首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 233 毫秒
1.
This study assesses the effect of decompression rate on two processes that directly influence the behavior of volcanic eruptions: degassing and permeability in magmas. We studied the degassing of magma with experiments on hydrated natural rhyolitic glass at high pressure and temperature. From the data collected, we defined and characterized one degassing regime in equilibrium and two regimes in disequilibrium. Equilibrium bubble growth occurs when the decompression rate is slower than 0.1 MPa s–1, while higher rates cause porosity to deviate rapidly from equilibrium, defining the first disequilibrium regime of degassing. If the deviation is large enough, a critical threshold of super-saturation is reached and bubble growth accelerates, defining the second disequilibrium regime. We studied permeability and bubble coalescence in magma with experiments using the same rhyolitic melt in open degassing conditions. Under these open conditions, we observed that bubbles start to coalesce at ~43 vol% porosity, regardless of decompression rate. Coalescence profoundly affects bubble texture and size distributions, and induces the melt to become permeable. We determined coalescence to occur on a time scale (~180 s) independent of decompression rate. We parameterized and incorporated our experimental results into a 1D conduit flow model to explore the implications of our findings on eruptive behavior of rhyolitic melts with low crystal contents stored in the upper crust. Compared to previous models that assume equilibrium degassing of the melt during ascent, the introduction of disequilibrium degassing reduces the deviation from lithostatic pressure by ~25%, the acceleration at high porosities (>50 vol%) by a factor 5, and the associated decompression rate by an order of magnitude. The integration of the time scale of coalescence to the model shows that the transition between explosive and effusive eruptive regimes is sensitive to small variations of the initial magma ascent speed, and that flow conditions near fragmentation may significantly be affected by bubble coalescence and gas escape.Editorial responsibility: D. Dingwell  相似文献   

2.
Vulcanian eruptions are common at many volcanoes around the world. Vulcanian activity occurs as either isolated sequences of eruptions or as precursors to sustained explosive events and is interpreted as clearing of shallow plugs from volcanic conduits. Breadcrust bombs characteristic of Vulcanian eruptions represent samples of different parts of these plugs and preserve information that can be used to infer parameters of pre-eruption magma ascent. The morphology and preserved volatile contents of breadcrust bombs erupted in 1999 from Guagua Pichincha volcano, Ecuador, thus allow us to constrain the physical processes responsible for Vulcanian eruption sequences of this volcano. Morphologically, breadcrust bombs differ in the thickness of glassy surface rinds and in the orientation and density of crack networks. Thick rinds fracture to create deep, widely spaced cracks that form large rectangular domains of surface crust. In contrast, thin rinds form polygonal networks of closely spaced shallow cracks. Rind thickness, in turn, is inversely correlated with matrix glass water content in the rind. Assuming that all rinds cooled at the same rate, this correlation suggests increasing bubble nucleation delay times with decreasing pre-fragmentation water content of the melt. A critical bubble nucleation threshold of 0.4–0.9 wt% water exists, below which bubble nucleation does not occur and resultant bombs are dense. At pre-fragmentation melt H2O contents of >∼0.9 wt%, only glassy rinds are dense and bomb interiors vesiculate after fragmentation. For matrix glass H2O contents of ≥1.4 wt%, rinds are thin and vesicular instead of thick and non-vesicular. A maximum measured H2O content of 3.1 wt% establishes the maximum pressure (63 MPa) and depth (2.5 km) of magma that may have been tapped during a single eruptive event. More common H2O contents of ≤1.5 wt% suggest that most eruptions involved evacuation of ≤1.5 km of the conduit. As we expect that substantial overpressures existed in the conduit prior to eruption, these depth estimates based on magmastatic pressure are maxima. Moreover, the presence of measurable CO2 (≤17 ppm) in quenched glass of highly degassed magma is inconsistent with simple models of either open- or closed-system degassing, and leads us instead to suggest re-equilibration of the melt with gas derived from a deeper magmatic source. Together, these observations suggest a model for the repeated Vulcanian eruptions that includes (1) evacuation of the shallow conduit during an individual eruption, (2) depressurization of magma remaining in the conduit accompanied by open-system degassing through permeable bubble networks, (3) rapid conduit re-filling, and (4) dome formation prior to the subsequent explosion. An important part of this process is densification of upper conduit magma to allow repressurization between explosions. At a critical overpressure, trapped pressurized gas fragments the nascent impermeable cap to repeat the process.  相似文献   

