首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Archean mantle lithosphere beneath the North China Craton(NCC) was transformed in the Mesozoic, leading to the craton destruction. Despite the significant breakthroughs in the craton studies, lithospheric transformation mechanisms are yet to be fully understood. Compositional variations of mantle-derived rocks and xenoliths provide insights into the nature of the mantle lithosphere before and after the craton destruction. The Paleozoic lithosphere of the NCC is ~200 km thick. It has a refractory mantle with an evolved isotopic signature. The Mesozoic mantle lithosphere was relatively fertile and highly heterogeneous. In the Cenozoic, the lithosphere in the eastern NCC is about 60–80 km thick. It has an oceanic-type mantle that is fertile in composition and depleted in the Sr-Nd isotopic signature. The Central Zone lithosphere is 100 km thick and has a double-layer mantle with an old upper layer and a new lower layer. The Western Block has a lithosphere of ~200 km thick. The lithospheric mantle beneath the southern and northern margins and eastern part of the NCC has been transformed significantly by peridotite-melt reactions due to the multiple subductions of adjacent plates since the Paleozoic. Paleo-Pacific subduction and the associated dynamic processes significantly alter the lithosphere based on the distribution of craton destruction. The involved mechanisms include mechanical intrusion of subduction plates, melt/fluid erosion, and local delamination. The lithospheric thinning of ~120 km is relevant to the continental extension caused by subduction plate rollback and trench retreat.  相似文献   

2.
High-resolution P wave tomography shows that the subducting Pacific slab is stagnant in the mantle transition zone and forms a big mantle wedge beneath eastern China. The Mg isotopic investigation of large numbers of mantle-derived volcanic rocks from eastern China has revealed that carbonates carried by the subducted slab have been recycled into the upper mantle and formed carbonated peridotite overlying the mantle transition zone, which becomes the sources of various basalts. These basalts display light Mg isotopic compositions(δ26 Mg = –0.60‰ to –0.30‰) and relatively low87 Sr/86 Sr ratios(0.70314–0.70564) with ages ranging from 106 Ma to Quaternary, suggesting that their mantle source had been hybridized by recycled magnesite with minor dolomite and their initial melting occurred at 300-360 km in depth. Therefore, the carbonate metasomatism of their mantle source should have occurred at the depth larger than 360 km, which means that the subducted slab should be stagnant in the mantle transition zone forming the big mantle wedge before 106 Ma. This timing supports the rollback model of subducting slab to form the big mantle wedge. Based on high P-T experiment results, when carbonated silicate melts produced by partial melting of carbonated peridotite was raising and reached the bottom(180–120 km in depth) of cratonic lithosphere in North China, the carbonated silicate melts should have 25–18 wt% CO2 contents, with lower Si O2 and Al2 O3 contents, and higher Ca O/Al2 O3 values, similar to those of nephelinites and basanites, and have higher εNdvalues(2 to 6). The carbonatited silicate melts migrated upward and metasomatized the overlying lithospheric mantle, resulting in carbonated peridotite in the bottom of continental lithosphere beneath eastern China. As the craton lithospheric geotherm intersects the solidus of carbonated peridotite at 130 km in depth, the carbonated peridotite in the bottom of cratonic lithosphere should be partially melted, thus its physical characters are similar to the asthenosphere and it could be easily replaced by convective mantle. The newly formed carbonated silicate melts will migrate upward and metasomatize the overlying lithospheric mantle. Similarly, such metasomatism and partial melting processes repeat, and as a result the cratonic lithosphere in North China would be thinning and the carbonated silicate partial melts will be transformed to high-Si O2 alkali basalts with lower εNdvalues(to-2). As the lithospheric thinning goes on,initial melting depth of carbonated peridotite must decrease from 130 km to close 70 km, because the craton geotherm changed to approach oceanic lithosphere geotherm along with lithospheric thinning of the North China craton. Consequently, the interaction between carbonated silicate melt and cratonic lithosphere is a possible mechanism for lithosphere thinning of the North China craton during the late Cretaceous and Cenozoic. Based on the age statistics of low δ26 Mg basalts in eastern China, the lithospheric thinning processes caused by carbonated metasomatism and partial melting in eastern China are limited in a timespan from 106 to25 Ma, but increased quickly after 25 Ma. Therefore, there are two peak times for the lithospheric thinning of the North China craton: the first peak in 135-115 Ma simultaneously with the cratonic destruction, and the second peak caused by interaction between carbonated silicate melt and lithosphere mainly after 25 Ma. The later decreased the lithospheric thickness to about70 km in the eastern part of North China craton.  相似文献   

