首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
Infiltration into frozen soil is a key hydrological process in cold regions. Although the mechanisms behind point‐scale infiltration into frozen soil are relatively well understood, questions remain about upscaling point‐scale results to estimate hillslope‐scale run‐off generation. Here, we tackle this question by combining laboratory, field, and modelling experiments. Six large (0.30‐m diameter by 0.35‐m deep) soil cores were extracted from an experimental hillslope on the Canadian Prairies. In the laboratory, we measured run‐off and infiltration rates of the cores for two antecedent moisture conditions under snowmelt rates and diurnal freeze–thaw conditions observed on the same hillslope. We combined the infiltration data with spatially variable data from the hillslope, to parameterise a surface run‐off redistribution model. We used the model to determine how spatial patterns of soil water content, snowpack water equivalent (SWE), and snowmelt rates affect the spatial variability of infiltration and hydrological connectivity over frozen soil. Our experiments showed that antecedent moisture conditions of the frozen soil affected infiltration rates by limiting the initial soil storage capacity and infiltration front penetration depth. However, shallow depths of infiltration and refreezing created saturated conditions at the surface for dry and wet antecedent conditions, resulting in similar final infiltration rates (0.3 mm hr?1). On the hillslope‐scale, the spatial variability of snowmelt rates controlled the development of hydrological connectivity during the 2014 spring melt, whereas SWE and antecedent soil moisture were unimportant. Geostatistical analysis showed that this was because SWE variability and antecedent moisture variability occurred at distances shorter than that of topographic variability, whereas melt variability occurred at distances longer than that of topographic variability. The importance of spatial controls will shift for differing locations and winter conditions. Overall, our results suggest that run‐off connectivity is determined by (a) a pre‐fill phase, during which a thin surface soil layer wets up, refreezes, and saturates, before infiltration excess run‐off is generated and (b) a subsequent fill‐and‐spill phase on the surface that drives hillslope‐scale run‐off.  相似文献   

2.
The main objective of this research was to analyse the effect of soil management on soil sealing and on soil water content under contrasting tillage practices and its influence on corn yield. The experimental research was carried out in a field cultivated with irrigated corn differentiated into three zones representing a gradient of soil texture (Z1, Z2, and Z3, i.e., increasingly coarser). Two plots under different soil management practices (conventional intensive tillage, CT, and no‐tillage, NT) were selected in each zone. The susceptibility to sealing of each soil and the steady infiltration rates were evaluated in the laboratory subjecting the soils to rainfall simulation applied at an intensity of 25 mm h?1. In addition, soil porosity under each treatment was quantified. Soil water content (0–90 cm depth) was determined gravimetrically at the beginning and the end of the growing cycle and at the surface (0–5 cm) during three growing seasons and continuously at two depths (5–15 and 50–60 cm) during the last growing cycle. Soil water content was simulated using the SIMPEL model, which was calibrated for the experimental conditions. Corn yield and above‐ground biomass were also analysed. Significant differences in soil sealing among zones, with decreasing soil sealing for coarser textures, and treatments were observed with infiltration rates that were near twice in NT than in CT, being the effect of soil cover significant in the reduction of soil detachment and soil losses. NT showed higher soil water content than CT, especially in the surface layers. Above‐ground biomass production was smaller in CT than in NT, and in the areas with higher sealing susceptibility was 30% to 45% smaller than in other zones, reaching the smallest values in Z1. A similar reduction in corn yield was observed between treatments being smaller in CT than in NT. No‐tillage has been confirmed as an effective technique that benefits soil physical properties as well as crop yields in relation to CT, being its impact greater in soils susceptible to sealing.  相似文献   

3.
