首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
运用金汞齐-冷原子荧光光谱法(CVAFS)和气相色谱技术(GC),对贵州省草海不同水文季节(枯水期和丰水期)表层水中汞的各种赋存形态,包括总汞(HgT)、溶解态汞(HgD)、活性汞(HgR)、颗粒态汞(HgP)、总甲基汞(MeHgT)、溶解态甲基汞(MeHgD)和颗粒态甲基汞(MeHgP)以及沉积物间隙水剖面中的溶解态总汞和甲基汞含量进行了测定.结果显示:草海表层水体总汞浓度为1.7-9.0ng/L,活性汞浓度为0.06-1.4ng/L,总甲基汞浓度为0.11-0.67ng/L.沉积物间隙水中溶解态汞浓度为8.6-39.6ng/L,溶解态甲基汞浓度为0.11-4.9ng/L.实验数据表明,草海湖水以溶解态汞为主,其占总汞的比例为枯水期87%,丰水期51%,溶解态汞与总汞呈显著相关(丰水期P<0.01;枯水期P<0.05),颗粒态汞与总汞也呈显著相关(丰水期P<0.01;枯水期P<0.05).溶解态甲基汞与总甲基汞呈显著相关(丰水期P<0.01;枯水期P<0.05),表明溶解态甲基汞控制总甲基汞的分布.沉积物间隙水溶解态汞与溶解态甲基汞浓度明显高于上覆水体,表明沉积物为草海湖水中汞的一个重要来源.  相似文献   

2.
The main aim of this research was to assess the mercury transport from an estuarine basin with a background of anthropogenic contamination during a spring tidal cycle (year 2009) and compare it with two previous tidal cycles (years 1994 and 1999), as part of a long‐term monitoring program. Results showed that effective mercury transport occurs both in the dissolved and particulate fractions (0.18 and 0.20 kg per tidal cycle, respectively), and despite an overall decrease in environmental contamination, results more than double previous findings on particulate transport in the system. These findings result essentially from changes in the tidal prism (net export of 2 million m3 of water), given that both dissolved and particulate concentrations did not increase over time. Hydrodynamic simulations were performed to evaluate the effect of physical disturbance (dredging) and weather events (increased freshwater flow) in these processes, and results suggest the increased freshwater flow into the system as the main forcing function for the mercury transport increment. These results highlight the importance of long‐term monitoring programs, since despite an overall improvement in local contamination levels, the enhancement of transport processes through hydrological changes increases environmental pressure away from the contamination source. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Two expeditions (October 1989 and May 1992) were carried out to two points of the main Amazon River channel and four tributaries. The Solimões and Madeira rivers, taking their origin in the Andes, are whitewater rivers. The Negro River is a typical acid, blackwater river. The Trombetas River flows through bauxite‐rich areas, and is characterized by low concentrations of dissolved humic substances. The 238U, 234U, 232Th and 230Th activities were recorded from dissolved, suspended particulate phases and river bank sediments. The latter were analysed for their 226Ra, 228Ra and 210Pb contents, and also subjected to leaching with 0·2 M hydroxylamine–hydrochloride solution to determine the concentrations of radionuclides bound to amorphous Fe hydroxides and Mn oxides and hydroxides. The dissolved U average concentration in the Amazon system is ten times lower than the mean world river concentration. The uranium concentration observed at Óbidos in the lower Amazon (0·095 µg L?1), where the U content in the river bank sediments and suspended matter is lowest, suggests U release from the solid phase during river transport. About 485 t of U are transported annually to the Amazon delta area in dissolved form, and 1943 t bound to suspended particulate matter. Total U and Th concentrations in the river bank sediments ranged from 1·59 to 7·14 µg g?1 and from 6·74 to 32 µg g?1, respectively. The highest concentrations were observed in the Trombetas River. The proportion extracted by means of the hydroxylamine solution (HL) was relatively high for U in the Trombetas river bank sediment (31%) and for Th in the Solimões sediment (30%). According to the alpha recoil effects, the 234U/238U activity ratios of the Andean river waters and downstream Amazon water (Óbidos) were >1, but were <1 in the Negro River (at Manaus). The activity ratios of dissolved U correlate with pH and also with the U activity ratios in the river bank sediment hydroxylamine extracts. As expected, the 234U/238U activity ratios in river bank sediments were <1 in the Andean rivers and in the downstream Amazon, but they were >1 in the Trombetas and Negro rivers. Such ratios