首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fluid‐filled granular soils experience changes in total stress because of earth and oceanic tides, earthquakes, erosion, sedimentation, and changes in atmospheric pressure. The pore volume may deform in response to the changes in stress and this may lead to changes in pore fluid pressure. The transient fluid flow can therefore be induced by the gradient in excess pressure in a fluid‐saturated porous medium. This work demonstrates the use of stochastic methodology in prediction of induced one‐dimensional field‐scale groundwater flow through a heterogeneous aquifer. A closed‐form of mean groundwater flux is developed to quantify the induced field‐scale mean behavior of groundwater flow and analyze the impacts of the spatial correlation length scale of log hydraulic conductivity and the pore compressibility. The findings provided here could be useful for the rational planning and management of groundwater resources in aquifers that contain lenses with large vertical aquifer matrix compressibility values.  相似文献   

2.
This paper reviews the recent geophysical literature addressing the estimation of saturated hydraulic conductivity (K) from static low frequency electrical measurements (electrical resistivity, induced polarization (IP) and spectral induced polarization (SIP)). In the first part of this paper, research describing how petrophysical relations between electrical properties and effective (i.e. controlling fluid transport) properties of (a) the interconnected pore volumes and interconnected pore surfaces, have been exploited to estimate K at both the core and field scale is reviewed. We start with electrical resistivity measurements, which are shown to be inherently limited in K estimation as, although resistivity is sensitive to both pore volume and pore surface area properties, the two contributions cannot be separated. Efforts to utilize the unique sensitivity of IP and SIP measurements to physical parameters that describe the interconnected pore surface area are subsequently introduced and the incorporation of such data into electrical based Kozeny–Carman type models of K estimation is reviewed. In the second part of this review, efforts to invert geophysical datasets for spatial patterns of K variability (e.g. aquifer geometries) at the field-scale are considered. Inversions, based on the conversion of an image of a geophysical property to a hydrological property assuming a valid petrophysical relationship, as well as joint/constrained inversion methods, whereby multiple geophysical and hydrological data are inverted simultaneously, are briefly covered. This review demonstrates that there currently exists an opportunity to link, (1) the petrophysics relating low frequency electrical measurements to effective hydraulic properties, with (2) the joint inversion strategies developed in recent years, in order to obtain more meaningful estimates of spatial patterns of K variability than previously reported.  相似文献   

