首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
本文利用地震资料并结合地质资料,讨论了印度板块与欧亚板块在中国周边的相互作用及其对中国应力场的影响,指出两板块在喜马拉雅山前断裂地区碰撞,碰撞边界向西延续到35°N,74°E附近,其主要挤压方向为NNE,并形成SE方向的物质流动.帕米尔地区有强烈的构造运动,并存在俯冲带形态的构造.在26.5°N,97°E附近,板块边界的走向发生突变,并形成东倾的缅甸山弧俯冲带,但印度板块挤压造成的主压应力方向为NNE向.在安达曼—尼科巴—苏门答腊—爪哇岛弧,印度板块俯冲于欧亚板块之下,在中国南海一带形成NNW向或近Ns向的主压应力.  相似文献   

2.
本文利用地震资料并结合地质资料,讨论了印度板块与欧亚板块在中国周边的相互作用及其对中国应力场的影响,指出两板块在喜马拉雅山前断裂地区碰撞,碰撞边界向西延续到35°N,74°E附近,其主要挤压方向为NNE,并形成SE方向的物质流动.帕米尔地区有强烈的构造运动,并存在俯冲带形态的构造.在26.5°N,97°E附近,板块边界的走向发生突变,并形成东倾的缅甸山弧俯冲带,但印度板块挤压造成的主压应力方向为NNE向.在安达曼-尼科巴-苏门答腊-爪哇岛弧,印度板块俯冲于欧亚板块之下,在中国南海一带形成NNW向或近Ns向的主压应力.  相似文献   

3.
从板块碰撞看新疆地震活动的迁移   总被引:1,自引:0,他引:1  
1.引言众所周知,新疆地处欧亚板块腹地,是我国主要的内陆地震活动区。一般认为其强震的活动主要受印度洋板块向北东推挤作用的影响。这种作用通过板块的边缘地区,即喜马拉雅弧区传递到新疆南部的帕米尔—西昆仑区,然后逐渐向北传递。传递过程中可能引起  相似文献   

4.
5.
Based on intensity data in Shanghai and its adjacent region, the intensity attenuation relation is determined. Selecting the western United States as a reference area where there are rich strong ground motion records and intensity data, and by determining ground motion attenuation relation in an area lacking in strong ground motion data, we obtain the ground motion attenuation relation in Shanghai and its adjacent region.  相似文献   

6.
As a result of the left-lateral strike-slipping of the Altyn Tagh fault in Neotectonic period, a contra-rotational structure, namely the Zhaobishan vortex structure, has developed at the juncture of the main Altyn Tagh fault and the northern fringe fault of the Qilian Mountains.Preliminary analysis on the deformation and evolution of the Zhaobishan vortex structure. In combination with the previous data, suggests that the tectonic transform between the Altyn Tagh fault and the northern fringe fault of the Qilian Mountains attributes to the deformation of the rotational structure. The existence of a series of rotational structures along the Altyn Tagh fault and on the northeastern edge of the Qinghai-Xizang(Tibet) plateau indicate that as the substance in the northern Qinghal-Xizang (Tibet) plateau moves clockwise around the eastern tectonic knot of the Himalayas, rotational structures become the principal mode on the northern marginal zone of the Plateau of transforming and absorbing tectonic deformation.  相似文献   

7.
We have collected 432 vertical component records from 45 stations of new CENC (China Earthquake Network Center) in Chinese mainland and adjacent regions. These records were used to calculate Q0 (Q at 1Hz) and η values of Lg coda from each station by the stack spectral ratio (SSR) method. Then the tomography method was applied to obtaining lateral variation of Q0 and η values in Chinese mainland and adjacent regions. The result indicates that Q0 value varies between 150 and 600 in the studied areas. Yunnan, southwest Sichuan, and northwest Myanmar show the lowest Q0 value (Q0〈240) and the crust of these regions is characterized by complicated crack and strong hydrothermal activity. The highest Q0 value (Qo〉510) exists in the border of southern Mongolia, Alxa and Ordos block. The η value varies between 0.45 and 0.75 in Chinese mainland and its adjacent regions.  相似文献   