Stone covers on loessial slopes can increase the time of infiltration by slowing the velocity of the overland flow, which reduces the transport of solutes, but few mechanistic models have been tested under water‐scouring conditions. We carried out field experiments to test a previously proposed, physically based model of water and solute transport. The area of soil infiltration was calculated from the uncovered surface area, and Richards' equation and the kinematic wave equation were used to describe water infiltration and flow along slopes with stone covers. The transport of chemicals into the run‐off from the surface soil, presumably by diffusion, and their movement in the soil profile could be described by the convection–diffusion equations of the model. The simulated and measured data correlated well. The stones on the soil surface reduced the area available for infiltration but increased the Manning coefficient, eventually leading to increased water infiltration and decreased solute loss with run‐off. Our results indicated that the traditional model of water movement and solute migration could be used to simulate water transport and solute migration for stone‐covered soil on loessial slopes.  相似文献   

4.
Hydrological studies focused on Hortonian rainfall–run‐off scaling have found that the run‐off depth generally declines with the plot length in power‐law scaling. Both the power‐law proportional coefficient and the scaling exponent show great variability for specific conditions, but why and how they vary remain unclear. In the present study, the scaling of hillslope Hortonian rainfall–run‐off processes is investigated for different rainfall, soil infiltration, and hillslope surface characteristics using the physically based cell‐based rainfall‐infiltration‐run‐off model. The results show that both temporally intermittent and steady rainfalls can result in prominent power‐law scaling at the initial stage of run‐off generation. Then, the magnitude of the power‐law scaling decreases gradually due to the decreasing run‐on effect. The power‐law scaling is most sensitive to the rainfall and soil infiltration parameters. When the ratio of rainfall to infiltration exceeds a critical value, the magnitude of the power‐law scaling tends to decrease notably. For different intermittent rainfall patterns, the power‐law exponent varies in the range of ?1.0 to ?0.113, which shows an approximately logarithmic increasing trend for the proportional coefficient as a function of the run‐off coefficient. The scaling is also sensitive to the surface roughness, soil sealing, slope angle, and hillslope geometry because these factors control the run‐off routing and run‐on infiltration processes. These results provide insights into the variable scaling of the Hortonian rainfall–run‐off process, which are expected to benefit modelling of large‐scale hydrological and ecological processes.  相似文献   

5.
Surface hydrological behaviour is important in drylands because it affects the distribution of soil moisture and vegetation and the hydrological functioning of slopes and catchments. Microplot scale run‐off can be relatively easily measured, i.e. by rainfall simulations. However, slope or catchment run‐off cannot be deduced from microplots, requiring long‐time monitoring, because run‐off coefficients decrease with increasing drainage area. Therefore, to determine the slope length covered by run‐off (run‐off length) is crucial to connect scales. Biological soil crusts (BSCs) are good model systems, and their hydrology at slope scale is insufficiently known. This study provides run‐off lengths from BSCs, by field factorial experiments using rainfall simulation, including two BSC types, three rain types, three antecedent soil moistures and four plot lengths. Data were analysed by generalized linear modelling, including vascular plant cover as covariates. Results were the following: (i) the real contributing area is almost always much smaller than the topographical contributing area; (ii) the BSC type is key to controlling run‐off; run‐off length reached 3 m on cyanobacterial crust, but hardly over 1 m on lichen crust; this pattern remained through rain type or soil moisture; (iii) run‐off decreased with BSC development because soil sealing disappears; porosity, biomass and roughness increase and some changes occur in the uppermost soil layer; and (iv) run‐off flow increased with both rain type and soil moisture but run‐off coefficient only with soil moisture (as larger rains increased both run‐off and infiltration); vascular plant cover had a slight effect on run‐off because it was low and random. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Rock fragment cover has long been an important agricultural crop production technique on the Loess Plateau, China. Although this approach plays an important role in controlling hydrological processes and preventing soil erosion, inconsistent results have been recovered in this field. In this study, we investigated the effects of rock fragment cover on infiltration, run‐off, soil erosion, and hydraulic parameters using rainfall simulation in the field in a semi‐arid region of China. Two field plots encompassing 6 rock fragment coverages (0%, 10%, 20%, 25%, 30%, and 40%), as well as 2 rock fragment positions and sizes were exposed to rainfall at a particular intensity (60 mm h?1). The results of this study showed that increasing the rock fragment coverage with rock fragments resting on the soil surface increased infiltration but decreased run‐off generation and sediment yield. A contrasting result was found, however, when rock fragments were partially embedded into the soil surface; in this case, a positive relationship between rock fragment coverage and run‐off rate as well as a nonmonotonic relationship with respect to soil loss rate was recovered. The size of rock fragments also exerted a positive effect on run‐off generation and sediment yield but had a negative effect on infiltration. At the same time, both mean flow velocity and Froude number decreased with increasing rock fragment coverage regardless of rock fragment position and size, whereas both Manning roughness and Darcy–Weisbach friction factor were positively correlated. Results show that stream power is the most sensitive hydraulic parameter affecting soil loss. Combined with variance analysis, we concluded that the order of significance of rock fragment cover variables was position followed by coverage and then size. We also quantitatively incorporated the effects of rock fragment cover on soil loss via the C and K factors in the Revised Universal Soil Loss Equation. Overall, this study will enable the development of more accurate modelling approaches and lead to a better understanding of hydrological processes under rock fragment cover conditions.  相似文献   

7.
