首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Geodynamics》2009,47(3-5):144-154
Monthly geopotential spherical harmonic coefficients from the GRACE satellite mission are used to determine their usefulness and limitations for studying glacial isostatic adjustment (GIA) in North-America. Secular gravity rates are estimated by unweighted least-squares estimation using release 4 coefficients from August 2002 to August 2007 provided by the Center for Space Research (CSR), University of Texas. Smoothing is required to suppress short wavelength noise, in addition to filtering to diminish geographically correlated errors, as shown in previous studies. Optimal cut-off degrees and orders are determined for the destriping filter to maximize the signal to noise ratio. The halfwidth of the Gaussian filter is shown to significantly affect the sensitivity of the GRACE data (with respect to upper mantle viscosity and ice loading history). Therefore, the halfwidth should be selected based on the desired sensitivity.It is shown that increase in water storage in an area south west of Hudson Bay, from the summer of 2003 to the summer of 2006, contributes up to half of the maximum estimated gravity rate. Hydrology models differ in the predictions of the secular change in water storage, therefore even 4-year trend estimates are influenced by the uncertainty in water storage changes. Land ice melting in Greenland and Alaska has a non-negligible contribution, up to one-fourth of the maximum gravity rate.The estimated secular gravity rate shows two distinct peaks that can possibly be due to two domes in the former Pleistocene ice cover: west and south east of Hudson Bay. With a limited number of models, a better fit is obtained with models that use the ICE-3G model compared to the ICE-5G model. However, the uncertainty in interannual variations in hydrology models is too large to constrain the ice loading history with the current data span. For future work in which GRACE will be used to constrain ice loading history and the Earth's radial viscosity profile, it is important to include realistic uncertainty estimates for hydrology models and land ice melting in addition to the effects of lateral heterogeneity.  相似文献   

2.
This paper tests and discusses different statistical methods for modelling secular rates of change of the geoid in North America. In particular, we use the method of principal component/empirical orthogonal functions (PC/EOF) analysis to model the geoid rates from Gravity Recovery and Climate Experiment (GRACE) satellite data. As demonstrated, the PC/EOF analysis is useful for studying the contributions from different signals (mainly residual hydrology signals and leakage effects) to the GRACE-derived geoid rates. The PC/EOF analysis leads to smaller geoid rates compared to the conventional least-squares fitting of a trend and annual and semi-annual cycles to the time series of the spherical harmonic coefficients. This is because we filter out particular spatiotemporal modes of the regional geoid changes.We apply the method of least-squares collocation with parameters to combine terrestrial data (GPS vertical velocities from the Canadian Base Network and terrestrial gravity rates from the Canadian Gravity Standardization Net) with the GRACE-derived vertical motion to obtain again the geoid rates. The combined model has a peak geoid rate of 1.4 mm/year in the southeastern area of Hudson Bay contrary to the GRACE-derived geoid rates that show a large peak of 1.6–1.7 mm/year west of Hudson Bay. We demonstrate that the terrestrial data, which have a longer time span than the GRACE data, are important for constraining the GRACE-derived secular signal in the areas that are well sampled by the data.  相似文献   

3.
Seasonal water storage change of the Yangtze River basin detected by GRACE   总被引:13,自引:0,他引:13  
1 Introduction Large-scale mass redistribution, or temporal varia- tion of mass within the Earth system, the driving force of interactions between solid Earth and geophysical fluids envelope (i.e., atmosphere, ocean, and hydro- sphere), is an important geophysical process critical to human life. Most of the interactions between solid Earth and the atmosphere/oceans happen at seasonal and inter-annual time scales. One important contribu- tor of mass redistribution at seasonal and inter-annual …  相似文献   