3.
The interaction of geomechanics and flow within a soil body induces deformation and pore pressure change. Deformation may change hydrogeological and elastic properties, which alters the mechanical behaviour and results in non‐linearity. To investigate this interaction effect in a heterogeneous porous medium, a stochastic poroelastic model is proposed. Monte Carlo simulations are performed to determine the mean and uncertainty of the parameter changes, displacement, and change in pore water pressure. Hydraulic conductivity is treated as the only random variable in the coupled geomechanics‐flow system due to its large variation compared to other mechanical and hydrogeological properties in natural environments. The three considered non‐linear models for the interaction between parameters and deformation are those that consider (1) porosity and hydraulic conductivity; (2) porosity and Young's modulus; and (3) a combined effect that includes porosity, hydraulic conductivity, and Young's modulus. Boundary effects on the coupled system are also explored. The relationships between changes of porosity, hydraulic conductivity, and Young's modulus are analytically shown to be non‐linear. Among the considered parameters, the deformation effect induces the largest reduction in hydraulic conductivity. The deformation‐induced change in hydraulic conductivity shows the most significant effect on the mean and variance of the change in pore water pressure and displacement, while changes in Young's modulus have the least effect. When the deformation effect is considered, the superposition relationship does not exist in the mean displacement and mean change in pore water pressure for the three scenarios considered; it exists for the case without deformation effects. Deformation also causes a reduction in the effective hydraulic conductivity for the whole domain. The scenario that considers both loading and discharge boundaries has larger changes in hydrogeological and geo‐mechanical parameters than those in scenarios that consider loading and discharge boundaries separately. The results indicate that the interaction between deformation and changes in parameters has a profound effect on the poroelastic system. The effect of deformation should thus be considered in modelling and practice. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Streambed hydraulic conductivity is one of the main factors controlling variability in surface water‐groundwater interactions, but only few studies aim at quantifying its spatial and temporal variability in different stream morphologies. Streambed horizontal hydraulic conductivities (Kh) were therefore determined from in‐stream slug tests, vertical hydraulic conductivities (Kv) were calculated with in‐stream permeameter tests and hydraulic heads were measured to obtain vertical head gradients at eight transects, each comprising five test locations, in a groundwater‐dominated stream. Seasonal small‐scale measurements were taken in December 2011 and August 2012, both in a straight stream channel with homogeneous elevation and downstream of a channel meander with heterogeneous elevation. All streambed attributes showed large spatial variability. Kh values were the highest at the depositional inner bend of the stream, whereas high Kv values were observed at the erosional outer bend and near the middle of the channel. Calculated Kv values were related to the thickness of the organic streambed sediment layer and also showed higher temporal variability than Kh because of sedimentation and scouring processes affecting the upper layers of the streambed. Test locations at the channel bend showed a more heterogeneous distribution of streambed properties than test locations in the straight channel, whereas within the channel bend, higher spatial variability in streambed attributes was observed across the stream than along the stream channel. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
孙小龙  向阳  李源 《地震学报》2020,42(6):719-731
以河南范县井为例,利用不同的水力响应模型分析了井水位对地震波、固体潮和气压的响应特征,并基于相关水力响应模型反演估算了含水层的水力参数。结果显示:在高频加载作用过程中,井-含水层系统中的水流模式以水平向为主,而在低频加载作用过程中,则为水平向和垂直向共存的混合模式;利用周期为10—102 s的高频段的地震波响应模型估算的含水层导水系数值较大,为7.20×10?3 m2/s,利用周期为3.75×104 s的低频段的固体潮响应模型估算的含水层导水系数值较小,为2.02×10?6 m2/s,而利用周期为102—104 s的中等频率段的气压响应模型得到的估算值介于二者之间,为3.44×10?5 m2/s。由此分析认为,在周期性加载作用过程中,井-含水层系统内的水流模式与加载频率有关,基于不同水力响应模型反演估算的含水层水力参数存在尺度效应。本研究取得的认识,既可为井水位动态响应的机理解释提供理论基础,也可为目标含水层水力参数的原位测量提供技术支撑。   相似文献   

6.
This paper addresses the issue of flow in heterogeneous leaky confined aquifers subject to leakage. The leakage into the confined aquifer is driven by spatial and periodic fluctuations of water table in an overlying phreatic aquifer. The introduction of leakage leads to non-uniformity in the mean head gradient and results in nonstationarity in hydraulic head and velocity fields. Therefore, a nonstationary spectral approach based on Fourier–Stieltjes representations for the perturbed quantities is adopted to account for the spatial variability of nonstationary head fields. Closed-form expressions for the variances of hydraulic head and specific discharge are developed in terms of statistical properties of hydraulic parameters. The results indicate that the spatiotemporal variations in leakage leads to enhanced variability of the hydraulic head and of the specific discharge, which increase with distance from any arbitrary reference point. The coefficient of leakage and the spatial structure of log transmissivity field and of the amplitude of water table fluctuation are critical in quantifying the variability of the hydraulic head and of the specific discharge.  相似文献   

7.
The cause for continuous induced seismicity at Koyna is not well understood. A heuristic model based on various physical parameters observed at Koyna is being proposed to explain the ongoing seismicity. This model contains two essential elements: (i) Intersecting faults near Koyna provide means of stress build-up in response to plate tectonic forces. (ii) The annual reservoir loading cycle and changes in the ground water table perturb this stress build-up by an influx of pore pressure in a fluid infiltrated medium. Hence, the spatial and temporal pattern of the pore prussure distribution and the seismicity will be governed by the location and hydromechanical properties of the faults and fractures. The predictions of the model can be tested by comparing the temporal and spatial pattern of seismicity with the changes in lake level and water table.  相似文献   