3.
Experiments have been performed to determine the effect of deformation on degassing of bubble-bearing melts. Cylindrical specimens of phonolitic composition, initial water content of 1.5 wt.% and 2 vol.% bubbles, have been deformed in simple-shear (torsional configuration) in an internally heated Paterson-type pressure vessel at temperatures of 798–848 K, 100–180 MPa confining pressure and different final strains. Micro-structural analyses of the samples before and after deformation have been performed in two and three dimensions using optical microscopy, a nanotomography machine and synchrotron tomography. The water content of the glasses before and after deformation has been measured using Fourier Transform Infrared Spectroscopy (FTIR). In samples strained up to a total of γ ∼ 2 the bubbles record accurately the total strain, whereas at higher strains (γ ∼ 10) the bubbles become very flattened and elongate in the direction of shear. The residual water content of the glasses remains constant up to a strain of γ ∼ 2 and then decreases to about 0.2 wt.% at γ ∼ 10. Results show that strain enhances bubble coalescence and degassing even at low bubble volume-fractions. Noticeably, deformation produced a strongly water under-saturated melt. This suggests that degassing may occur at great depths in the volcanic conduit and may force the magma to become super-cooled early during ascent to the Earth’s surface potentially contributing to the genesis of obsidian.  相似文献   

4.
 The rates of passive degassing from volcanoes are investigated by modelling the convective overturn of dense degassed and less dense gas-rich magmas in a vertical conduit linking a shallow degassing zone with a deep magma chamber. Laboratory experiments are used to constrain our theoretical model of the overturn rate and to elaborate on the model of this process presented by Kazahaya et al. (1994). We also introduce the effects of a CO2–saturated deep chamber and adiabatic cooling of ascending magma. We find that overturn occurs by concentric flow of the magmas along the conduit, although the details of the flow depend on the magmas' viscosity ratio. Where convective overturn limits the supply of gas-rich magma, then the gas emission rate is proportional to the flow rate of the overturning magmas (proportional to the density difference driving convection, the conduit radius to the fourth power, and inversely proportional to the degassed magma viscosity) and the mass fraction of water that is degassed. Efficient degassing enhances the density difference but increases the magma viscosity, and this dampens convection. Two degassing volcanoes were modelled. At Stromboli, assuming a 2 km deep, 30% crystalline basaltic chamber, containing 0.5 wt.% dissolved water, the ∼700 kg s–1 magmatic water flux can be modelled with a 4–10 m radius conduit, degassing 20–100% of the available water and all of the 1 to 4 vol.% CO2 chamber gas. At Mount St. Helens in June 1980, assuming a 7 km deep, 39% crystalline dacitic chamber, containing 4.6 wt.% dissolved water, the ∼500 kg s–1 magmatic water flux can be modelled with a 22–60 m radius conduit, degassing ∼2–90% of the available water and all of the 0.1 to 3 vol.% CO2 chamber gas. The range of these results is consistent with previous models and observations. Convection driven by degassing provides a plausible mechanism for transferring volatiles from deep magma chambers to the atmosphere, and it can explain the gas fluxes measured at many persistently active volcanoes. Received: 26 September 1997 / Accepted: 11 July 1998  相似文献   