3.
While a general concensus has recently been reached as to the causal relationship between the subduction of the west Pacific plate and the destruction of the North China Craton, a number of important questions remain to answer, including the initial subduction of west Pacific plate beneath the eastern Asian continent, the position of west Pacific subduction zone during the peak period of decratonization(i.e., Early Cretaceous), the formation age of the big mantle wedge under eastern Asia, and the fate of the subducted Pacific slab. Integration of available data suggests that the subduction of the western Pacific plate was initiated as early as Early Jurrasic and the subduction zone was situated to 2,200 km west of the present-day trench in the Early Creataceous, as a result of eastward migration of the Asian continent over a distance of ca. 900 km since the Early Cretaceous.The retreat of the subducting west Pacific plate started ~145 Ma ago, corresponding to the initial formation of the big mantle wedge system in the Early Cretaceous. The subduction of the Pacific slab excerted severe influence on the North China Craton most likely through material and energy echange between the big mantle wedge and overlying cratonic lithosphere. The evolution history of the west Pacific plate was reconstructed based on tectonic events. This allows to propose that the causes of phases A and B for the Yanshanian orogeny were respectively related to rapid low-angle subduction and to lowering subduction angle of the west Pacific plate. At ca. 130–120 Ma, the subduction of the west Pacific plate was characterized by increasing subducting angle, slab rollback and rapid trench retreat, leading to the final stagnation of the subducting slab within the mantle transition zone. This process may have significantly affected the physical property and viscosity of the mantle wedge above the stagnant slab, resulting in non-steady mantle flows. The ingression of slab-released melts/fluids would significantly lower the viscosity of the mantle wedge and overlying lithosphere, inducing decratonization. This study yields important bearings on the relationship between the subduction of the west Pacific plate and the evolution of the lithospheric mantle beneath the North China Craton.  相似文献   

4.
To determine the crustal structure in central Tibet, we used teleseismic waveform data recorded by 18 stations in the INDEPTH-Ⅲ seismic array across the central Tibet from the central Lhasa terrane to the central Qiangtang terrane. The S-wave velocity structures beneath stations are determined by inverting the stacked radial receiver function using the GA method. The first order features in the receiver function are modeled. Our results show that the Moho in Qiangtang is about 8 km shallower than that in Lhasa terrane along the INDEPTH-Ⅲ profile. It maybe suggests the northward subduction of the Lhasa mantle lid beneath the Qiangtang terrane is affected by the India-Asia collision. We conclude that there exist low velocity zone in the middle crust across the northern Lhasa and Qiangtang terrane, which can be related to the high temperature upper mantle beneath that.  相似文献   

5.
Dynamic mechanisms controlling the topography of Longmenshan area   总被引:1,自引:0,他引:1  
The Longmenshan fault, which defines the eastern edge of the Tibetan Plateau, is one of the steepest margins of the plateau with a sharp elevation drop of about 4 km over a distance less than 100 km across the Longmenshan fault. The mechanism which is responsible for controlling and maintaining the elevation difference is highly debated. Using multiple observations including seismic velocity model, Moho depth, effective elastic thickness of the lithosphere, we conducted a quantitative study for elucidating the contributions from crust and lithospheric mantle by an integrated analysis of lithospheric isostasy and flexure. It is shown that the topography of the Longmenshan fault is supported by both lithospheric isostasy and flexure statically, and lower crustal channel flow and mantle convection dynamically. Different mechanisms have different weights for contribution to the topography of the Songpan-Ganzi block and the Sichuan Basin. The static and dynamic support contribute roughly the same to the topographic difference of ~4 km between the two sides of the Longmenshan fault. The static topographic difference of ~2 km is mainly resulted from the lithospheric isostasy, while the dynamic one of ~2 km is contributed by the uprising of the accumulated material in the lower crust beneath the Songpan-Ganzi block and the downward drag force caused by the upper mantle convection under the Sichuan Basin. It is thus suggested that the lower crustal flow and upper mantle convection are dynamic forces which should be taken into account in the studies on the dynamics in the Longmenshan and surrounding regions.  相似文献   