8.
It is critical to understand and quantify the temporal and spatial variability in hillslope hydrological data in order to advance hillslope hydrological studies, evaluate distributed parameter hydrological models, analyse variability in hydrological response of slopes and design efficient field data sampling networks. The spatial and temporal variability of field‐measured pore‐water pressures in three residual soil slopes in Singapore was investigated using geostatistical methods. Parameters of the semivariograms, namely the range, sill and nugget effect, revealed interesting insights into the spatial structure of the temporal situation of pore‐water pressures in the slopes. While informative, mean estimates have been shown to be inadequate for modelling purposes, indicator semivariograms together with mean prediction by kriging provide a better form of model input. Results also indicate that significant temporal and spatial variability in pore‐water pressures exists in the slope profile and thereby induces variability in hydrological response of the slope. Spatial and temporal variability in pore‐water pressure decreases with increasing soil depth. The variability decreases during wet conditions as the slope approaches near saturation and the variability increases with high matric suction development following rainfall periods. Variability in pore‐water pressures is greatest at shallow depths and near the slope crest and is strongly influenced by the combined action of microclimate, vegetation and soil properties. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
The estimation of recharge through groundwater model calibration is hampered by the nonuniqueness of recharge and aquifer parameter values. It has been shown recently that the estimability of spatially distributed recharge through calibration of steady‐state models for practical situations (i.e., real‐world, field‐scale aquifer settings) is limited by the need for excessive amounts of hydraulic‐parameter and groundwater‐level data. However, the extent to which temporal recharge variability can be informed through transient model calibration, which involves larger water‐level datasets, but requires the additional consideration of storage parameters, is presently unknown for practical situations. In this study, time‐varying recharge estimates, inferred through calibration of a field‐scale highly parameterized groundwater model, are systematically investigated subject to changes in (1) the degree to which hydraulic parameters including hydraulic conductivity (K) and specific yield (Sy) are constrained, (2) the number of water‐level calibration targets, and (3) the temporal resolution (up to monthly time steps) at which recharge is estimated. The analysis involves the use of a synthetic reality (a reference model) based on a groundwater model of Uley South Basin, South Australia. Identifiability statistics are used to evaluate the ability of recharge and hydraulic parameters to be estimated uniquely. Results show that reasonable estimates of monthly recharge (<30% recharge root‐mean‐squared error) require a considerable amount of transient water‐level data, and that the spatial distribution of K is known. Joint estimation of recharge, Sy and K, however, precludes reasonable inference of recharge and hydraulic parameter values. We conclude that the estimation of temporal recharge variability through calibration may be impractical for real‐world settings.  相似文献   