8.
Xu Jie 《中国地震研究》2006,20(1):101-107
The Indonesian region is one of the most seismically active zones on the earth. On December 26, 2004, an Ms 8.7 earthquake (as measured by the China Seismograph Network, or Mw = 9.3 as measured by USGS) struck the west coast of northern Sumatra, Indonesia. By its magnitude it is classified as the world's fourth largest earthquake since 1900 and the largest one since the 1964 Alaska earthquake. The spatial distribution of the relocation of larger aftershocks ( M 〉 4.5) following the main shock suggests a length and width of the rupture of about 1200km and 200km, respectively. The shock triggered massive tsunamis that affected several countries throughout South and Southeast Asia. It is a shallow interplate event of thrust type in the trench. Its epicenter is located at the northwestern end of the Indonesia-Melanesia plate boundary tectonic zone. In 2004, eight shocks of M≥ 7.0 occurred in this area, showing a migration from east to west. It implies that these shocks represent a correlated and consistent dynamic process along this subduction zone. These interplate events are associated with convergence of several plates and their fast motion in this region, which result in strong and complex structures and deformation. The India-Australia plate is underthrusting toward the Sunda continental block or Burma plate at a low angle, producing a great locked area on the shallow portion of the subduction zone where enormous strain is accumulated. Interseismic uplift recorded by coral growth and horizontal velocities measured by GPS show the geometry of the locked portion of the Sumatra subduction zone. The vertical and horizontal data reasonably match with a model in which the plate interface is fully locked over a significant width. This locked fault zone extends to a horizontal distance of 132km from the trench, which corresponds to a depth of 50km. The sudden ruptures and large-scale slip of this locked area as a release of stress occurred, are the direct cause of the M8.7 earthquake near Indonesia in 2004.  相似文献   

9.
利用几个典型全球板块相对运动模型的欧拉矢量,计算沿这些模型板块边界段的两两板块之间的相对运动速度,据此进一步计算一定时间尺度内这些板块边界段的面积变化. 并依据已有对相应各边界段性质-包括张性、压性及走滑性质的研究,设定组成各边界段的两个板块如何分别承担其面积变化的情况,得到各模型中每个板块的面积变化和全球表面积变化总量. 结果显示,在近100万年时间尺度内,地球南半球表面积增大、北半球表面积减小,地球总表面积变化为2.9万~3.6万km~2. 如果假设地球表面积的增量完全由体积膨胀引起,这将对应地球半径160~250 m的增加. 以NUVEL-1模型为例,全球14个板块中,非洲、 南美与南极三个板块的面积持续增大,其余11个板块的面积在逐步减小;不过,非洲、南美与南极这三个板块面积增大部分之和,能够完全抵消掉其余11板块面积之减小,而且使全球总体表面积增加. 本文进一步讨论了一些其他因素,例如俯冲带前进与后退等影响地球表面积变化的情况.  相似文献   

10.
We employed a double-difference algorithm(hypoDD)to relocate earthquakes within the region bounded by 66°E-78°E and 32°N-42°N in the period of 1964?2003 reported by the International Seismological Center(ISC).The improved hypocentral locations delineate a double-layered Wadati-Benioff zone in the eastern Hindu Kush intermediate seismic belt.Based on this feature and other evidences,we propose that the intermediate-depth earthquakes beneath the Pamir-Hindu Kush region may occur in two collided subduction zon...  相似文献   

11.
印度-欧亚碰撞与洋-陆碰撞的差异   总被引:1,自引:0,他引:1       下载免费PDF全文
观测的证据充分表明,印度——欧亚的缝合带雅鲁藏布江上存在自南向北的地壳俯冲带,它穿过莫霍面,深度大约达到100 km. 喜马拉雅中可能存在多重的地壳俯冲. 它们有别于海洋碰撞时所产生的整个岩石圈俯冲. 作者观测到雅鲁藏布江以北上地幔的板片构造,它可以解释为印度向欧亚俯冲时上地幔岩石圈的痕迹. 它们说明与洋——陆的俯冲不同,印度向欧亚俯冲时,地壳与上地幔岩石圈出现拆层现象. 综合现有的地壳上地幔构造,显示在不同地质年代中,印度与欧亚之间产生自南向北以及自北向南相反方向的俯冲,而且俯冲带周围出现某些速度异常区.   相似文献   

12.
Ample observational evidence shows that there is a northward crustal subduction zone underneath the Yarlung Zangbo suture between India and Eurasia. It penetrates Moho to a depth of about 100 km. There are probably multiple such crustal subductions under the Himalayas. They are different from lithosphere subduction during oceanic collisions. The detected slabs in the upper mantle north of the Yarlung Zangbo suture can be interpreted as remains of the Indian Plate’s mantle lithosphere. In contrary to ocean-continent subduction, the mantle lithosphere is delaminated from the crust as the Indian Plate subducts underneath Eurasia. Existing structural images of the crust and upper mantle of the Tibetan Plateau reveal that there were both northward and southward subductions over different geological periods, causing some seismic velocity anomalies around those subduction zones.  相似文献   

13.
The present continent had been assembled by the accretion of a series of terrains after their mutual colli-sions. Thus, the continental collision process plays an important role in the tectonics, the deformation and the movement in the continent. The Indo-Eurasian colli-sion had not only produced the grand geological structures and landscape, such as the Himalayan Mountain and the Tibetan Plateau, but also played a decisive role in the tectonic deformation and seismic-ity of Eastern Asia si…  相似文献   