4.
The Earth’s gravity field observed by the Gravity Recovery and Climate Experiment (GRACE) satellite mission shows variations due to the integral effect of mass variations in the atmosphere, hydrosphere and geosphere. Several institutions, such as the GeoForschungsZentrum (GFZ) Potsdam, the University of Texas at Austin, Center for Space Research (CSR) and the Jet Propulsion Laboratory (JPL), Pasadena, provide GRACE monthly solutions, which differ slightly due to the application of different reduction models and centre-specific processing schemes. The GRACE data are used to investigate the mass variations in Fennoscandia, an area which is strongly influenced by glacial isostatic adjustment (GIA). Hence the focus is set on the computation of secular trends. Different filters (e.g. isotropic and non-isotropic filters) are discussed for the removal of high frequency noise to permit the extraction of the GIA signal. The resulting GRACE based mass variations are compared to global hydrology models (WGHM, LaDWorld) in order to (a) separate possible hydrological signals and (b) validate the hydrology models with regard to long period and secular components. In addition, a pattern matching algorithm is applied to localise the uplift centre, and finally the GRACE signal is compared with the results from a geodynamical modelling. The GRACE data clearly show temporal gravity variations in Fennoscandia. The secular variations are in good agreement with former studies and other independent data. The uplift centre is located over the Bothnian Bay, and the whole uplift area comprises the Scandinavian Peninsula and Finland. The secular variations derived from the GFZ, CSR and JPL monthly solutions differ up to 20%, which is not statistically significant, and the largest signal of about 1.2 Gal/year is obtained from the GFZ solution. Besides the GIA signal, two peaks with positive trend values of about 0.8 Gal/year exist in central eastern Europe, which are not GIA-induced, and also not explainable by the hydrology models. This may indicate that the recent global hydrology models have to be revised with respect to long period and secular components. Finally, the GRACE uplift signal is also in quite good agreement with the results from a simple geodynamical modelling.  相似文献   

5.
本文研究了新的全球冰川均衡调整(GIA)模型对南极冰盖质量平衡监测的影响,考虑现有冰川负荷模型和地幔黏滞度模型的差异,完整评估了结果的不确定性,最后结合GRACE和卫星测高的结果进行了对比分析.结果表明,GIA对GRACE监测的等效水柱变化有重大影响,较大的GIA影响出现在西南极,沿罗斯冰架-卡姆布冰流-罗尼冰架-南极...  相似文献   

6.
《Journal of Geodynamics》2010,49(3-5):157-165
Since 2002 the Earth’s gravity field is globally observed by the Gravity Recovery and Climate Experiment (GRACE) satellite mission. The GRACE monthly gravity field solutions, available from several analysis centres, reflect mass variations in the atmosphere, hydrosphere and geosphere. Due to correlated noise contained in these solutions, it is, however, first necessary to apply an appropriate filtering technique. The resulting, smoothed time series are applied not only to determine variations with different periodic signatures (e.g., seasonal, short and medium-term), but to derive long-periodic mass variations and secular trends as well. As the GRACE monthly solutions always show the integral effect of all mass variations, for separation of single processes, like the GIA (Glacial isostatic adjustment)-related mass increase in Fennoscandia, appropriate reduction models (e.g. from hydrology) are necessary.In this study we show for the example of the Fennoscandian uplift area that GRACE solutions from different analysis centres yield considerably different secular trends. Furthermore, it turns out that the inevitable filtering of the monthly gravity field models affects not only the amplitudes of the signals, but also their spatial resolution and distribution such as the spatial form of the detected signals. It also becomes evident that the determination of trends has to be performed together with the determination of periodic components. All periodic terms which are really contained in the data, and only such, have to be included. The restricted time span of the available GRACE measurements, however, limits the separation of long-periodic and secular signals. It is shown that varying the analysis time span affects the results considerably. Finally, a reduction of hydrological signals from the detected integral secular trends using global hydrological models (WGHM, LaDWorld, GLDAS) is attempted. The differences among the trends resulting from different models illustrate that the state-of-the-art hydrology models are not suitable for this purpose as yet. Consequently, taking the GRACE monthly gravity field solutions from one centre, choosing a single filter and applying an insufficiently reliable reduction model leads sometimes to a misinterpretation of considered geophysical processes. Therefore, one has to be cautious with the final interpretation of the results.  相似文献   

7.
冰川均衡调整对东亚重力和海平面变化的影响   总被引:2,自引:1,他引:1       下载免费PDF全文
新的全球冰川均衡调整(GIA)模型RF3L20(β=0.4)+ICE-4G考虑了地幔黏滞度沿横向的变化,其黏滞度参数得到大地测量、历史相对海平面变化观测和地震剪切波层析模型的较好约束.本文利用该模型预测了东亚现今重力变化和海平面变化,根据当前末次冰川时空变化和黏滞度参考模型中下地幔下部黏滞度认识的差异,评估了预测的不确定性.结果表明,GIA对东亚地区重力场和海平面长期变化有显著的影响:例如,在哈尔滨、长春、泰安、蓟县、郑州、武汉等测站,GIA重力影响达几十纳伽,可用超导重力仪和未来原子重力仪观测出来;在东亚大陆GIA对GRACE监测的等效水柱长期变化的影响为3%~10%,其中青藏高原西部、华北和三峡地区的影响较大.在东海-太平洋区,GIA的相对影响高达20%~40%;GIA使东亚海域绝对海平面以0.27~0.37 mm/a的速率在长期下降,在黄海、东海卫星测高监测的绝对海平面长期变化中,GIA的相对影响分别达6.9%和7.5%;在58个验潮站,平均相对海平面长期上升速率为2.22 mm/a,GIA影响为-0.17 mm/a,其中14个测站GIA的影响达-0.3~-0.4 mm/a.本文GIA预测的结果,对在东亚地区发现弱的地球动力学过程信号、监测水质量长期变化、监测海平面长期变化和分析其机制,提供精密的改正模型.  相似文献   