Recent studies have highlighted the agronomic and environmental importance of phosphorus (P) movement through the soil profile. Thus, faced with challenges such as high‐profile cases of P enrichment of surface water, better understanding of nutrient movement through soil is needed to better manage agricultural fertilizers and manures and their contribution to water quality degradation. In particular, field‐scale research is especially needed in soils with preferential flow transport pathways. Thus, we collected nitrogen (N) and P transport data in run‐off and seepage (lateral subsurface return flow) from 13 field‐ and farm‐scale watersheds on Vertisols in Central Texas for a 14‐year period. For 2004–2017, seepage accounted for ~20% of the total surface flow, and nutrient concentrations were generally similar in run‐off and seepage. As surface run‐off contributed ~80% of the flow, it follows that median annual N and P loads in run‐off were significantly greater than in seepage for every watershed. N loads in both run‐off and seepage flow from cultivated land were an order of magnitude greater than in native prairie and improved pasture, and the highest run‐off and seepage P loads both occurred on cultivated land with organic fertilizer sources. Increasing watershed scale (size) did not to produce consistent patterns in N or P loss in run‐off or seepage. Land use and watershed scale produced significant differences in seepage volume but did not affect run‐off volumes or total surface flow/rainfall. Although less significant in terms of total offsite flux, nutrient movement in vadose zones has important agronomic and environmental implications as considerable N and P are transported through and within the root zone and eventually offsite. And in terms of P, this contradicts the traditionally held scientific viewpoint that P movement through the vadose zone is unimportant agronomically and environmentally.  相似文献   

8.
Gang Liu  Fuguo Tong  Bin Tian 《水文研究》2019,33(26):3378-3390
This work introduces water–air two‐phase flow into integrated surface–subsurface flow by simulating rainfall infiltration and run‐off production on a soil slope with the finite element method. The numerical model is formulated by partial differential equations for hydrostatic shallow flow and water–air two‐phase flow in the shallow subsurface. Finite element computing formats and solution strategies are presented to obtain a numerical solution for the coupled model. An unsaturated seepage flow process is first simulated by water–air two‐phase flow under the atmospheric pressure boundary condition to obtain the rainfall infiltration rate. Then, the rainfall infiltration rate is used as an input parameter to solve the surface run‐off equations and determine the value of the surface run‐off depth. In the next iteration, the pressure boundary condition of unsaturated seepage flow is adjusted by the surface run‐off depth. The coupling process is achieved by updating the rainfall infiltration rate and surface run‐off depth sequentially until the convergence criteria are reached in a time step. A well‐conducted surface run‐off experiment and traditional surface–subsurface model are used to validate the new model. Comparisons with the traditional surface–subsurface model show that the initiation time of surface run‐off calculated by the proposed model is earlier and that the water depth is larger, thus providing values that are closer to the experimental results.  相似文献   

9.