10.
Research shows that water repellency is a key hydraulic property that results in reduced infiltration rates in burned soils. However, more work is required in order to link the hydrological behaviour of water repellent soils to observed runoff responses at the plot and hillslope scale. This study used 5 M ethanol and water in disc infiltrometers to quantify the role of macropore flow and water repellency on spatial and temporal infiltration patterns in a burned soil at plot (<10 m2) scale in a wet eucalypt forest in south‐east Australia. In the first summer and winter after wildfire, an average of 70% and 60%, respectively, of the plot area was water repellent and did not contribute to infiltration. Macropores (r > 0·5 mm), comprising just 5·5% of the soil volume, contributed to 70% and 95%, respectively, of the field‐saturated and ponded hydraulic conductivity (Kp). Because flow occurred almost entirely via macropores in non‐repellent areas, this meant that less than 2·5% of the soil surface effectively contributed to infiltration. The hydraulic conductivity increased by a factor of up to 2·5 as the hydraulic head increased from 0 to 5 mm. Due to the synergistic effect of macropore flow and water repellency, the coefficient of variation (CV) in Kp was three times higher in the water‐repellent soil (CV = 175%) than under the simulated non‐repellent conditions (CV = 66%). The high spatial variability in Kp would act to reduce the effective infiltration rate during runoff generation at plot scale. Ponding, which tend to increase with increasing scale, activates flow through macropores and would raise the effective infiltration rates at larger scales. Field experiments designed to provide representative measurements of infiltration after fire in these systems must therefore consider both the inherent variability in hydraulic conductivity and the variability in infiltration caused by interactions between surface runoff and hydraulic conductivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Evaluation of flow and transport processes in a watershed‐scale requires that the watershed be divided into homogenous spatial units referred to as hydrologically similar units (HSUs). Although a few discretization schemes are already in use, a universally acceptable method of obtaining HSUs is yet to emerge. In this study, we developed a fuzzy inference system (FIS) to classify the saturated hydraulic conductivity (Ks) and two water‐retention parameters α and n into fuzzy logic‐based soil hydrologic classes (FSHCs). Analysis of these classes showed that soil properties within an FSHC have less variability and those between two FSHCs have large variability. This result suggested that soils belonging to a specific FSHC may be more similar than those across different FSHCs and may be grouped together to represent an HSU. Soils within a specific hydrologic class were aggregated to delineate HSUs within the watershed. For the Dengei Pahad micro‐watershed (DPW), this approach showed five distinct regions representing a discretized zone having similar soil hydraulic properties. Application of this approach on a larger international database of soil hydraulic properties revealed that the developed hydrologic classes are quite comparable across different databases. The delineated HSUs based on these FSHCs were also better than the soil series map of the watershed in maintaining the soil heterogeneity of the watershed. Moreover, this new discretization scheme using the SWAT modelling environment showed better performance than the soil series‐based discretization approach. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Characterization of hydraulic conductivity (K) in aquifers is critical for evaluation, management, and remediation of groundwater resources. While estimates of K have been traditionally obtained using hydraulic tests over discrete intervals in wells, geophysical measurements are emerging as an alternative way to estimate this parameter. Nuclear magnetic resonance (NMR) logging, a technology once largely applied to characterization of deep consolidated rock petroleum reservoirs, is beginning to see use in near‐surface unconsolidated aquifers. Using a well‐known rock physics relationship—the Schlumberger Doll Research (SDR) equation—K and porosity can be estimated from NMR water content and relaxation time. Calibration of SDR parameters is necessary for this transformation because NMR relaxation properties are, in part, a function of magnetic mineralization and pore space geometry, which are locally variable quantities. Here, we present a statistically based method for calibrating SDR parameters that establishes a range for the estimated parameters and simultaneously estimates the uncertainty of the resulting K values. We used co‐located logging NMR and direct K measurements in an unconsolidated fluvial aquifer in Lawrence, Kansas, USA to demonstrate that K can be estimated using logging NMR to a similar level of uncertainty as with traditional direct hydraulic measurements in unconsolidated sediments under field conditions. Results of this study provide a benchmark for future calibrations of NMR to obtain K in unconsolidated sediments and suggest a method for evaluating uncertainty in both K and SDR parameter values.  相似文献   

13.
Surface soil hydraulic properties are key factors controlling the partition of rainfall and snowmelt into runoff and soil water storage, and their knowledge is needed for sound land management. The objective of this study was to evaluate the effects of three land uses (native grass, brome grass and cultivated) on surface soil hydraulic properties under near‐saturated conditions at the St Denis National Wildlife Area, Saskatchewan, Canada. For each land use, water infiltration rates were measured using double‐ring and tension infiltrometers at ?0·3, ?0·7, ?1·5 and ?2·2 kPa pressure heads. Macroporosity and unsaturated hydraulic properties of the surface soil were estimated. Mean field‐saturated hydraulic conductivity (Kfs), unsaturated hydraulic conductivity at ?0·3 kPa pressure head, inverse capillary length scale (α) and water‐conducting macroporosity were compared for different land uses. These parameters of the native grass and brome grass sites were significantly (p < 0·1) higher than that of the cultivated sites. At the ?0·3 kPa pressure head, hydraulic conductivity of grasslands was two to three times greater than that of cultivated lands. Values of α were about two times and values of Kfs about four times greater in grasslands than in cultivated fields. Water‐conducting macroporosity of grasslands and cultivated fields were 0·04% and 0·01% of the total soil volume, respectively. Over 90% of the total water flux at ?0·06 kPa pressure head was transmitted through pores > 1·36 × 10?4 m in diameter in the three land uses. Land use modified near‐saturated hydraulic properties of surface soil and consequently may alter the water balance of the area by changing the amount of surface runoff and soil water storage. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
The distribution of soil hydraulic and physical properties strongly influences runoff processes in landscapes. Although much work has been done to quantify and predict the properties of hillslope soils, far less is known about the distribution of soil properties in valley floors. A technique that links the estimation and distribution of soil hydraulic properties in valleys, with easily identified geomorphic features, was developed along a 2 km length of a valley at Brooks Creek in New South Wales, Australia. Soil physical and hydraulic property data were collected across a set of floodplain and fan features within the valley and analysed statistically to determine if soil properties varied significantly between geomorphic features and stratigraphic layers. The results show that the depth‐averaged saturated hydraulic conductivity, Ks, of the soil varies significantly with landform: fan units have Kg values that are twice that of floodplains and colluvial toeslope deposits have Ks values four times higher than floodplains. Given the notorious variability of Ks values in space, the strong statistical separation of soil properties by landform, backed up by strong separation of soil particle size by landform, suggests a way forward in understanding the distribution of soil properties in valleys and their influence on catchment hydrology. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
A method is presented for characterizing the spatial variability of water infiltration and soil hydraulic properties at the transect and field scales. The method involves monitoring a set of 10 Beerkan runs distributed over a 1-m length of soil, and running BEST (Beerkan estimation of soil transfer parameters) methods to derive hydraulic parameters. The Beerkan multi-runs (BMR) method provides a significant amount of data at the transect scale, allowing the determination of correlations between water infiltration variables and hydraulic parameters, and the detection of specific runs affected by preferential flow or water repellence. The realization of several BMRs at several transects on the same site allows comparison of the variation between locations (spatial variability at the field scale) and at the transect scale (spatial variability at the metre scale), using analysis of variance. From the results, we determined the spatial variability of water infiltration and hydraulic parameters as well as its characteristic scale (transect versus field).  相似文献   

