表覆盖有7~8 km的低速沉积层。  相似文献   

12.
2014年4月20日安徽省霍山发生MS4.3地震,是霍山地区41年以来发生的最大地震. 本文首先基于安徽省及周边省份的地震台站资料,采用Hypo2000、 CAP和PTD方法反演得到该地震的震源深度为8 km; 然后采用Hypo2000和HypoDD方法联合对主震和余震序列进行重新定位,结果显示该地震序列呈北东向分布,绝大部分余震分布在主震的西南侧; 最后分别采用FOCMEC方法和CAP方法反演该地震的震源机制解,获得的反演结果非常接近,节面Ⅰ与节面Ⅱ的走向、 倾角、 滑动角分别为135°/70°/-30°与230°/60°/-160°. 此外该地震的椭圆等烈度线呈北东向展布,结合该地区的历史地震和地震构造,认为该地震与北东向的落儿岭—土地岭断裂活动有关. 已有震源机制解资料表明该地区构造应力场最大主压应力轴的方位角为267°,倾角为5°,最小主压应力轴的方位角为358°,倾角为4°,结合震源机制解和发震构造,认为该地震是在区域应力场作用下,落儿岭—土地岭断裂发生的一次右旋张性地震.   相似文献   

13.
南天山及塔里木北缘构造带西段地震构造研究   总被引:4,自引:0,他引:4       下载免费PDF全文
田勤俭  丁国瑜  郝平 《地震地质》2006,28(2):213-223
南天山及塔里木北缘构造带位于帕米尔地区东北侧,地震活动强烈。文中通过地质构造剖面、深部探测资料和地震震源机制解资料,综合研究了该区的地震构造模型。结果认为,该区的构造活动主要表现为天山地块逆冲于塔里木地块之上。天山构造系统包括迈丹断裂及其前缘推覆构造;塔里木构造系统包括深部的塔里木北缘断裂、基底共轭断层和浅部的推覆构造。塔里木北缘断裂是发育于塔里木地壳内部的高角度断裂,其形成原因在于塔里木和天山构造变形方向的差异。塔里木北缘断裂为研究区大地震的主要发震构造,天山推覆构造和塔里木基底断裂系统均具有不同性质的中强地震发震能力  相似文献   

14.
李君  王勤彩  郑国栋  刘庚  周辉  周聪 《地震学报》2019,41(2):207-218
利用双差定位方法对2018年松原MS5.7地震序列中ML≥1.0地震重新定位,之后使用CAP方法求解松原MS5.7地震序列中强地震的震源机制解,再借助MSATSI软件包反演得到松原地区的区域应力场。综合分析以上研究结果得到如下结论:① 松原MS5.7地震序列发生在NW走向的第二松花江断裂与NE走向的扶余—肇东断裂交会处,将地震精定位结果沿两条断层走向作剖面分析,NW向剖面主轴长度约为5 km,震中分布均匀,NE向剖面主轴长度亦约为5 km,震中呈倾向NE的高倾角分布;② 该序列中的4次ML≥3.7地震的震源机制解具有良好的一致性:节面Ⅰ走向为NE向,节面Ⅱ走向为NW向,均为高倾角走滑断层。中强地震的震源机制节面解与第二松花江断裂性质基本一致,由此推断第二松花江断裂是本次松原地震的发震断层;③ 松原地区的主压应力方位角为N86°E,倾角为7°,主张应力方位角为N24°E,倾角为71°。松原地区的区域应力场既受到大尺度的板块构造运动的控制,又受到区域构造运动的影响。在太平洋板块对北东亚板块向西俯冲作用下,东北地区产生了近EW向的主压应力,受周边地质构造控制,松辽盆地内NE向断裂与NW向断裂交会处易发生走滑型地震,2018年松原MS5.7地震正是在这种构造作用控制下发生的中强地震。   相似文献   

15.
东南沿海地震区的现代构造应力场   总被引:11,自引:3,他引:11  
根据断层面的最新错动方向,震源机制解和地壳形变等资料,研究了东南沿海地区的现代构造应力场,结果表明:本区构造应力场可大致划分为两个分区:长乐-诏安断裂带以东地区主压应力轴为近东西向;以西地区的主压应力轴近南北向。  相似文献   

16.
李艳永  王成虎  朱皓清  乌尼尔 《地震》2020,40(2):117-129
本文利用新疆测震台网记录的宽频带波形数据, 采用CAP方法反演北天山地区2010—2018年MS≥3.0地震震源机制解, 进一步结合早期研究区的震源机制数据反演了应力场。 结果表明, 研究区地震破裂类型以逆断型和走滑型为主, 其次为正断型, 过渡型最少; P轴方位大体与北天山地区主要断裂构造的走向垂直, 研究区以中部和西部近NS向以及东部近NNE向的水平挤压作用为主; 分区反演应力场显示研究区北部最大主应力轴σ1方位由西到东呈NNW—NS—NNE渐变过程, 研究区南部最大主应力轴σ1方位自西向东先呈NS—NNE变化, 再呈NNW—NS—NNE渐变; 研究区R值普遍较大, R值较小的区域主要位于研究区的西部和东部, 说明研究区东部和西部部分R值较小的地区向东西方向的扩展分量较小, 主要表现为物质的隆升分量。  相似文献   