Spatial distribution of soil macroporosity was determined for a forest podzol from tension infiltrometer measurements at the soil surface. Surface‐derived macroporosity values were compared with point infiltration characteristics obtained from soil water content and soil water chemistry measurements during an experimental irrigation, and with parameters of a kinematic wave model applied to soil water content data. Macroporosity estimated by the tension infiltrometer ranged from 0·00087 to 0·0219% of soil volume, and infiltration at these two sites was dominated by propagation of a well‐defined wetting front through the soil profile and bypass flow via soil macropores, respectively. Infiltration at sites with intermediate macroporosities reflected a combination of these two processes, although results were inconclusive at one site owing to lateral flow at the base of the soil profile. There was no agreement between macroporosities estimated by the tension infiltrometer and the kinematic wave model. The maximum soil conductance parameter within the profile at a site, however, was related directly to the surface‐derived macroporosity. The partial agreement between surface‐derived macroporosity estimates and point infiltration characteristics shown here supports the use of tension infiltrometry as a rapid, non‐destructive method of assessing spatial variations in the relative contribution of macropore flow to the infiltration process. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
Nonionic surfactants have been well researched in turf grass environments as a tool to ameliorate water‐repellant conditions. However, few studies have evaluated the risks and benefits of nonionic surfactant applications in row‐crop agricultural systems. The objective of this study was to evaluate the impact of a nonionic surfactant on cotton (Gossypium hirsutum L.) production on a Faceville loamy sand (fine, kaolinitic thermic Typic Kandiudult) in the coastal plain region of Georgia. The experiment consisted of two components: (1) on‐site rainfall simulation and (2) agronomic cotton field trials. Treatments were designed to test the impact of rate and frequency of surfactant applications using six combinations of application rates and timings. For the rainfall simulation component, only the control (0·0 L ha?1) and high rate (0·51 L ha?1) of surfactant applications were evaluated. During the field trial, soil water content, cotton stand counts, and yield were measured. Rainfall simulations showed that the addition of surfactant increased runoff, decreased infiltration, and promoted surface sealing. Despite the demonstrated potential for water loss, agronomic field trials showed that crop yields were not significantly different between surfactant‐treated and untreated plots. No differences in soil water content were observed between treatments at 5 and 15 cm depths; however, soil water content was significantly higher in untreated control plots at the 30 cm depth. Data demonstrate the need for clarification of soil physical/chemical properties and surfactant interactions that may lend themselves to the creation of surface seals and how these seals impact soil/water conservation and crop yield. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

11.
To evaluate the relationship between the moisture conditions and the water repellency of soil surfaces in situ, we periodically conducted field surveys for more than a year in a humid‐temperate forest in Japan. Measurements were made in four plots with varying soil physicochemical properties and under different topographic conditions across a hillslope. Each plot contained permanent quadrats with measurement points in a grid pattern. At each point, we measured the volumetric water content at 0‐ to 5‐cm depths and the water repellency at soil surfaces approximately twice a month. The repeated measurements enabled us to estimate the critical water content (CWC) below which soils repelled water at each point. We defined the representative CWC (RCWC) of a plot as the median of all CWCs in a plot and estimated the representative critical water potential (RCWP) on the basis of the RCWC using the water retention curve. The RCWC values differed among plots, but the corresponding RCWP values were similar (pF = 3.5–3.9). The relationship of the areal fraction showing water repellency against soil water potentials was similar across plots, but the relationship differed among plots against the soil moisture content. These results suggest that soil water potential is more indicative of the spatial occurrence of water repellency than moisture content on a hillslope where soil physicochemical properties vary. Plots located on ridge crests frequently exhibited lower water potentials and showed a higher areal fraction of water repellency, implying a greater chance of generating surface runoff by rainfall events. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A simple grid cell‐based distributed hydrologic model was developed to provide spatial information on hydrologic components for determining hydrologically based critical source areas. The model represents the critical process (soil moisture variation) to run‐off generation accounting for both local and global water balance. In this way, it simulates both infiltration excess run‐off and saturation excess run‐off. The model was tested by multisite and multivariable evaluation on the 50‐km2 Little River Experimental Watershed I in Georgia, U.S. and 2 smaller nested subwatersheds. Water balance, hydrograph, and soil moisture were simulated and compared to observed data. For streamflow calibration, the daily Nash‐Sutcliffe coefficient was 0.78 at the watershed outlet and 0.56 and 0.75 at the 2 nested subwatersheds. For the validation period, the Nash‐Sutcliffe coefficients were 0.79 at the watershed outlet and 0.85 and 0.83 at the 2 subwatersheds. The per cent bias was less than 15% for all sites. For soil moisture, the model also predicted the rising and declining trends at 4 of the 5 measurement sites. The spatial distribution of surface run‐off simulated by the model was mainly controlled by local characteristics (precipitation, soil properties, and land cover) on dry days and by global watershed characteristics (relative position within the watershed and hydrologic connectivity) on wet days when saturation excess run‐off was simulated. The spatial details of run‐off generation and travel time along flow paths provided by the model are helpful for watershed managers to further identify critical source areas of non‐point source pollution and develop best management practices.  相似文献   

13.
The occurrence of water ponding on soil surfaces during and after heavy rainfall produces surface run‐off or surface water accumulation in low‐lying areas, which might reduce the water supply to soils and result in a reduction of the soil water that plants can use, especially in arid climates. On Mongolian rangeland, we observed ponded water on the surface of a specific soil condition subjected to a heavy rainfall of 30 mm/hr. By contrast, ponded water was not observed for the same type of soil where livestock grazing had been removed for 6–8 years via a fence or for nearby soil containing less clay. We measured the infiltration rate (the saturated hydraulic conductivity of the surface soil, Ks) of the three sites by applying ponded water on the soil surface (an intake rate test). The results showed that Ks in the rangeland was lower than the rainfall intensity in the site where water ponded on the soil surface; however, Ks of the soil inside of the fence has recovered to 3 times that of the soil outside of the fence to exceed the rainfall intensity. Heavy rainfall that exceeds the infiltration rate occurs several times a year at the livestock grazing site where we observed ponded water. Slight water repellency of the soil reduces rain infiltration to increase the possibility of surface ponding for the soil.  相似文献   

14.
This study developed a one‐dimensional model of downslope rain splash transport based on field experiments and previous studies. The developed model considers soil detachment processes, ground cover, probability densities, and the effect of overland run‐off in preventing detachment. Field monitoring was conducted to observe precipitation run‐off, ground cover, and sediment production on steep hillslopes. Field‐observed data were used to develop the splash detachment rate equation, probability densities for splash transport, and the maximum splash transport distance. Observed and estimated splash transport showed overall agreement, with some differences for small storm events or events with relatively low intensity, probably caused by variation of overland run‐off depth and connectivity as well as differences in soil surface cohesion at various degrees of wetness. Our model can provide insights on the interactions among rainfall intensity, soil surface condition, soil wetness, and splash transport on forested hillslopes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
B Hansen 《水文研究》2000,14(7):1235-1243
During the filling of surface microrelief depressions the precipitation excess (precipitation minus infiltration and interception) is divided between surface storage and runoff, i.e. runoff starts before the surface depressions are filled. Information on the division of precipitation excess is needed for modelling surface runoff during the filling of surface depressions. Furthermore, information on the surface of the area covered with water is needed for calculating infiltration of water stored in soil surface depressions. Thirty‐two soil surface microreliefs were determined in Danish erosion study plots. The slope was c. 10% for all plots. Data were treated initially by removing the slope, after which 20 ‘artificial’ slopes (1–20%) were introduced producing 640 new data sets. Runoff during filling of the microrelief storage was calculated for each of the 640 data sets using a model developed for