5.
Causes and consequences of pressurisation in lava dome eruptions   总被引:3,自引:0,他引:3  
High total and fluid pressures develop in the interior of high-viscosity lava domes and in the uppermost parts of the feeding conduit system as a consequence of degassing. Two effects are recognised and are modelled quantitatively. First, large increases in magma viscosity result from degassing during magma ascent. Strong vertical gradients in viscosity result and large excess pressures and pressure gradients develop at the top of the conduit and in the dome. Calculations of conduit flow show that almost all the excess pressure drop from the chamber in an andesitic dome eruption occurs during the last several hundred metres of ascent. Second, microlites grow in the melt phase as a consequence of undercooling caused by gas loss. Rapid microlite growth can cause large excess fluid pressures to develop at shallow levels. Theoretically closed-system microlite crystallization can increase local pressure by a few tens of MPa, although build up of pressure will be countered by gas loss through permeable flow and expansion by viscous flow. Microlite crystallization is most effective in causing excess gas pressures at depths of a few hundred metres in the uppermost parts of the conduit and dome interior. Some of the major phenomena of lava dome eruptions can be attributed to these pressurisation effects, including spurts of growth, cycles of dome growth and subsidence, sudden onset of violent explosive activity and disintegration of lava during formation of pyroclastic flows. The characteristic shallow-level, long-period and hybrid seismicity, characteristic of dome eruptions, is attributed to the excess fluid pressures, which are maintained close to the fracture strength of the dome and wallrock, resulting in fluid movement during formation of tensile and shear fractures within the dome and upper conduit.  相似文献   

6.
Most, if not all, magmas contain gas bubbles at depth before they erupt. Those bubbles play a crucial role in eruption dynamics, by allowing magma to degas, which causes the magma to accelerate as it ascends towards the surface. There must be a limit to that acceleration, however, because gas bubbles cannot grow infinitely fast. To explore that limit, a series of experiments was undertaken to determine the maximum rate at which bubbly high-silica rhyolite can decompress. Rhyolite melt that was hydrated at 150 MPa with ~5.3 wt.% dissolved water and contained 7 to 18 vol.% bubbles can degas in equilibrium at 875°C when decompressed at rates up to 1.2 MPa s−1 from 150 to 78 MPa, and up to 1.8 MPa s−1 when decompressed further to 42 MPa. In contrast, that same rhyolite cannot degas in equilibrium at 750°C if decompressed faster than 0.015–0.025 MPa s−1. When combined with other published experiments, the maximum rate of decompression for equilibrium degassing is found to increase by a factor of ten for every 50–75°C increase in temperature. When compared to predictions from conduit flow models that assume equilibrium degassing, it is found that such models greatly over-estimate the rate at which relatively cold rhyolite can decompress, whereas that assumption is largely correct for hot rhyolite, and thus for most other magmas, all of which are less viscous than rhyolite. In addition, most bubbles that were 20–30 μm in size at high pressure were lost from the population at low pressure. That absence suggests that only relatively large vesicles seen in volcanic pumice may be relics of pre-eruptive bubbles, even if small bubbles were originally present at depth.  相似文献   

7.
Microtextural characteristics of fresh ejecta from Stromboli volcano were examined from three periods of differing eruption style and intensity in 2002. Activity shifted from relatively weak and infrequent ash-charged explosions during January through May into two broad cycles of waxing activity in June through late September, and late September through December, followed by the onset on 28 December of the 2002/2003 effusive eruption. Analyzed sets of lapilli from May, September/October, and 28 December show contrasts in the physical properties of magma resident in the shallow conduit during this range of activity. Three distinct textures are observed among the analyzed pyroclasts: low density (LD) with an abundance of subspherical bubbles, the presence of large, irregularly shaped bubbles, and a light-to-transparent glass matrix; transitional texture (TT) with an intermediate number of subspherical bubbles, a high frequency of large, irregularly-shaped bubbles, and a honey colored glass matrix; and high density (HD) with sparse relatively small bubbles, conspicuous large irregular bubbles, and a dark glass matrix. Observational and quantitative data (density, vesicle size) indicate that these textures are linked through variable residence time in Stromboli’s shallow conduit, with an ongoing evolution from LD to HD magma. Calculations suggest that residual LD magma will evolve to HD texture in a period of hours to days. Contrasting amounts of the LD, TT, and HD magmas are present in each sample, with the most TT in May, the most LD in September/October, and the most HD in December. This implies that the shallow magma had a different rheology at each collection period. The viscosity of LD and HD magmas are calculated to be in the range of 2,000 to 2,600 and 3,000 to 5,000 Pa s, respectively, which, with their changing proportions, must have implications for rates of bubble slug ascent and processes of fragmentation. This study suggests that an increasing maturity of magma in Stromboli’s shallow conduit (with resultant increase in viscosity) feeds back to reduce the intensity of explosions, whereas a steady flux of LD magma favors more powerful explosions.  相似文献   