8.
The impact of continental hydrological loading from land water, snow and ice on polar motion excitation, calculated as hydrological angular momentum (HAM), is difficult to estimate, and not as much is known about it as about atmospheric angular momentum (AAM) and oceanic angular momentum (OAM). In this paper, regional hydrological excitations to polar motion are investigated using monthly terrestrial water storage data derived from the Gravity Recovery and Climate Experiment (GRACE) mission and from the five models of land hydrology. The results show that the areas where the variance shows large variability are similar for the different models of land hydrology and for the GRACE data. Areas which have a small amplitude on the maps make an important contribution to the global hydrological excitation function of polar motion. The comparison of geodetic residuals and global hydrological excitation functions of polar motion shows that none of the hydrological excitation has enough energy to significantly improve the agreement between the observed geodetic excitation and geophysical ones.  相似文献   

9.
全球变暖背景下的冰盖消融以及由此带来海平面上升日益明显,直接影响地球表面的陆地水质量平衡,以及固体地球瞬间弹性响应,研究冰盖质量变化的海平面指纹能够帮助深入了解未来海平面区域变化的驱动因素.本文基于海平面变化方程并考虑负荷自吸效应(SAL)与地球极移反馈的影响,借助美国德克萨斯大学空间研究中心(Center for Space Research,CSR)发布的2003年到2012年十年期间的GRACE重力场月模型数据(RL05),结合加权高斯平滑的区域核函数,反演得到格陵兰与南极地区冰盖质量变化的时空分布,并利用海平面变化方程计算得到了相对海平面的空间变化,结果表明:格陵兰与南极冰盖质量整体呈明显的消融趋势,变化速率分别为-273.31 Gt/a及-155.56 Gt/a,由此导致整个北极圈相对海平面降低,最高可达约-0.6 cm·a-1;而南极地区冰盖质量变化趋势分布不一,导致西南极近海相对海平面下降,而东南极地区近海相对海平面上升,最高可达约0.2 cm·a-1.远离质量负荷区域的全球海平面以上升趋势为主,平均全球相对海平面上升0.71 mm·a-1,部分远海地区相对海平面上升更加突出(例如北美与澳大利亚),高出全球平均海平面上升速率将近30%.此外,本文也重点探讨了GRACE监测冰盖消融结果中由于极地近海海平面变化导致的泄漏影响,经此项影响校正后的结果表明:海平面指纹效应对GRACE监测格陵兰与南极地区2003-2012期间整体冰盖消融速率的贡献分别为约3%与9%,建议在后期利用GRACE更精确地估算研究区冰盖质量变化时,应考虑海平面指纹效应的渗透影响.  相似文献   

10.
This paper is devoted to the first results from the GHYRAF (Gravity and Hydrology in Africa) experiment conducted since 2008 in West Africa and is aimed at investigating the changes in water storage in different regions sampling a strong rainfall gradient from the Sahara to the monsoon zone. The analysis of GPS vertical displacement in Niamey (Niger) and Djougou (Benin) shows that there is a clear annual signature of the hydrological load in agreement with global hydrology models like GLDAS. The comparison of GRACE solutions in West Africa, and more specifically in the Niger and Lake Chad basins, reveals a good agreement for the large scale annual water storage changes between global hydrology models and space gravity observations. Ground gravity observations done with an FG5 absolute gravimeter also show signals which can be well related to measured changes in soil and ground water. We present the first results for two sites in the Sahelian band (Wankama and Diffa in Niger) and one (Djougou in Benin) in the Sudanian monsoon region related to the recharge–discharge processes due to the monsoonal event in summer 2008 and the following dry season. It is confirmed that ground gravimetry is a useful tool to constrain local water storage changes when associated to hydrological and subsurface geophysical in situ measurements.  相似文献   