calculating surface storage and runoff from grid elevation measurements. Runoff started immediately after the first addition of water for all data sets. On a field scale, however, runoff has to travel some distance as overland flow and storage in smaller and larger depressions below the runoff initiation point must be taken into consideration. The runoff increases by intermittent steps. Whenever a depression starts to overflow to the border of the plot, the runoff jumps accordingly. In spite of the jumps, the distribution between surface storage and runoff was closely related to the quotient between precipitation excess and depression storage capacity. Surface area covered with water was exponentially related to the amount of water stored in surface depressions. Models for calculating surface storage and runoff from grid elevation measurements are cumbersome and require time‐consuming measurements of the soil surface microrelief. Therefore, estimation from roughness indices requiring fewer measurements is desirable. New improved equations for such estimations are suggested. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
Changes in hydrologic flowpaths have important impacts on the timing, magnitude and hydrochemistry of run‐off during snowmelt in forested catchments, but how flowpaths are affected by variation in winter climate and the irregular presence of soil frost remains poorly understood. The depth and extent of soil frost may be expected to increase as snowpack decreases or develops later because of climate change. In this study, we used end‐member mixing analysis to determine daily contributions of snow, forest floor soil water and groundwater to stream run‐off during snowmelt under different soil frost regimes resulting from interannual and elevational variation at the Hubbard Brook Experimental Forest in New Hampshire, USA. We observed greater routing of run‐off through forest floor flowpaths during early snowmelt in 2011, when the snowpack was deep and soil frost was minimal, compared with the early snowmelt in 2012 under conditions of deep and extensive soil frost. The results indicate that widespread soil frost that penetrated the depth of the forest floor decreased the flow signal through the shallowest subsurface flowpaths, but did not reduce overall infiltration of melt waters, as the contribution from the snow‐precipitation end‐member was similar under both conditions. These results are consistent with development of granular soil frost which permits vertical infiltration of melt waters, but either reduces lateral flow in the forest floor or prevents the solute exchange that would produce the typical chemical signature of shallow subsurface flowpaths in streamwater. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Accurate estimation of the soil water balance (SWB) is important for a number of applications (e.g. environmental, meteorological, agronomical and hydrological). The objective of this study was to develop and test techniques for the estimation of soil water fluxes and SWB components (particularly infiltration, evaporation and drainage below the root zone) from soil water records. The work presented here is based on profile soil moisture data measured using dielectric methods, at 30‐min resolution, at an experimental site with different vegetation covers (barley, sunflower and bare soil). Estimates of infiltration were derived by assuming that observed gains in the soil profile water content during rainfall were due to infiltration. Inaccuracies related to diurnal fluctuations present in the dielectric‐based soil water records are resolved by filtering the data with adequate threshold values. Inconsistencies caused by the redistribution of water after rain events were corrected by allowing for a redistribution period before computing water gains. Estimates of evaporation and drainage were derived from water losses above and below the deepest zero flux plane (ZFP), respectively. The evaporation estimates for the sunflower field were compared to evaporation data obtained with an eddy covariance (EC) system located elsewhere in the field. The EC estimate of total evaporation for the growing season was about 25% larger than that derived from the soil water records. This was consistent with differences in crop growth (based on direct measurements of biomass, and field mapping of vegetation using laser altimetry) between the EC footprint and the area of the field used for soil moisture monitoring. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Agricultural use of soils implies tillage and often compaction and therefore influences processes on soil surface and affects infiltration of water into the subsoil. Although many studies on soil surface processes or flow patterns in soils exist, works relating both are rare in literature. We did two tracer experiments with Brilliant Blue FCF on a tilled and compacted plot and a non‐tilled one to investigate water storage on the soil surface during simulated rainfall and changes of soil microtopography, to analyse the associated flow patterns in the soil and to relate both to tillage and compaction. Our results show that storage was larger on the tilled and compacted plot than on the non‐tilled one. After tillage, transport processes above the plough pan were partly disconnected from those underneath because macropores were disrupted and buried by the tillage operation. However, preferential flow along cracks occurred on both plots and the macropores buried below the tillage pan still functioned as preferential flow paths. Therefore, we conclude that the studied soil is susceptible to deep vertical solute propagation at dry conditions when cracks are open, irrespective of tillage and compaction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The effects of soil water content (SWC) on the formation of run‐off in grass swales draining into a storm sewer system were studied in two 30‐m test swales with trapezoidal cross sections. Swale 1 was built in a loamy fine‐sand soil, on a slope of 1.5%, and Swale 2 was built in a sandy loam soil, on a slope of 0.7%. In experimental runs, the swales were irrigated with 2 flow rates reproducing run‐off from block rainfalls with intensities approximately corresponding to 2‐month and 3‐year events. Run‐off experiments were conducted for initial SWC (SWCini) ranging from 0.18 to 0.43 m3/m3. For low SWCini, the run‐off volume was greatly reduced by up to 82%, but at high SWCini, the volume reduction was as low as 15%. The relative swale flow volume reductions decreased with increasing SWCini and, for the conditions studied, indicated a transition of the dominating swale functions from run‐off dissipation to conveyance. Run‐off flow peaks were reduced proportionally to the flow volume reductions, in the range from 4% to 55%. The swale outflow hydrograph lag times varied from 5 to 15 min, with the high values corresponding to low SWCini. Analysis of swale inflow/outflow hydrographs for high SWCini allowed estimations of the saturated hydraulic conductivities as 3.27 and 4.84 cm/hr in Swales 1 and 2, respectively. Such estimates differed from averages (N = 9) of double‐ring infiltrometer measurements (9.41 and 1.78 cm/hr). Irregularities in swale bottom slopes created bottom surface depression storage of 0.35 and 0.61 m3 for Swales 1 and 2, respectively, and functioned similarly as check berms contributing to run‐off attenuation. The experimental findings offer implications for drainage swale planning and design: (a) SWCini strongly affect swale functioning in run‐off dissipation and conveyance during the early phase of run‐off, which is particularly important for design storms and their antecedent moisture conditions, and (b) concerning the longevity of swale operation, Swale 1 remains fully functional even after almost 60 years of operation, as judged from its attractive appearance, good infiltration rates (3.27 cm/hr), and high flow capacity.  相似文献   

20.
Twelve modified passive capillary samplers (M‐PCAPS) were installed in remote locations within a large, alpine watershed located in the southern Rocky Mountains of Colorado to collect samples of infiltration during the snowmelt and summer rainfall seasons. These samples were collected in order to provide better constraints on the isotopic composition of soil‐water endmembers in the watershed. The seasonally integrated stable isotope composition (δ18O and δ2H) of soil‐meltwater collected with M‐PCAPS installed at shallow soil depths < 10 cm was similar to the seasonally integrated isotopic composition of bulk snow taken at the soil surface. However, meltwater which infiltrated to depths > 20 cm evolved along an isotopic enrichment line similar to the trendline described by the evolution of fresh snow to surface runoff from snowmelt in the watershed. Coincident changes in geochemistry were also observed at depth suggesting that the isotopic and geochemical composition of deep infiltration may be very different from that obtained by surface and/or shallow‐subsurface measurements. The M‐PCAPS design was also used to estimate downward fluxes of meltwater during the snowmelt season. Shallow and deep infiltration averaged 8·4 and 4·7 cm of event water or 54 and 33% of the measured snow water equivalent (SWE), respectively. Finally, dominant shallow‐subsurface runoff processes occurring during snowmelt could be identified using geochemical data obtained with the M‐PCAPS design. One soil regime was dominated by a combination of slow matrix flow in the shallow soil profile and fast preferential flow at depth through a layer of platy, volcanic rocks. The other soil regime lacked the rock layer and was dominated by slow matrix flow. Based on these results, the M‐PCAPS design appears to be a useful, robust methodology to quantify soil‐water fluxes during the snowmelt season and to sample the stable isotopic and geochemical composition of soil‐meltwater endmembers in remote watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号