8.
In the shallow magma chambers of volcanoes, the CO2 content of most basaltic melts is above the solubility limit. This implies that the chamber contains gas bubbles, which rise through the magma and expand. Thus, the volume of the chamber, its gas volume fraction and the gas flux into the conduit change with time in a systematic manner as a function of the size and number of gas bubbles. Changes in gas flux and gas volume are calculated for a bubble size distribution and related to changes in eruption regimes. Fire fountain activity, only present during the first quarter of the eruption, requires that the bubbles are larger than a certain size, which depends on the gas flux and on the bubble content[1]. As the chamber degasses, it loses its largest gas bubbles and the gas flux decreases, eventually suppressing the fire fountaining activity. Ultimately, an eruption stops when the chamber contains only a few tiny bubbles. More generally, the evolution of basaltic eruptions is governed by a dimensionless number, τ * ≈ τgΔρaO2/(18μhc), where τ = a characteristic time for degassing; a0 = the initial bubble diameter; μ = the magma viscosity; and hc = the thickness of the degassing layer. Two eruptions of the Kilauea volcano, Mauna Ulu (1969–1971) and Puu O'o (1983—present), provide data on erupted gas volume and the inflation rate of the edifice, which help constrain the spatial distribution of bubbles in the magma chamber: bubbles come mainly from the bottom of the reservoir, either by in situ nucleation long before the eruption or within a vesiculated liquid. Although the gas flux at the roof of the chamber takes similar values for both eruptions, the duration of both the fire fountaining activity and the entire eruption was 6 times shorter at Mauna Ulu than during the Puu O'o eruption. The dimensionless analysis explains the difference by a degassing layer 6 times thinner in the former than the latter, due to a 2 year delay in starting the Mauna Ulu eruption compared to the Puu O'o eruption.  相似文献   

9.
A series of 88 Vulcanian explosions occurred at the Soufrière Hills volcano, Montserrat, between August and October, 1997. Conduit conditions conducive to creating these and other Vulcanian explosions were explored via analysis of eruptive products and one-dimensional numerical modeling of magma ascent through a cylindrical conduit. The number densities and textures of plagioclase microlites were documented for twenty-three samples from the events. The natural samples all show very high number densities of microlites, and > 50% by number of microlites have areas < 20 μm2. Pre-explosion conduit conditions and decompression history have been inferred from these data by comparison with experimental decompressions of similar groundmass compositions. Our comparisons suggest quench pressures < 30 MPa (origin depths < 2 km) and multiple rapid decompressions of > 13.75 MPa each during ascent from chamber to surface. Values are consistent with field studies of the same events and statistical analysis of explosion time-series data. The microlite volume number density trend with depth reveals an apparent transition from growth-dominated crystallization to nucleation-dominated crystallization at pressures of ∼ 7 MPa and lower. A concurrent sharp increase in bulk density marks the onset of significant open-system degassing, apparently due to a large increase in system permeability above ∼ 70% vesicularity. This open-system degassing results in a dense plug which eventually seals the conduit and forms conditions favorable to Vulcanian explosions. The corresponding inferred depth of overpressure at 250–700 m, near the base of the dense plug, is consistent with depth to center of pressure estimated from deformation measurements. Here we also illustrate that one-dimensional models representing ascent of a degassing, crystal-rich magma are broadly consistent with conduit profiles constructed via our petrologic analysis. The comparison between models and petrologic data suggests that the dense conduit plug forms as a result of high overpressure and open-system degassing through conduit walls.  相似文献   