probably result from the binding of dissolved uranium to solid sediment. The 228Th/232Th ratios of river bank sediments were close to unity (except for the Negro River, where it is lower), suggesting no significant Th exchanges between the river water and the sediment. The 226Ra/232Th activity ratios were <1, and the 226Ra/228Ra activity ratios generally were significantly higher than the activity ratios of their respective parents. This perhaps is the result of easier leaching of the 226Ra parent, 230Th, from solid material (owing to the alpha recoil effect) than of the 228Ra parent. Uranium and thorium isotopes were used as tools to evaluate the chemical weathering rate of rocks in the Amazon system, which was estimated to be 2·7 cm 1000 year?1 s?1. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
《国际泥沙研究》2021,36(6):747-755
The magnitude and variation of the sediment loads transported by rivers have important implications for the functioning of river systems and changes in the sediment loads of rivers are driven by numerous factors. In this paper, the key drivers of changes in the sediment loads of the major rivers of China are identified by reviewing recent studies of changes in their sediment loads. Except for the Songhua River, which presents no clear tendency of change in runoff or sediment load, nearly all the major rivers of China are characterized by an apparent decline in annual sediment load. The total annual sediment load of major Chinese rivers transported to the coast decreased from 2.03 billion t/yr during the period 1955–1968 to 0.50 billion t/yr during the period 1997–2010. The primary drivers of changes in the sediment loads of the rivers are dam construction, implementation of soil and water conservation measures, catchment disturbance, agricultural practices, sand mining and climate change. Examples drawn from Chinese rivers are used to demonstrate the importance of these drivers. Construction of a large number of reservoirs in the Yangtze River basin represents the primary driver for the reduced sediment load of the Yangtze River. The implementation of soil and water conservation programmes is one of the key drivers for the sharp decline in the sediment load of the Yellow River. Catchment disturbance explains why the reduction of the sediment load of the Lancang-Mekong River at the Chiang Saen gauging station was much less than that at the Gajiu gauging station upstream. A reduction in sediment load resulting from the expansion of agricultural production may be the main driver for the reduced sediment load of the Huaihe River. The decrease in the sediment load of the Pearl River has been influenced by sand mining activities. Climate change is one of the key drivers responsible for the greatly reduced sediment load of the rivers in the Haihe River Basin.  相似文献   

5.
Determinations of dissolved reactive and total dissolved mercury, particulate and sedimentary mercury, dissolved organic carbon (DOC), particulate organic carbon (POC) and suspended particulate matter (SPM) have been made in the estuary of river Douro, in northern Portugal. The estuary was stratified by salinity along most of its length, it had low concentrations of SPM, typically <20 mg dm(-3), and concentrations of DOC in the range <1.0-1.8 mg dm(-3). The surface waters had a maximum dissolved concentration of reactive mercury of about 10 ng dm(-3), whereas for the more saline bottom waters it was about 65 ng dm(-3). The surface waters had maximum concentrations of total suspended particulate mercury of approximately 7 microg g(-1) and the bottom waters were always <1 microg g(-1). Concentrations of mercury in sediments was low and in the range from 0.06 to 0.18 microg g(-1). The transport of mercury in surface waters was mainly associated with organic-rich particulate matter, while in bottom waters the dissolved phase transport of mercury is more important. Lower particulate organic matter, formation of chlorocomplexes in more saline waters and eventually the presence of colloids appear to explain the difference of mercury partitioning in Douro estuarine waters.  相似文献   

6.