11.
联合GRACE和ICESat数据分离南极冰川均衡调整(GIA)信号   总被引:1,自引:1,他引:0       下载免费PDF全文
2002年发射的GRACE重力卫星为南极冰盖质量平衡提供了一种新的测量方式,但由于南极GIA模型的不确定较大,进而影响GRACE结果的可靠性.本文联合2003—2009年的GRACE和ICESat等数据实现了南极GIA信号的分离,联合方法所分离的GIA不依赖于不确定性很大的冰负荷等假设模型,而是直接基于卫星观测数据估算而来的,具有更大的可靠性.在分离过程中,本文提出了冰流速度加权改正法和GPS球谐拟合改正法对GIA结果进行精化,同时引入了南极GPS观测站的位移数据对分离的GIA进行详细的评估和验证,GPS验证表明经过冰流速度加权和GPS球谐拟合双改正后的GIA结果精度明显得到提高.最后本文利用所分离的GIA对GRACE和ICESat结果进行了改正,得到2003—2009年南极冰盖质量变化的趋势为-66.7±54.5 Gt/a(GRACE)和-77.2±21.5Gt/a(ICESat),相比采用其他的GIA模型,本文的GIA结果使GRACE和ICESat这两种不同观测技术得到的南极冰盖质量变化结果更加趋于一致.  相似文献   

12.
In this study we compared contributions to polar motion excitation determined separately from each of three kinds of geophysical data: atmospheric pressure, equivalent water height estimated from hydrological models, and harmonic coefficients of the Earth gravity field obtained from Gravity Recovery and Climate Experiment (GRACE). Hydrological excitation function (Hydrological Angular Momentum — HAM) has been estimated from models of global hydrology, based on the observed distribution of surfacewater, snow, ice, and soil moisture. In our considerationwe used several global models of land hydrosphere and models ofAtmospheric Angular Momentum (AAM) and Oceanic Angular Momentum (OAM). All of themwere compared with observed Geodetic Angular Momentum (GAM). The spectra of the following excitation functions of polar motion: GAM, AAM+OAM, AAM+OAM+HAM, GAM-AAM-OAM residual geodetic excitation function, and HAM were computed too. The time variable spectra of geodetic, gravimetric, and the sum of atmospheric, oceanic, and hydrological excitation functions are also presented. Phasor diagrams of the seasonal components of polar motion excitation functions of all HAM excitation functions as well as of two GRACE solutions: Center for Space Research (CSR), Centre National d’Etudes Spatiales/Groupe de Recherche en Geodesie Spatiale (CNES/GRGS) were determined and discussed.  相似文献   

13.
In this study, the spatial and temporal variabilities of terrestrial water storage anomaly (TWSA) and snow water equivalent anomaly (SWEA) information obtained from the Gravity Recovery and Climate Experiment (GRACE) twin satellites data were analysed in conjunction with multisource snow products over several basins in the Canadian landmass. Snow water equivalent (SWE) data were extracted from three different sources: Global Snow Monitoring for Climate Research version 2 (GlobSnow2), Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), and Canadian Meteorological Centre (CMC). The objective of the study was to understand whether SWE variations have a significant contribution to terrestrial water storage anomalies in the Canadian landmass. The period was considered from December 2002 to March 2011. Significant relationships were observed between TWSA and SWEA for most of the 15 basins considered (53% to 80% of the basins, depending on the SWE products considered). The best results were obtained with the CMC SWE products compared with satellite-based SWE data. Stronger relationships were found in snow-dominated basins (Rs > = 0.7), such as the Liard [root mean square error (RMSE) = 21.4 mm] and Peace Basins (RMSE = 26.76 mm). However, despite high snow accumulation in the north of Quebec, GRACE showed weak or insignificant correlations with SWEA, regardless of the data sources. The same behaviour was observed in the Western Hudson Bay basin. In both regions, it was found that the contribution of non-SWE compartments including wetland, surface water, as well as soil water storages has a significant impact on the variations of total storage. These components were estimated using the Water-Global Assessment and Prognosis Global Hydrology Model (WGHM) simulations and then subtracted from GRACE observations. The GRACE-derived SWEA correlation results showed improved relationships with three SWEA products. The improvement is particularly important in the sub-basins of the Hudson Bay, where very weak and insignificant results were previously found with GRACE TWSA data. GRACE-derived SWEA showed a significant relationship with CMC data in 93% of the basins (13% more than GRACE TWSA). Overall, the results indicated the important role of SWE on terrestrial water storage variations.  相似文献   