10.
Many basaltic volcanoes emit a substantial amount of gas over long periods of time while erupting relatively little degassed lava, implying that gas segregation must have occurred in the magmatic system. The geometry and degree of connectivity of the plumbing system of a volcano control the movement of magma in that system and could therefore provide an important control on gas segregation in basaltic magmas. We investigate gas segregation by means of analogue experiments and analytical modelling in a simple geometry consisting of a vertical conduit connected to a horizontal intrusion. In the experiments, degassing is simulated by electrolysis, producing micrometric bubbles in viscous mixtures of water and golden syrup. The presence of exsolved bubbles induces a buoyancy-driven exchange flow between the conduit and the intrusion that leads to gas segregation. Bubbles segregate from the fluid by rising and accumulating as foam at the top of the intrusion, coupled with the accumulation of denser degassed fluid at the base of the intrusion. Steady-state influx of bubbly fluid from the conduit into the intrusion is balanced by outward flux of lighter foam and denser degassed fluid. The length and time scales of this gas segregation are controlled by the rise of bubbles in the horizontal intrusion. Comparison of the gas segregation time scale with that of the cooling and solidification of the intrusion suggests that gas segregation is more efficient in sills (intrusions in a horizontal plane with typical width:length aspect ratio 1:100) than in horizontally-propagating dykes (intrusions in a vertical plane with typical aspect ratio 1:1000), and that this process could be efficient in intermediate as well as basaltic magmas. Our investigation shows that non-vertical elements of the plumbing systems act as strong gas segregators. Gas segregation has also implications for the generation of gas-rich and gas-poor magmas at persistently active basaltic volcanoes. For low magma supply rates, very efficient gas segregation is expected, which induces episodic degassing activity that erupts relatively gas-poor magmas. For higher magma supply rates, gas segregation is expected to be less effective, which leads to stronger explosions that erupt gas-rich as well as gas-poor magmas. These general physical principles can be applied to Stromboli volcano and are shown to be consistent with independent field data. Gas segregation at Stromboli is thought likely to occur in a shallow reservoir of sill-like geometry at 3.5 km depth with exsolved gas bubbles 0.1–1 mm in diameter. Transition between eruptions of gas-poor, high crystallinity magmas and violent explosions that erupt gas-rich, low crystallinity magmas are calculated to occur at a critical magma supply rate of 0.1–1 m3 s− 1.  相似文献   

11.
To investigate the relationship between volatile abundances and eruption style, we have analyzed major element and volatile (H2O, CO2, S) concentrations in olivine-hosted melt inclusions in tephra from the 2000 yr BP eruption of Xitle volcano in the central Trans-Mexican Volcanic Belt. The Xitle eruption was dominantly effusive, with fluid lava flows accounting for 95% of the total dense rock erupted material (1.1 km3). However, in addition to the initial, Strombolian, cinder cone-building phase, there was a later explosive phase that interrupted effusive activity and deposited three widespread ash fall layers. Major element compositions of olivine-hosted melt inclusions from these ash layers range from 52 to 58 wt.% SiO2, and olivine host compositions are Fo84–86. Water concentrations in the melt inclusions are variable (0.2–1.3 wt.% H2O), with an average of 0.45±0.3 (1σ) wt.% H2O. Sulfur concentrations vary from below detection (50 ppm) to 1000 ppm but are mostly ≤200 ppm and show little correlation with H2O. Only the two inclusions with the highest H2O have detectable CO2 (310–340 ppm), indicating inclusion entrapment at higher pressures (700–900 bars) than for the other inclusions (≤80 bars). The low and variable H2O and S contents of melt inclusions combined with the absence of less soluble CO2 indicates shallow-level degassing before olivine crystallization and melt inclusion formation. Olivine morphologies are consistent with the interpretation that most crystallization occurred rapidly during near-surface H2O loss. During cinder cone eruptions, the switch from initial explosive activity to effusive eruption probably occurs when the ascent velocity of magma becomes slow enough to allow near-complete degassing of magma at shallow depths within the cone as a result of buoyantly rising gas bubbles. This allows degassed lavas to flow laterally and exit near the base of the cone while gas escapes through bubbly magma in the uppermost part of the conduit just below the crater. The major element compositions of melt inclusions at Xitle show that the short-lived phase of renewed explosive activity was triggered by a magma recharge event, which could have increased overpressure in the storage reservoir beneath Xitle, leading to increased ascent velocities and decreased time available for degassing during ascent.  相似文献   