To investigate the effects of anthropogenic activity, namely, land use change and reservoir construction, on particulate organic carbon (POC) transport, we collected monthly water samples during September 2007 to August 2009 from the Longchuanjiang River to understand seasonal variations in the concentrations of organic carbon species and their sources and the yield of organic and inorganic carbon from the catchment in the Upper Yangtze basin. The contents of riverine POC, total organic carbon and total suspended sediment (TSS) changed synchronously with water discharge, whereas the contents of dissolved organic carbon had a small variation. The POC concentration in the suspended sediment decreased non‐linearly with increasing TSS concentration. Higher molar C/N ratio of particulate organic matter (average 77) revealed that POC was dominated by terrestrially derived organic matter in the high flows and urban wastewaters in the low flows. The TSS transported by this river was 2.7 × 105 t/yr in 2008. The specific fluxes of total organic carbon and dissolved inorganic carbon (DIC) were 5.6 and 6 t/km2/yr, respectively, with more than 90% in the high flow period. A high carbon yield in the catchment of the upper Yangtze was due to human‐induced land use alterations and urban wastes. Consistent with most rivers in the monsoon climate regions, the dissolved organic carbon–POC ratio of the export flux was low (0.41). Twenty‐two percent (0.9 t/km2/yr) of POC out of 4 t/km2/yr was from autochthonous production and 78% (3.1 t/km2/yr) from allochthonous production. The annual sediment load and hence the organic carbon flux have been affected by environmental alterations of physical, chemical and hydrological conditions in the past 50 years, demonstrating the impacts of human disturbances on the global and local carbon cycling. Finally, we addressed that organic carbon flux should be reassessed using adequate samples (i.e. at least two times in low‐flow month, four times in high‐flow month and one time per day during the flood period), daily water discharge and sediment loads and appropriate estimate method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
In 2006, organotins pollution were investigated in the coastal environment of Xiamen, China. Six species of organotin compounds including tributyltin, triphenyltin and their degradation compounds were quantified in the dissolved and particulate phases of the water, and in the sediment using GC-FPD. The concentrations of organotin compounds ranged from 2.2 to 160 ng (Sn) L(-1) dissolved in the water, 0.14-6.7 ng (Sn) L(-1) in suspended particulate matter and nd approximately 26 ng (Sn) g(-1) (dry weight) in the sediment. The highest concentration of total organotin or tributyltin in water was found in a shipyard and at a station near the inlet of the harbor, indicating fresh inputs of antifouling paints to Xiamen's coastal environment. Organotin speciation was performed on sediment cores to investigate contamination trends over the past ten years in the harbor. The results of (210)Pb dating indicated that Xiamen western harbor suffered contamination during 2000. The environmental behavior of organotins such as the enhancement of the microlayer, partitioning between water/suspended particulate matter and between water/sediment are also discussed in this paper.  相似文献   

8.
Accurately measuring sediment flux in large rivers remains a challenge due to the spatial and temporal cross‐sectional variability of suspended sediment concentrations in conjunction with sampling procedures that fail to accurately quantify these differences. This study presents a field campaign methodology that can be used to improve the measurement of suspended sediment concentrations in the Amazon River or similarly large rivers. The turbidity signal and Rouse model are together used in this study to define the spatial distribution of suspended sediment concentrations in a river cross‐section, taking into account the different size fractions of the sediment. With this methodology, suspended sediment fluxes corresponding to each sediment class are defined with less uncertainty than with manual samples. This paper presents an application of this methodology during a field campaign at different gauging stations along a 3,000‐km stretch of the Solimões/Amazon River during low water and flood periods. Vertical concentration profiles and Rouse model applications for distinctive sediment sizes are explored to determine concentration gradients throughout a cross‐section of the river. The results show that coupling both turbidity technology and the Rouse model may improve our understanding of the spatial distribution of different sediments fractions sizes in the Solimões/Amazon River. These data are very useful in defining a pertinent monitoring strategy for suspended sediment concentrations in the challenging context of large rivers.  相似文献   

9.