14.
为研究日喀则市活动断裂深浅部构造关系及深部孕震机制,跨雅鲁藏布江谢通门—日喀则段部署了48个宽频大地电磁测深点,剖面长度为108 km。在二维反演的基础上对壳幔200 km深度范围内的电性结构进行了探测研究。剖面自南向北依次经过喜马拉雅地块、雅鲁藏布江缝合带和拉萨—冈底斯地块。喜马拉雅地块地壳表现为高阻特性,其北侧的仲巴—郎杰学陆缘移置混杂地体发育了深达上地幔盖层的巨厚的北倾低阻体;雅鲁藏布江主缝合带表现为喇叭状低阻通道,宽约10 km,存在深浅部两处低阻体,浅部南倾深部北倾,低阻通道南部发育近似直立或南倾的高阻日喀则蛇绿岩,北部发育近直立的高阻冈底斯花岗岩体,整体表现为两个高阻异常体中间夹一个连通壳幔的带状低阻通道;拉萨—冈底斯地块以高阻为主,中下地壳普遍发育低阻体。缝合带附近因板块俯冲作用导致壳幔局部增厚或减薄,表现为电性的梯度变化,表现为低阻特性的部分则是壳幔物质的运移通道。   相似文献   

15.
Since the collision of Indian subcontinent to Eurasia, a huge quantity of crustal materials from India has been penetrated into the crust or mantle of Eurasia. Investigation of the place, on which those materials have been deposited is a key problem for constructing a model of collision between continents. The results of three-dimensional seismic velocity structure obtained from seismic tomography technique may provide an evidence of the deposit of anomalous materials in the crust and upper mantle of the Tibetan Plateau and its neighboring areas. A detailed analysis of the results from the seismic surface wave tomography has deduced a new model of the continental collision from India to Eurasia. It is compatible to the velocity data obtained from other geological and geophysical observations. The main points of the new model of the continental collision from Indian to Eurasia can be summarized as follows:
  1. The Indian crust has been penetrating into the lower crust of Tibetan Plateau, instead of into the uppermost mantle beneath the crust or the asthenosphere of Tibetan Plateau;
  2. The surplus materials from the Tibetan lower crust have been squeezed and thrusted into the asthenosphere of its eastern neighboring areas (Qinghai-Sichuan-Yunnan) through the broken Moho;
  3. Some hot materials were intruded into the crust from the uppermost mantle in Tibetan Plateau and Sichuan-Yunnan provinces. The intruded hot materials may reach the ground surface (such as the Tibetan Plateau) or a depth about 25 km (such as Sichuan-Yunnan provinces) depending on the different local environmental conditions. The extensional geological structures in those regions are closely related to the intrusion of hot materials.
  相似文献   

16.
地幔对流拖曳力对中国大陆岩石层变形的影响   总被引:9,自引:4,他引:5       下载免费PDF全文
采用较为符合实际岩石层变形的非线性幂指数本构关系,基于ANSYS有限元平台, 模拟了近20万年来中国大陆地区地表运动及演化过程,探讨了印度板块挤压作用和地幔对流拖曳力各自对于中国大陆地区地表形变运动格局的影响.模拟结果与观测数据的比较表明:在印度板块的挤压和地幔拖曳力联合作用下,中国及东亚大陆岩石层运动形变模式能够和现代GPS观测有较好的吻合; 印度大陆和欧亚大陆的碰撞以及印度大陆的持续向北推进、挤压所产生的应力环境,一直主导了以青藏高原为核心的我国西部地域岩石圈构造、运动和演化,但其影响随着远离青藏高原地区而逐渐变小;地幔对流产生的作用于岩石层底部的拖曳力是中国大陆(特别是远离碰撞带)岩石层运动构造变形的重要驱动力.然而在构造复杂和东部靠近太平洋板块的区域,模型预测结果和GPS观测还存在一定的差距,这说明在未来的中国大陆岩石层变形运动的数值模拟中,应当采用更为复杂的构造模型和驱动力因素.  相似文献   

17.
Teleseismic receiver functions and travel-time residuals along the north Hi-Climb broadband seismic array in the central-southern Qinghai-Tibet Plateau show that the lithosphere structures in the central and western Qinghai-Tibet Plateau are different. In the central Qinghai-Tibet Plateau, the Indian Plate is northward subducted beneath the Qiangtang block and arrives at the greatest depth beneath the central-southern Qiangtang block. The delaminated Indian lithospheric slab remains beneath the central Lhasa block to a depth possibly greater than that of the upper interface of the mantle transform zone. In the western Qinghai-Tibet Plateau, the Indian lithospheric plate is gently northward subducted and may have arrived to the south of Tarim plate. Due to the resistance from the gently northward subduction of the Indian mantle lithosphere in the western Qinghai-Tibet Plateau, the upwelling mantle material be-neath the Qiangtang block moves mostly toward the east to bring about the lateral eastward flow of the deep mantle hot material in the central Qinghai-Tibet Plateau.  相似文献   