12.
Eruptions of Mount St Helens (Washington, USA) decreased in intensity and explosivity after the main May 18, 1980 eruption. As the post-May 18 eruptions progressed, albitic plagioclase microlites began to appear in the matrix glass, although the bulk composition of erupted products, the phenocryst compositions and magmatic temperatures remained fairly constant. Equilibrium experiments on a Mount St Helens white pumice show that at 160 MPa water pressure and 900°C, conditions deduced for the 8 km deep magma storage zone, the stable plagioclase is An47. The microlites in the natural samples, which are more albitic, had to grow at lower water pressures during ascent. Isothermal decompression experiments reported here demonstrate that a decrease in water pressure from 160 to 2 MPa over four to eight days is capable of producing the albitic groundmass plagioclase and evolved melt compositions observed in post-May 18 1980 dacites. Because groundmass crystallization occurs over a period of days during and after decreases in pressure, microlite crystallization in the Mount St Helens dacites must have occurred during the ascent of each magma batch from a deep reservoir rather than continuously in a shallow holding chamber. This is consistent with data on the kinetics of amphibole breakdown, which require that a significant portion of magma vented in each eruption ascended from a depth of at least 6.5 km (160 MPa water pressure) in a matter of days. The size and shape of the microlite population have not been studied because of the small size of the experimental samples; it is possible that the texture continues to mature long after chemical equilibrium is approached. As the temperature, composition, crystal content and water content of magma in the deep reservoir remained approximately constant from May 1980 to at least March 1982, the spectacular decrease in eruption intensity during this period cannot be attributed to changes in viscosity or density of the magma. Simple fluld mechanical considerations indicate, however, that the observed changes in mass flux of magma can be modelled by a five-fold decrease in conduit radius from 35 to 7 m, produced perhaps by plating of magma along the conduit walls. The decreased ascent rates which accompanied the decrease in conduit radius can explain the change from closed-system to open-system degassing and the shift from explosive to effusive eruptions during 1980.  相似文献   

13.
Accepting the Gerlach and Graeber (1985) estimates of the initial CO2 and H2O concentrations, we have calculated the variation of the concentrations of these gases, dissolved and/or exsolved, in Hawaiian tholeiite from the moment it is generated until it solidifies at the Earth's surface. These computations are extensions of our previous work (Bottinga and Javoy 1989, 1990a, 1990b) on the nucleation, growth and ascent of bubbles in mid-oceanic ridge basalt. The present study is different in that we consider low-pressure (P>1 bar) bubble nucleation and the presence of H2O. Our results indicate that: (1) Hawaiian liquid tholeiite is supersaturated with respect to CO2 when it erupts; (2) degassing of the basaltic liquid takes place during different stages, each of which gives rise to a compositionally distinct bubble population, which to a large extent is lost before the formation of a new population; (3) fumarolic gas compositions are affected by the pressure and temperature at which gas bubbles are released from the lava and the velocity with which lava is ejected from the magma chamber.  相似文献   

14.
Plinian/ignimbrite activity stopped briefly and abruptly 16 and 45 h after commencement of the 1912 Novarupta eruption defining three episodes of explosive volcanism before finally giving way after 60 h to effusion of lava domes. We focus here on the processes leading to the termination of the second and third of these three episodes. Early erupted pumice from both episodes show a very similar range in bulk vesicularity, but the modal values markedly decrease and the vesicularity range widens toward the end of Episode III. Clasts erupted at the end of each episode represent textural extremes; at the end of Episode II, clasts have very thin glass walls and a predominance of large bubbles, whereas at the end of Episode III, clasts have thick interstices and more small bubbles. Quantitatively, all clasts have very similar vesicle size distributions which show a division in the bubble population at 30 μm vesicle diameter and cumulative number densities ranging from 107–109 cm–3. Patterns seen in histograms of volume fraction and the trends in the vesicle size data can be explained by coalescence signatures superimposed on an interval of prolonged nucleation and free growth of bubbles. Compared to experimental data for bubble growth in silicic melts, the high 1912 number densities suggest homogeneous nucleation was a significant if not dominant mechanism of bubble nucleation in the dacitic magma. The most distinct clast populations occurred toward the end of Plinian activity preceding effusive dome growth. Distributions skewed toward small sizes, thick walls, and teardrop vesicle shapes are indicative of bubble wall collapse marking maturation of the melt and onset of processes of outgassing. The data suggest that the superficially similar pauses in the 1912 eruption which marked the ends of episodes II and III had very different causes. Through Episode III, the trend in vesicle size data reflects a progressive shift in the degassing process from rapid magma ascent and coupled gas exsolution to slower ascent with partial open-system outgassing as a precursor to effusive dome growth. No such trend is visible in the Episode II clast assemblages; we suggest that external changes involving failure of the conduit/vent walls are more likely to have effected the break in explosive activity at 45 h.  相似文献   