We report the results of a detailed study of dissolved Sr isotopes in the Solimões and Beni‐Madeira Rivers of the Amazon basin. This study developed data collected over 8 years indicating large spatial and temporal variations in dissolved Sr isotopes among the rivers of the Amazon basin. The large 87Sr/86Sr variations were found to be correlated with the geology of the source areas of the suspended sediments. The Beni‐Madeira River displays a high average 87Sr/86Sr ratio and large 87Sr/86Sr fluctuations during the hydrological cycle. This large average value and fluctuations were related to the presence of Precambrian rocks and Ordovician sediments in the source area of the suspended sediment of the river. In contrast, the Solimões River displays a narrow range of Sr isotope ratio variations and an average value close to 0.709. This river drains mostly Phanerozoic rocks of northern Peru and Ecuador that are characterized by low Sr isotope ratios. The isotopic fluctuations in the Beni‐Madeira River were observed to propagate downstream at least as far as Óbidos. This signal is characterized by an inverse relationship between the concentration of elemental Sr and its isotopic ratios. We further demonstrate that the Sr isotopic composition and content in the Beni‐Madeira River is controlled by suspended sediments derived from the Andes. Despite draining areas underlain by Precambrian rocks and having high 87Sr/86Sr ratios, such rivers as the Negro and Tapajós play a minor role in the total Sr budget of the Amazon basin. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The environmental quality of the Rhone River (Switzerland-France) has been assessed with a geochemical survey of the pollutants bound to suspended sediments. Ten samples were collected between Lake Geneva and the Mediterranean Sea in Nobember 1989 by continuous flow centrifugation and analysed for grain size distribution, carbonate, organic C, N, forms of particulate P, trace metals, and organic compounds (chlorobenzenes, organochlorine pesticides, PCBs, and PAHs). Four bed sediment samples were also studied for comparative purposes. The suspended solids provide lower variance by parameter than the bed sediments and are clearly most suitable for synoptic monitoring.The Upper Rhone River carries a glacial derived sediment with a low nutrient content, the stretch from Geneva to Lyon provides a sediment dominated by carbonate, and in the Lower Rhone the organic matter and phosphorus are relatively increased, mainly due to wastewater effluents and to an industrial P source. High concentrations of metals and organic micropollutants downstream of Lyon indicate a multiple contamination in the Lower Rhone, whereas more specific inputs are located downstream of Geneva and Arles.The comparison with data from other polluted major systems, the Rhine, the Niagara and the Detroit rivers, shows on overall similarity confirming that the Rhone quality is degraded downstream of Lyon. The levels of particular concern are for Hg, DDT metabolites which reveal a recent release in the basin, PCBs with a likely high chlorine content, and PAHs.The statistical evaluation of the compositional variables indicates a limited number of well defined associations, suggesting that the contamination of the suspended sediments results from the combination of numerous and intermittent point and diffuse sources in the Rhone River basin.  相似文献   

11.
In the catchment area of the Pomeranian Bay an average mercury concentration of 178 ng/l in precipitation was determined. Eight different flowing waters showed mean concentrations between 105 ng/l (?upawa) and 500 ng/l (Odra), a pronounced annual cycle having been demonstrated for the concentrations and for the freights with the minimum in February/March and the maximum in August/September. The total freight of the eight rivers amounts to 19.5 t/a, the share of the Wisla being 11 t/a. The ratio between the mercury precipitation of 335 to 410 μg/m2a Hg and the run-off varies of 30 … 75 μg/m2a Hg for the individual river basins between 0.08 and 0.21. In the Baltic Sea, the mercury concentrations are 40 ng/l in the open sea, 50 ng/l in the coastal region and 290 … 390 ng/l near the estuaries. Trough the eight investigated rivers about 48 km3/a water run off into the Baltic Sea with about 20 t/a Hg. The total introduction of Hg into the Baltic Sea is estimated at 100 t/a with the river water, 35 t/a with precipitation and 35 t/a with dust.  相似文献   

12.