16.
Evaporation from mosses and lichens can form a major component of the water balance, especially in ecosystems where mosses and lichens often grow abundantly, such as tundra, deserts and bogs. To facilitate moss representation in hydrological models, we parameterized the unsaturated hydraulic properties of mosses and lichens such that the capillary water flow through moss and lichen material during evaporation could be assessed. We derived the Mualem‐van Genuchten parameters of the drying retention and the hydraulic conductivity functions of four xerophilous moss species and one lichen species. The shape parameters of the retention functions (2.17 < n < 2.35 and 0.08 < α < 0.13 cm?1) ranged between values that are typical for sandy loam and loamy sand. The shapes of the hydraulic conductivity functions of moss and lichen species diverged from those of mineral soils, because of strong negative pore‐connectivity parameters (?2.840 < l < ?2.175) and low hydraulic conductivities at slightly negative pressure heads (0.016 < K0 < 0.280 cm/d). These K0 values are surprisingly low, considering that mosses are very porous. However, during evaporation, large pores and voids were air filled and did not participate in capillary water flow. Small K0 values cause mosses and lichens to be conservative with water during wet conditions, thus tempering evaporation compared to mineral soils. On the other hand, under dry conditions, mosses and lichens are able to maintain a moisture supply from the soil, leading to a higher evaporation rate than mineral soils. Hence, the modulating effect of mosses on evaporation possibly differs between wet and dry climates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Short-term changes in the hydraulic head of surface water bodies are known to influence the shallow response of hydraulically connected groundwaters. Associated with these fluctuations is the physical increase in stream water creating a mechanical load on the ground surface. This load is supported by the geologic materials (sediment or rock) and the pore fluid contained within the pores. Changes in this surface load have a direct effect on the total stress of the aquifer causing either a change in effective stress or fluid pressure. This response, predicted by the framework of linear poroelasticity, is a well-understood phenomenon in geologic materials. Currently, field measurements of the hydraulic response (i.e., fluid pressure) of aquifer materials are undergoing poroelastic loading due to dam releases in the Deerfield River Watershed in Massachusetts. An increase in stream stage from upstream dam releases causes an instantaneous pore fluid pressure increase at multiple depths and locations in the aquifer. This increase lasts anywhere from 15 to 40 minutes depending on the magnitude of the rise in the stream stage. Pore-pressure changes are well correlated to stream stage fluctuations for all of the recorded events. Poroelastic models created using basin stratigraphy and hydraulic properties of the aquifer response match the field observations well. Model results suggest that the overall stratigraphy is important in controlling the magnitude and duration of the poroelastic response. An improved understanding of responses such as these can be used to constrain uncertainties in model calibration and simulations of the contaminant migration in low permeability fine-grained (compressive) materials.  相似文献   