17.
The Tianshan Mountains,located in the northwestern China,are bounded by the Tarim Basin to south and the Junggar Basin to north.In the north piedmont of this mountain range,ongoing thrusting and folding forms a set of roughly parallel anticlines.Geological observations predicted that averaged over last~1 Ma time scale,the shortening rates of these anticlines are about2.1–5.5 mm/a;However by averaged over about 10±2 kyr,their shortening rates reduce to merely about 1.25±0.5 mm/a.The slow shortening of the anticlines in the last~10±2 kyr is coarsely concurrent in time with the last global deglaciation.Here,we use a two-dimensional finite element model to explore crustal deformation across north piedmont of the Tianshan Mountains under various erosion-sedimentation conditions that are assumed to represent the climate-controlled surface process.Numerical experiments show that with a relatively weak erosion-sedimentation strength,the crustal shortening is accommodated mainly by north piedmont of the Tianshan Mountains,similar to the high shortening rate of anticlines averaged over the last~1Ma.By increasing erosion-sedimentation strength,the resultant crustal shortening is transformed gradually toward the Tianshan Mountains,resulting in the shortening rate in its north piedmont being decelerated to what is observed as averaged over the last~10±2 kyr.This result suggests that erosion and sedimentation could play an important role mechanically on strain localization across an intra-continent active tectonic belt.Hence,if the climate change around the last global deglaciation could be simply representative to the enhancement of surface erosion and sedimentation across the pre-existed Tianshan Mountains and its foreland,our models indicate that the observed shortening-rate variations averaged over~1 Ma and~10±2kyr time scales around north piedmont of the Tianshan Mountains should be resulted from climate changes.  相似文献   

18.
天山造山带是新生代以来复活隆升的陆内造山带,强烈的地震活动性使得理解和认识天山造山带深部结构及盆山耦合关系尤为重要。文章中使用天山造山带及邻区(40°~49°N,79°~93°E)85个台站2017—2019年的背景噪声资料,结合背景噪声互相关方法获得了6~52 s瑞利波相速度频散曲线,利用基于射线追踪的面波直接反演法对天山中段地壳三维S波速度结构及盆山耦合关系进行研究。结果显示:地壳浅层S波速度分布与构造单元中沉积层厚度相关,塔里木盆地北缘、准噶尔盆地南缘表现为低速,天山造山带表现为高速;到了中下地壳,天山造山带下方存在被高速异常包裹的低速体;莫霍面附近,天山造山带表现出相对低速;准噶尔盆地南缘和天山造山带的地壳厚度分别在45~50 km、50~62 km之间,沿南北向,天山造山带莫霍面呈现较为宽缓的形态;在82°~86.5°E之间,塔里木盆地和准噶尔盆地向天山下方双向俯冲,86.5°~88°E之间,准噶尔盆地向天山南向俯冲,由西向东,不同盆山耦合关系揭示了新生代以来天山中段不同区域构造运动差异,为进一步探讨造山动力过程提供参考。  相似文献   

19.
Based on the digital waveforms of Xinjiang Seismic Network, the Hutubi MS6.2 earthquake sequence (ML ≥ 1.0) was relocated precisely by HypoDD.The best double-couple focal mechanisms of the main shock and aftershocks of ML ≥ 4.0 were determined by the CAP method. We analyzed the characteristics of spatial distribution, focal mechanisms and the seismogenic structure of earthquake sequence. The results show that the main shock is located at 43.775 9°N, 86.363 4°E; the depth of the initial rupture and centriod is about 15.388km and 17km. The earthquake sequence extends unilaterally along NWW direction with an extension length of about 15km and a depth ranging 5~15km. The characteristics of the depth profiles show that the seismogenic fault plane dips northward and the faulting is dominated by thrusting. The nodal planes parameters of the best double-couple focal mechanisms are:strike 292°, dip 62° and rake 80° for nodal plane I, and strike 132°, dip 30° and rake 108° for nodal plane Ⅱ, indicating that the main shock is of thrust faulting. The dip of nodal planeⅠis consistent with the dip of the depth profile, which is inferred to be the fault plane of seismogenic fault of this earthquake. According to the comprehensive analysis of the relocation results, the focal mechanism and geological structure in the source region, it is preliminarily inferred that the seismogenic structure of the Hutubi MS6.2 earthquake may be a backthrust on the deeper concealed thrust slope at the south of Qigu anticline. The earthquake is a "folding" earthquake taking place under the stress field of Tianshan expanding towards the Junggar Basin.  相似文献   

20.
IntroductionGeopotential model, expressed by a spherical harmonic function, gives the global distribution of disturbed gravimetric potential. It is widely applied in the research of many disciplines of science, such as geodetics, geophysics, geodynamics, oceanography and space science. In geophysics, geopotential model shows the large-dimensional gravity variety, which is the reflection of anomalous density distribution in a large area or in the deep of the earth. Therefore, it is useful in th…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号