15.
16.
A series of experiments was conducted to test concepts of porous flow degassing of rhyolitic magma during ascent and of the subsequent collapse of vesicles in degassed magma to form obsidian. Dense, synthetically hydrated, natural glasses were pressurized under water-saturated conditions and then decompressed to achieve a range of porosities in the presence of a tracer vapor, D2O. Rapid isotopic exchange indicative of vapor transport rather than of simple diffusion occurred at a porosity >60 vol.%, in accord with earlier gas permeability measurements on cold natural samples. In another series of experiments, natural and synthetic pumices, vesiculated by degassing to atmospheric pressure, rapidly collapsed to dense glass on repressurization to the modest pressures prevailing in lava flows. No relict bubble textures remained. These results support the hypothesis that effusive eruptions result from the syneruptive escape of gas from permeable magmatic foam, and that a process analogous to welding yields dense lavas when such foams are extruded.  相似文献   

17.
Magmas progressively exsolve volatiles as they ascend towards the Earth's surface, such that their volatile content is a function of pressure. Water and carbon dioxide concentrations measured in melt inclusions from degassing volcanoes rarely coincide with modelled degassing trends. I show that observed melt inclusion trends can be reproduced through mixing of magmas, either during convection within the volcanic conduit, or within a subterranean magma reservoir. No fluxing gas phase or post-entrapment loss of water need be invoked. A permeable network allowing gas transport is still required to avoid fragmentation of magma at shallow depths.  相似文献   

18.
Using constraints from an extensive database of geological and geochemical observations along with results from fluid mechanical studies of convection in magma chambers, we identify the main physical processes at work during the solidification of the 1959 Kilauea Iki lava lakes. In turn, we investigate their quantitative influence on the crystallization and chemical differentiation of the magma, and on the development of the internal structure of the lava lake. In contrast to previous studies, vigorous stirring in the magma, driven predominately by the descent of dense crystal-laden thermal plumes from the roof solidification front and the ascent of buoyant compositional plumes due to the in situ growth of olivine crystals at the floor, is predicted to have been an inevitable consequence of very strong cooling at the roof and floor. The flow is expected to have caused extensive but imperfect mixing over most of the cooling history of the magma, producing minor compositional stratification at the roof and thermal stratification at the floor. The efficient stirring of the large roof cooling is expected to have resulted in significant internal nucleation of olivine crystals, which ultimately settled to the floor. Additional forcing due to either crystal sedimentation or the ascent of gas bubbles is not expected to have increased significantly the amount of mixing. In addition to convection in the magma, circulation driven by the convection of buoyant interstitial melt in highly permeable crystal-melt mushes forming the roof and the floor of the lava lake is envisaged to have produced a net upward flow of evolved magma from the floor during solidification. In the floor zone, mush convection may have caused the formation of axisymmetric chimneys through which evolved magma drained from deep within the floor into the overlying magma and potentially the roof. We hypothesize that the highly evolved, pipe-like ‘vertical olivine-rich bodies’ (VORBs) [Bull. Volcanol. 43 (1980) 675] observed in the floor zone, of the lake are fossil chimneys. In the roof zone, buoyant residual liquid both produced at the roof solidification front and gained from the floor as a result of incomplete convective mixing is envisaged to have percolated or ‘leaked‘ into the overlying highly-permeable cumulate, displacing less buoyant interstitial melt downward. The results from Rayleigh fractionation-type models formulated using boundary conditions based on a quantitative understanding of the convection in the magma indicate that most of the incompatible element variation over the height of the lake can be explained as a consequence of a combination of crystal settling and the extensive but imperfect convective mixing of buoyant residual liquid released from the floor solidification front. The remaining chemical variation is understood in terms of the additional influences of mush convection in the roof and floor on the vertical distribution of incompatible elements. Although cooling was concentrated at the roof of the lake, the floor zone is found to be thicker than the roof zone, implying that it grew more quickly. The large growth rate of the floor is explained as a consequence of a combination of the substantial sedimentation of olivine crystals and more rapid in situ crystallization due to both a higher liquidus temperature and enhanced cooling resulting from imperfect thermal and chemical mixing.  相似文献   