Rivers of South and Southeast Asia disgorge large suspended sediment loads, reflecting exceptionally high rates of erosion promoted by natural processes (tectonic and climatic) and anthropogenic (land‐use change) activities that are characteristic of the region. While particulate carbon and nitrogen fluxes have been characterized in some large Asian rivers, less is known about the headwater systems where much sediment and organic material are initially mobilized. This study, conducted in the 74‐km2 Mae Sa Experimental Catchment in northern Thailand, shows that the Sa River is an important source for particulate organic carbon (POC) and particulate organic nitrogen (PON) transported to larger river systems and downstream reservoirs. However, the yields during three years of investigation varied greatly: 5.0–22.3 Mg POC km?2 y?1 and 0.48–2.02 Mg PON km?2 y?1. The 22.3 Mg POC km?2 y?1 yield is the highest reported for any river on the Asian continent. Stream samples collected during 12 storms showed that almost 3% of the total suspended solid load is POC 0.7 µm to 2.0 mm in size. This percentage is higher than other values for most large rivers on the continent. Further, we documented a strong pulse hysteretic behaviour in the stream, whereby peak fluxes of POC and PON are often delayed (anticlockwise hysteresis) or accelerated (clockwise hysteresis) relative to stream flow peaks (or are complex), complicating the prediction of storm‐based or annual particulate carbon and nitrogen fluxes. Stream turbidity and total suspended sediment are reasonable proxies for POC and PON concentrations, while stream discharge is not a good predictor variable. Observed C:N ratios for measured particulate samples range from 3 to 83, with the high‐end values likely associated with fresh (non‐decomposed) vegetative material greater than 2 mm in diameter. The C:N ratio (weighted based on three sediment sizes) for 12 events ranges from 7.5 to 15.3. These modest values reflect the relatively low C:N ratios for small size fractions (0.7–0.63 µm) that comprise 50–90% of the TSS load in the events. Overall, organic material <0.63 µm contribute about 75% of the total POC load and 80% of the PON load. The annual C:N ratio for the river is approximately 10–11. Collectively, our findings indicate the occasionally high yields make the Sa River—and potentially other similar headwater rivers—a hot spot for POC and PON transported to downstream water bodies. Complex hysteresis patterns and high year‐to‐year variability hinders our ability to calculate and predict these yields without continuous, automated monitoring of discharge and turbidity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a field investigation on river channel storage of fine sediments in an unglaciated braided river, the Bès River, located in a mountainous region in the southern French Prealps. Braided rivers transport a very large quantity of bedload and suspended sediment load because they are generally located in the vicinity of highly erosive hillslopes. Consequently, these rivers play an important role because they supply and control the sediment load of the entire downstream fluvial network. Field measurements and aerial photograph analyses were considered together to evaluate the variability of fine sediment quantity stored in a 2·5‐km‐long river reach. This study found very large quantities of fine sediment stored in this reach: 1100 t per unit depth (1 dm). Given that this reach accounts for 17% of the braided channel surface area of the river basin, the quantities of fine sediment stored in the river network were found to be approximately 80% of the mean annual suspended sediment yields (SSYs) (66 200 t year?1), comparable to the SSYs at the flood event scale: from 1000 t to 12 000 t depending on the flood event magnitude. These results could explain the clockwise hysteretic relationships between suspended sediment concentrations and discharges for 80% of floods. This pattern is associated with the rapid availability of the fine sediments stored in the river channel. This study shows the need to focus on not only the mechanisms of fine sediment production from hillslope erosion but also the spatiotemporal dynamics of fine sediment transfer in braided rivers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Phosphorus (P) concentrations in sediments and in surface and interstitial water from three gravel bars in a large river (Garonne River, southern France) were measured daily, downstream of a wastewater treatment plant for a city of 740 000 inhabitants (Toulouse). Measurements were made of vertical hydraulic gradient (VHG), total dissolved phosphorus (TDP), soluble reactive phosphorus (SRP) and total phosphorus (TP) in water and of three extractable forms of phosphorus (water extractable, NaOH extractable and H2SO4 extractable) in hyporheic sediments from the gravel bars. Dissolved phosphorus was the major contributor to TP (74–79%) in both interstitial and surface waters on all sampling dates, and in most cases surface water P concentrations were significantly higher than interstitial concentrations. Hyporheic sediment TP concentrations ranged between 269 and 465 µg g?1 and were highest in fine sediment fractions. Acid‐extractable P, a non‐bioavailable form, represented at least 95% of sediment TP. A positive relationship was observed between VHG and TP in two of the gravel bars, with wells that were strongly downwelling having lower TP concentrations. These results suggest that in downwelling zones, hyporheic sediments can trap surface‐derived dissolved P, and that much of this P becomes stored in refractory particulate forms. Bioavailable P is mainly present in dissolved form and only occupies a small fraction of total P, with particulate P comprising the majority of total P. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The dynamics of dissolved and particulate N, P and organic C were examined for field drains, through a headwater (4 km2), into a mesoscale stream (51 km2) and river (1844 km2) catchment. Distributions of N and P forms were similar in the agricultural headwater and field drains; annual P fluxes of particulate and dissolved forms were of equal magnitude, whilst N was dominated by NO3–N. Across all scales organic P was an important, often dominant, component of the dissolved P. Temporal variation in nutrient concentrations and proportions was greatest in the headwater, where storms resulted in the generation of large concentrations of suspended particulate matter, particulate and dissolved P, particularly following dry periods. The data suggest that groundwater and minor point source inputs to the mesoscale catchment buffered the temporal variability in hydrochemistry relative to the headwater. Summer low flows were associated with large PO4–P concentrations in the mesoscale catchment at a critical time of biological sensitivity. At the largest river catchment scale, organic forms of C, N and P dominated. Inorganic nutrient concentrations were kept small through dilution by runoff from upland areas and biological processes converted dissolved N and P to particulate forms. The different processes operating between the drain/headwater to the large river scale have implications for river basin management. Given the prevalence of organic and particulate P forms in our catchment transect, the bioavailability of these fractions needs to be better understood.  相似文献   

16.
《Marine pollution bulletin》2009,58(6-12):419-424
In 2006, organotins pollution were investigated in the coastal environment of Xiamen, China. Six species of organotin compounds including tributyltin, triphenyltin and their degradation compounds were quantified in the dissolved and particulate phases of the water, and in the sediment using GC-FPD. The concentrations of organotin compounds ranged from 2.2 to 160 ng (Sn) L−1 dissolved in the water, 0.14–6.7 ng (Sn) L−1 in suspended particulate matter and nd  26 ng (Sn) g−1 (dry weight) in the sediment. The highest concentration of total organotin or tributyltin in water was found in a shipyard and at a station near the inlet of the harbor, indicating fresh inputs of antifouling paints to Xiamen’s coastal environment. Organotin speciation was performed on sediment cores to investigate contamination trends over the past ten years in the harbor. The results of 210Pb dating indicated that Xiamen western harbor suffered contamination during 2000. The environmental behavior of organotins such as the enhancement of the microlayer, partitioning between water/suspended particulate matter and between water/sediment are also discussed in this paper.  相似文献   

17.
The Yarlung Tsangpo River, which flows from west to east across the southern part of the Tibetan Plateau, is the longest river on the plateau and an important center for human habitation in Tibet. Suspended sediment in the river can be used as an important proxy for evaluating regional soil erosion and ecological and environmental conditions. However, sediment transport in the river is rarely reported due to data scarcity. Results from this study based on a daily dataset of 3 years from four main stream gauging stations confirmed the existence of great spatiotemporal variability in suspended sediment transport in the Yarlung Tsangpo River, under interactions of monsoon climate and topographical variability. Temporally, sediment transport or deposition mainly occurred during the summer months from July to September, accounting for 79% to 93% of annual gross sediment load. This coincided with the rainy season from June to August that accounted for 51% to 80% of annual gross precipitation and the flood period from July to September that accounted for approximately 60% of annual gross discharge. The highest specific sediment yield of 177.6 t/km2/yr occurred in the upper midstream with the highest erosion intensity. The lower midstream was dominated by deposition, trapping approximately 40% of total sediment input from its upstream area. Sediment load transported to the midstream terminus was 10.43 Mt/yr with a basin average specific sediment yield of 54 t/km2/yr. Comparison with other plateau‐originated rivers like the upper Yellow River, the upper Yangtze River, the upper Indus River, and the Mekong River indicated that sediment contribution from the studied area was very low. The results provided fundamental information for future studies on soil and water conservation and for the river basin management. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Most rivers in Taiwan are intermittent rivers with relatively steep slopes and carry rapid sediment‐laden flows during typhoon or monsoon seasons. A series of field experiments was conducted to collect suspended load data at the Tzu‐Chiang Bridge hydrological station of the lower Cho‐Shui River, which is a major river with the highest sediment yield in Taiwan. The river reach was aggrading with a high aspect ratio during the 1980s. Because of sand mining and extreme floods, it was incised and has had a relatively narrow main channel in recent years. The experimental results indicated that typical sediment transport equations can correctly predict the bed material load for low or medium sediment transport rates (e.g. less than about 1000 tons/day‐m). However, these equations far underestimate the bed material load for high sediment transport rates. The effects of cross‐sectional geometry change (i.e. river incision) and earthquakes on the sediment load were investigated in this study. An empirical sediment transport equation with consideration of the aspect ratio was also derived using the field data collected before and after river incision. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Deforestation and mining activities have proven to be very damaging to rivers because these activities disturb the environmental characteristics of rivers. Thus, the concentrations of dissolved organic carbon (DOC), particulate organic carbon (POC), particulate nitrogen (PN), and Chlorophyll‐a (Chl‐a) were measured monthly during 2 hydrological years in the Maroni and Oyapock Rivers to assess the dynamics and fluxes of organic carbon and nitrogen in these 2 Guiana Shield basins, which have been strongly (Maroni) and weakly (Oyapock) impacted by deforestation and mining activities. The 2‐year time series show that DOC, POC, PN, and Chl‐a concentrations vary seasonally with discharge in both rivers, indicating a hydrologically dominated control. Temporal patterns of DOC, POC, and PN indicate that these variables show maximum concentrations in rising waters due to the yield of organic matter and nitrogen accumulated in soils, which are incorporated into the rivers during rainfall. However, the Chl‐a concentrations were at a maximum during low‐water stages. The C/N and C/Chl‐a ratios also showed a seasonal trend, with lower values during the low water periods due to an increase in algal biomass. During high water, the POC in both rivers is the result of terrestrial organic matter, whereas during low‐water autochthonous organic matter can reach up to 34% of the POC. The mean annual fluxes of TOC and PN were higher (4.56 × 105 tonC year?1 and 1.77 × 104 tonN year?1, respectively) in the Maroni River than those (1.84 × 105 tonC year?1 and 0.54 × 104 tonN year?1, respectively) in the Oyapock River. However, the specific fluxes of DOC, POC, and PN from both basins were nearly the same. Although gold mining activities are performed in both basins, there is no conclusive evidence regarding the impact of these activities on the dynamics of organic matter and particulate nitrogen in the Maroni and Oyapock Rivers.  相似文献   

20.
Carbon transported by rivers is an important component of the global carbon cycle. Here, we report on organic carbon transport along the third largest river in China, the Songhua River, and its major tributaries. Water samples were collected seasonally or more frequently to determine dissolved organic carbon (DOC) and particulate organic carbon (POC) concentrations and C/N and stable carbon isotopic ratios. Principal component analysis and multiple regression analysis of these data, in combination with hydrological records for the past 50 years, were used to determine the major factors influencing the riverine carbon fluxes. Results indicate that the organic carbon in the Songhua River basin is derived mainly from terrestrial sources. In the 2008–2009 hydrological year, the mean concentrations of DOC and POC were 5.87 and 2.36 mg/L, and the estimated fluxes of the DOC and POC were 0.30 and 0.14 t·km?2·year?1, respectively. The riverine POC and DOC concentrations were higher in subcatchments with more cropland, but the area‐specific fluxes were lower, owing to decreased discharge. We found that hydrological characteristics and land‐use type (whether forest or cropland) were the most important factors influencing carbon transport in this system. Agricultural activity, particularly irrigation, is the principal cause of changes in water discharge and carbon export. Over the last 50 years, the conversion of forest to cropland has reduced riverine carbon exports mainly through an associated decrease in discharge following increased extraction of water for irrigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号