14.
《Journal of Geodynamics》2009,47(3-5):69-77
The measurement of glacial isostatic adjustment (GIA) is one of the key ways in which geophysicists probe the long-term mantle rheology and Pleistocene ice history. GIA models are also tied to global and regional relative sea-level (RSL) histories, to 20th century tide-gauge (TG) data and to space and terrestrial geodetic measurements. Two new types of observation are related to the high-resolution space–gravity data recovered from the Gravity and Climate Experiment (GRACE) satellite pair and the soon-to-be launched Gravity and Ocean Circulation Experiment (GOCE) with on-board three-component gradiometer. Gravity mapping has the unique capability of isolating those regions that lack isostatic equilibrium. When coupled with other space and terrestrial geodetic measurements, such as those of the Global Positioning System (GPS) networks and with multi-decade terrestrial gravity data, new constraints on GIA are in the offing and should soon illuminate new interpretations of ice-sheet history and mantle response. GIA studies also incorporate space-based altimetry data, which now provide multi-decadal coverage over continents, oceans and lakes. As we are approaching 72 monthly solutions of GRACE gravity coefficients for determining the Earth's secular component of gravity change over the continents, a new issue has surfaced: the problem of relying on interannual hydrological modeling to determine the hydrological contribution to the linear trend in the gravity field. Correctly extracting this contribution is germane to using the GIA-driven component for modeling solid-Earth and paleo-climatic parameters.Seismic and heat-flux-based models of the Earth's interior are emerging with ever higher levels of sophistication regarding material strength (or viscosity). A basic question raised is: how good are traditional Newtonian and non-Newtonian viscosity models that only allow radial variations of Earth parameters? In other words: under what circumstances must this assumption be abandoned for joint interpretations of new and traditional data sets. In this short review we summarize the issues raised in the papers forming this special issue (SI) dedicated to GIA.  相似文献   

15.
The provision of accurate models of Glacial Isostatic Adjustment (GIA) is presently a priority need in climate studies, largely due to the potential of the Gravity Recovery and Climate Experiment (GRACE) data to be used to determine accurate and continent-wide assessments of ice mass change and hydrology. However, modelled GIA is uncertain due to insufficient constraints on our knowledge of past glacial changes and to large simplifications in the underlying Earth models. Consequently, we show differences between models that exceed several mm/year in terms of surface displacement for the two major ice sheets: Greenland and Antarctica. Geodetic measurements of surface displacement offer the potential for new constraints to be made on GIA models, especially when they are used to improve structural features of the Earth’s interior as to allow for a more realistic reconstruction of the glaciation history. We present the distribution of presently available campaign and continuous geodetic measurements in Greenland and Antarctica and summarise surface velocities published to date, showing substantial disagreement between techniques and GIA models alike. We review the current state-of-the-art in ground-based geodesy (GPS, VLBI, DORIS, SLR) in determining accurate and precise surface velocities. In particular, we focus on known areas of need in GPS observation level models and the terrestrial reference frame in order to advance geodetic observation precision/accuracy toward 0.1 mm/year and therefore further constrain models of GIA and subsequent present-day ice mass change estimates.  相似文献   

16.
Since microphysics cannot say definitively whether the rheology of the mantle is linear or non-linear, the aim of this paper is to constrain mantle rheology from observations related to the glacial isostatic adjustment (GIA) process—namely relative sea-levels (RSLs), land uplift rate from GPS and gravity-rate-of-change from GRACE. We consider three earth model types that can have power-law rheology (n = 3 or 4) in the upper mantle, the lower mantle or throughout the mantle. For each model type, a range of A parameter in the creep law will be explored and the predicted GIA responses will be compared to the observations to see which value of A has the potential to explain all the data simultaneously. The coupled Laplace finite-element (CLFE) method is used to calculate the response of a 3D spherical self-gravitating viscoelastic Earth to forcing by the ICE-4G ice history model with ocean loads in self-gravitating oceans. Results show that ice thickness in Laurentide needs to increase significantly or delayed by 2 ka, otherwise the predicted uplift rate, gravity rate-of-change and the amplitude of the RSL for sites inside the ice margin of Laurentide are too low to be able to explain the observations. However, the ice thickness elsewhere outside Laurentide needs to be slightly modified in order to explain the global RSL data outside Laurentide. If the ice model is modified in this way, then the results of this paper indicate that models with power-law rheology in the lower mantle (with A  10−35 Pa−3 s−1 for n = 3) have the highest potential to simultaneously explain all the observed RSL, uplift rate and gravity rate-of-change data than the other model types.  相似文献   