19.
Between 1989 and 2001, five eruptions at Etna displayed a regular alternation between repose periods and episodes rich in gas, termed quasi-fire fountains and consisting of a series of Strombolian explosions sometimes leading to a fire fountain. This behaviour results from the coalescence of a foam layer trapped at the top of the reservoir which was periodically rebuilt prior to each episode (Vergniolle and Jaupart, J Geophys Res 95:2793–2809, 1990). Visual observations of fire fountains are combined with the foam dynamics to estimate the five degassing parameters characteristic of the degassing reservoir, i.e. the number of bubbles, gas volume fraction, bubble diameter, reservoir thickness and reservoir volume. The study of decadal cycles of eruptive patterns (Allard et al., Earth Sci Rev 78:85–114, 2006) suggests that the first eruption with fire fountains occurred in 1995 while the last one happened in 2001. The number of bubbles and the gas volume fraction increase smoothly from the beginning of the cycle (1995) to its end (2001). The increasing number of bubbles per cubic metre, from 0.61–20×105 to 0.1–3.4×109, results from cooling of the magma within the reservoir. The simultaneously decreasing bubble diameter, from 0.67–0.43 to 0.30–0.19 mm, is related to the decreasing amount of dissolved volatiles. Meanwhile, the thickness and the volume of the degassing reservoir diminish, from values typical of the magma reservoir to values characteristic of a very thin bubbly layer, marking the quasi-exhaustion of volatiles. The magma reservoir has a slender vertical shape, with a maximum thickness of 3,300–8,200 m and a radius of 240 m (Vergniolle 2008), making its detection from seismic studies difficult. Its volume, at most 0.58–1.4 km3, is in agreement with geochemical studies (0.5 km3) (Le Cloarec and Pennisi, J Volcanol Geotherm Res 108:141–155, 2001). The time evolution of both the total gas volume expelled per eruption, and the inter-eruptive gas flux results from the competition between the increasing number of bubbles and the decreasing bubble diameter. The smooth temporal evolution of the five degassing parameters also points towards bubbles being produced by a self-induced mechanism within the magma reservoir rather than by a magmatic reinjection prior to each eruption. The decadal cycles are therefore initiated by a magmatic reinjection, in agreement with a typical return time of 14–80 years (Albarède 1993). Hence, the 1995 eruption results from a fresh magma being newly emplaced while the magma from the following eruptions is progressively depleted in volatiles species until reaching a state of quasi-exhaustion in 2001. A magmatic reinjection of 0.13–0.6 km3 every few decades is sufficient to explain the expelled gas volume, including SO2. A scenario is also proposed for the alternation between gas-rich summit eruptions and gas-poor flank eruptions which are observed during decadal cycles. The scenario proposed for Etna could also be at work at Piton de la Fournaise and Erta ’Ale volcanoes.  相似文献   

20.
Excessive degassing of Izu-Oshima volcano: magma convection in a conduit   总被引:2,自引:0,他引:2  
Excess degassing of magmatic H2O and SO2 was observed at Izu-Oshima volcano during its latest degassing activity from January 1988 to March 1990. The minimum production rate for degassed magma was calculated to be about 1×104 kg/s using emission rates of magmatic H2O and SO2, and H2O and S contents of the magma. The minimum total volume of magma degassed during the 27-month period is estimated to be 2.6×108 m3. This volume is 20 times larger than that of the magma ejected during the 1986 summit eruption. Convective transport of magma through a conduit is proposed as the mechanism that causes degassing from a magma reservoir at several kilometers depth. The magma transport rate is quantitatively evaluated based on two fluid-dynamic models: Poiseuille flow in a concentric double-walled pipe, and ascent of non-degassed magma spheres through a conduit filled with degassed magma. This process is further tested for an andesitic volcano and is concluded to be a common process for volcanoes that discharge excess volatiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号