18.
Liquefaction of seabed under seismic loading is one of the main points that govern the overall stability of submarine pipeline. However, most previous investigations concerned only with free seabed and searched for seismic accumulative excess pore pressure by solving Terzaghi's consolidation equation containing pore pressure source term. It is not able to introduce two-dimensional structures such as submarine pipelines in one-dimensional problem, and it is also not able to obtain the distribution of seismic accumulative excess pore pressure in seabed around submarine pipelines by such a way. In this study, a FEM numerical analysis method for determining the liquefaction of sandy seabed around a buried pipeline under seismic loading is presented. The empirical mode of dynamic increase of pore pressure under undrained shearing induced by seismic loading is incorporated with two-dimensional dynamic consolidation equation and a numerical procedure based on FEM is developed to assess the accumulative excess pore pressure. By numerical computations, the accumulative process of pore pressure and liquefaction potential of seabed soil during seismic loading is evaluated. From a series of numerical computations based on the presented model with various parameters, the effects of soil characteristic parameters and pipeline geometry on seismic accumulative excess pore pressure around submarine pipeline and along the depth of seabed are explored in detail.  相似文献   

19.
研究注水诱发地震的特征、发生机理和最大可能震级等对开展诱发地震的预防、危险性评价、减灾策略制定等方面的工作具有重要意义。文章系统地梳理了国内外关于注水诱发地震研究的主要认识和分歧。结果表明:(1)诱发地震的最大可能震级由断层大小和应力状态等地质条件决定,受注水压力和累积注水量等参数的影响;(2)识别诱发地震的可靠方法取决于地震和注水之间的时空相关性,统计模型的参数以及断层活化分析等一系列证据链条;(3)当断层与流体储层之间存在水力连接时,孔隙压力扰动是诱发地震的主要发生机制,反之岩石基质体积变形引起的孔隙弹性应力变化主导了诱发地震的过程。此外,注水诱发的稳定滑动传播到断层的孕震部分、流体的化学作用和小地震级联触发效应也可能在注水诱发地震中发挥重要的作用。研究结果将为注水诱发地震机理研究和减轻破坏性诱发地震灾害提供一定的科学参考。  相似文献   

20.
Traditionally a streambed is treated as a layer of uniform thickness and low saturated hydraulic conductivity (K) in surface‐ and ground‐water studies. Recent findings have shown a high level of spatial heterogeneity within a streambed and such heterogeneity directly affects surface‐ and ground‐water exchange and can have ecological implications for biogeochemical transformations, nutrient cycling, organic matter decomposition, and reproduction of gravel spawning fish. In this study a detailed field investigation of K was conducted in two selected sites in Touchet River, a typical salmon spawning stream in arid south eastern Washington, USA. In‐stream slug tests were conducted to determine K following the Bouwer and Rice method. For the upper and lower sites, each 50 m long and 9 m wide and roughly 20 m apart, a sampling grid of 5 m longitudinally and 3 m transversely was used. The slug tests were performed for each horizontal coordinate at 0·3–0·45, 0·6–0·75, 0·9–1·05 and 1·2–1·35 m depth intervals unless a shallower impenetrable obstruction was encountered. Additionally, water levels were measured to obtain vertical hydraulic gradient (VHG) between each two adjacent depth intervals. Results indicated that K ranged over three orders of magnitude at both the upper and lower sites and differed between the two sites. At the upper site, K did not differ significantly among different depth intervals based on nonparametric statistical tests for mean, median, and empirical cumulative distribution, but the spatial pattern of K varied among different depth intervals. At the lower site, K for the 0·3–0·45 m depth interval differed statistically from those at other depth intervals, and no similar spatial pattern was found among different depth intervals. Zones of upward and downward water flow based on VHG also varied among different depth intervals, reflecting the complexities of the water flow regime. Detailed characterization of the streambed as attempted in this study should be helpful in providing information on spatial variations of streambed hydraulic properties as well as surface‐ and ground‐water interaction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号