17.
《Journal of Geodynamics》2009,47(3-5):118-130
Since microphysics cannot say definitively whether the rheology of the mantle is linear or non-linear, the aim of this paper is to constrain mantle rheology from observations related to the glacial isostatic adjustment (GIA) process—namely relative sea-levels (RSLs), land uplift rate from GPS and gravity-rate-of-change from GRACE. We consider three earth model types that can have power-law rheology (n = 3 or 4) in the upper mantle, the lower mantle or throughout the mantle. For each model type, a range of A parameter in the creep law will be explored and the predicted GIA responses will be compared to the observations to see which value of A has the potential to explain all the data simultaneously. The coupled Laplace finite-element (CLFE) method is used to calculate the response of a 3D spherical self-gravitating viscoelastic Earth to forcing by the ICE-4G ice history model with ocean loads in self-gravitating oceans. Results show that ice thickness in Laurentide needs to increase significantly or delayed by 2 ka, otherwise the predicted uplift rate, gravity rate-of-change and the amplitude of the RSL for sites inside the ice margin of Laurentide are too low to be able to explain the observations. However, the ice thickness elsewhere outside Laurentide needs to be slightly modified in order to explain the global RSL data outside Laurentide. If the ice model is modified in this way, then the results of this paper indicate that models with power-law rheology in the lower mantle (with A  10−35 Pa−3 s−1 for n = 3) have the highest potential to simultaneously explain all the observed RSL, uplift rate and gravity rate-of-change data than the other model types.  相似文献   

18.
Since its launch in April 2002, the Gravity Recovery and Climate Experiment (GRACE) mission is recording the Earth’s time-variable gravity field with temporal and spatial resolutions of typically 7–30?days and a few hundreds of kilometers, allowing the monitoring of continental water storage variations from both continental and river-basin scales. We investigate here large scale hydrological variations in Africa using different GRACE spherical harmonic solutions, using different processing strategies (constrained and unconstrained solutions). We compare our GRACE estimates to different global hydrology models, with different land-surface schemes and also precipitation forcing. We validate GRACE observations through two different techniques: first by studying desert areas, providing an estimate of the precision. Then we compare GRACE recovered mass variations of main lakes to volume changes derived from radar altimetry measurements. We also study the differences between different publicly available precipitation datasets from both space measurements and ground rain gauges, and their impact on soil-moisture estimates.  相似文献   

19.
Time-variable gravity data of the GRACE (Gravity Recovery And Climate Experiment) satellite mission provide global information on temporal variations of continental water storage. In this study, we incorporate GRACE data for the first time directly into the tuning process of a global hydrological model to improve simulations of the continental water cycle. For the WaterGAP Global Hydrology Model (WGHM), we adopt a multi-objective calibration framework to constrain model predictions by both measured river discharge and water storage variations from GRACE and illustrate it on the example of three large river basins: Amazon, Mississippi and Congo. The approach leads to improved simulation results with regard to both objectives. In case of monthly total water storage variations we obtained a RMSE reduction of about 25 mm for the Amazon, 6 mm for the Mississippi and 1 mm for the Congo river basin. The results highlight the valuable nature of GRACE data when merged into large-scale hydrological modeling. Furthermore, they reveal the utility of the multi-objective calibration framework for the integration of remote sensing data into hydrological models.  相似文献   

20.
自2002年以来,GRACE卫星探测计划可提供高精度的时变地球重力场,用以探测地球系统的物质分布.自1998年中国大陆重力监测网建立以来,利用FG5绝对重力仪和LCR-G型相对重力仪每2年对该网进行重复测量获取重力场时变信息.基于此,本文利用GRACE和地面重力测量获得了中国大陆重力场的长期年变率,利用位错理论根据USGS发布的断层模型计算了2008年汶川Ms8.0级地震的同震重力变化并进行了300 km高斯滤波.GRACE卫星重力和地面重力结果均表明华北地区地下水流失严重,在绝对重力基准站上,GRACE卫星重力与绝对重力变化率较为一致,汶川区域的地面重力变化结果可视为大地震前兆信息.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号