18.
中国境内天山地壳上地幔结构的地震层析成像   总被引:18,自引:5,他引:18       下载免费PDF全文
根据横跨中国境内天山的库车—奎屯宽频带流动地震台阵和区域地震台网记录的近震和远震P波走时数据,利用地震层析成像方法重建了沿该地震台阵剖面下方400 km深度范围内地壳上地幔的P波速度结构.结果表明:沿新疆库车—奎屯剖面,天山地壳具有明显的横向分块结构,且南、北天山地壳显示了较为强烈的横向变形特征,表明塔里木地块对天山地壳具有强烈的侧向挤压作用;在塔里木和准噶尔地块上地幔顶部有厚度约60~90 km的高速异常体,塔里木—南天山下方的高速异常体产生了较为明显的弯曲变形,而准噶尔—北天山下方的高速异常体向南一直俯冲到中天山南侧边界下方300 km的深度,两者形成了不对称对冲构造;在塔里木和准噶尔地块下方150~400 km深度存在上地幔低速体,其中塔里木地块一侧的上地幔低速物质上涌到南天山地块的下方;在塔里木—南天山200~300 km深度范围的上地幔存在高速异常体,它可能是地幔热物质向上迁移过程融断的塔里木岩石圈的拆离体. 上述结果表明,塔里木地块的俯冲可能涉及整个岩石圈深度,但其前缘仅限于南天山的北缘;青藏高原隆升的远程效应可能不但驱动塔里木岩石圈向北俯冲,同时还造成天山造山带南侧上地幔物质的涌入;天山造山带上地幔广泛存在的低速异常有助于其上地幔的变形,而上地幔物质的强烈非均匀性应有助于推动天山造山带上地幔小尺度地幔对流的形成;根据研究区地壳上地幔速度结构特征推断,新近纪以来天山快速隆升的主要力源来自青藏高原快速隆升的远程效应,相对软弱的上地幔为加速天山造山带的变形和隆升创造了必要条件.  相似文献   

19.
PETER D.  CLIFT  ROBYN  HANNIGAN  JERZY  BLUSZTAJN  AMY E.  DRAUT 《Island Arc》2002,11(4):255-273
Abstract   The Dras 1 Volcanic Formation of the Ladakh Himalaya, India, represents the eastern, upper crustal equivalent of the lower crustal gabbros and mantle peridotites of the Kohistan Arc exposed in Pakistan. Together these form a Cretaceous intraoceanic arc now located within the Indus Suture zone between India and Eurasia. During the Late Cretaceous, the Dras–Kohistan Arc, which was located above a north-dipping subduction zone, collided with the south-facing active margin of Eurasia, resulting in a switch from oceanic to continental arc volcanism. In the present study we analyzed samples from the pre-collisional Dras 1 Volcanic Formation and the postcollisional Kardung Volcanic Formation for a suite of trace elements and Nd isotopes. The Kardung Volcanic Formation shows more pronounced light rare earth element enrichment, higher Th/La and lower ɛNd values compared with the Dras 1 Volcanic Formation. These differences are consistent with an increase in the reworking of the continental crust by sediment subduction through the arc after collision. As little as 20% of the Nd in the Dras 1 Volcanic Formation might be provided by sources such as the Karakoram, while approximately 45% of the Nd in the Kardung Volcanic Formation is from this source. However, even before collision, the Dras–Kohistan Arc shows geochemical evidence for more continental sediment contamination than is seen in modern western Pacific arcs, implying its relative proximity to the Eurasian landmass. Comparison of the lava chemistry in the Dras–Kohistan Arc with that in the forearc turbidites suggests that these sediments are partially postcollisional, Jurutze Formation and not all pre-collisional Nindam Formation. Thus, the Dras–Eurasia collision can be dated as Turonian–Santonian (83.5–93.5 Ma), older than it was previously considered to be, but consistent with radiometric ages from Kohistan.  相似文献   

20.
根据中、美两国合作开展的西藏深反射地震结果,提出雅鲁藏布江缝合带(YZS)的"双陆内俯冲"构造模式和缝合带南、北分别存在着不同特征的、规模不一的部分熔融层;提出YZS处断裂向深部延深有限,认为YZS处地壳增厚有4种机制:①地壳规模的大的俯冲增厚;②上部地壳内的俯冲和背冲增厚;③下地壳内的底部垫托增厚和挤压增厚;④深部熔融体的向上挤入而引起的地壳增厚.提出可能存在两条大的伸展性断裂,造成江孜南、北地块间出现了大升降.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号