6.
Southeastern Tibet, which has complex topography and strong tectonic activity, is an important area for studying the subsurface deformation of the Tibetan Plateau. Through the two-station method on 10-year teleseismic Rayleigh wave data from 132 permanent stations in the southeastern Tibetan Plateau, which incorporates ambient noise data, we obtain the interstation phase velocity dispersion data in the period range of 5–150s. Then, we invert for the shear wave velocity of the crust and upper mantle through the direct 3-D inversion method. We find two low-velocity belts in the mid-lower crust. One belt is mainly in the SongPan-GangZi block and northwestern part of the Chuan-Dian diamond block, whereas the other belt is mainly in the Xiaojiang fault zone and its eastern part, the Yunnan-Guizhou Plateau. The low-velocity belt in the Xiaojiang fault zone is likely caused by plastic deformation or partial melting of felsic rocks due to crustal thickening. Moreover, the significant positive radial anisotropy(VSHVSV) around the Xiaojiang fault zone further enhances the amplitude of low velocity anomaly in our VSVmodel.This crustal low-velocity zone also extends southward across the Red River fault and farther to northern Vietnam, which may be closely related to heat sources in the upper mantle. The two low-velocity belts are separated by a high-velocity zone near the Anninghe-Zemuhe fault system, which is exactly in the inner and intermediate zones of the Emeishan large igneous province(ELIP). We find an obvious high-velocity body situated in the crust of the inner zone of the ELIP, which may represent maficultramafic material that remained in the crust when the ELIP formed. In the upper mantle, there is a large-scale low-velocity anomaly in the Indochina and South China blocks south of the Red River fault. The low-velocity anomaly gradually extends northward along the Xiaojiang fault zone into the Yangtze Craton as depth increases. Through our velocity model, we think that southeastern Tibet is undergoing three different tectonic modes at the same time:(1) the upper crust is rigid, and as a result, the tectonic mode is mainly rigid block extrusion controlled by large strike-slip faults;(2) the viscoplastic materials in the middlelower crust, separated by rigid materials related to the ELIP, migrate plastically southward under the control of the regional stress field and fault systems; and(3) the upper mantle south of the Red River fault is mainly controlled by large-scale asthenospheric upwelling and may be closely related to lithospheric delamination and the eastward subduction and retreat of the Indian plate beneath Burma.  相似文献   

7.
Determination of the physical and chemical structures of the inaccessible continental lithosphere by comprehensive geophysical and geochemical studies can provide valuable information on its formation and evolution.Extensive studies from various disciplines have revealed complex lithospheric modification of the North China Craton(NCC),but less attention has been paid to an integrated study from different fields.Here we provide an integrated constraint on the lithospheric mantle structure of the NCC by comprehensive semiology,gravity and thermal studies with xenolith data involving depth(levels in the lithosphere),property(chemical and physical),and timing(formation and reworking ages).Our results suggest that the NCC has a relatively heterogeneous lithospheric mantle.Its margins and internal weak zones,especially in the eastern NCC,are generally underlain by the fertile,weakly metasomatized mantle with generally young formation ages.In contrast,its core tends to preserve the refractory,strongly metasomatized mantle with ages roughly coupled to the overlying Archean crust.Such a lithospheric structure shows the preferential modification of the lithospheric mantle in the eastern NCC and in the peripheral regions of the western NCC.The interior of the craton,especially most of the western NCC,remains stable and has been weakly modified.  相似文献   

8.
Over the past 10 years,the number of broadband seismic stations in China has increased significantly.The broadband seismic records contain information about shear-wave splitting which plays an important role in revealing the upper mantle anisotropy in the Chinese mainland.Based on teleseismic SKS and SKKS phases recorded in the seismic stations,we used the analytical method of minimum transverse energy to determine the fast wave polarization direction and delay time of shear-wave splitting.We also collected results of shear-wave splitting in China and the surrounding regions from previously published papers.From the combined dataset we formed a shear-wave splitting dataset containing 1020 parameter pairs.These splitting parameters reveal the complexity of the upper mantle anisotropy image.Our statistical analysis indicates stronger upper mantle anisotropy in the Chinese mainland,with an average shear-wave time delay of 0.95 s;the anisotropy in the western region is slightly larger(1.01 s)than in the eastern region(0.92 s).On a larger scale,the SKS splitting and surface deformation data in the Tibetan Plateau and the Tianshan region jointly support the lithospheric deformation mode,i.e.the crust-lithospheric mantle coherent deformation.In eastern China,the average fast-wave direction is approximately parallel to the direction of the absolute plate motion;thus,the upper mantle anisotropy can be attributed to the asthenospheric flow.The area from the Ordos block to the Sichuan Basin in central China is the transition zone of deformation modes between the east and the west regions,where the anisotropy images are more complicated,exhibiting"fossil"anisotropy and/or two-layer anisotropy.The collision between the Indian Plate and the Eurasian Plate is the main factor of upper mantle anisotropy in the western region of the Chinese mainland,while the upper mantle anisotropy in the eastern region is related to the subduction of the Pacific Plate and the Philippine Sea Plate beneath the Eurasian Plate.  相似文献   

9.
Based on the polarization analysis of teleseismic SKS waveform data recorded at 49 seismic stations in Capital Area Seismograph Network,the SKS fast-wave direction and the delay time between the fast and slow shear waves at each station were determined by using the grid searching method of minimum transverse energy and the stacking analysis method,and then we acquired the image of upper mantle anisotropy in Capital area.In the study area,the fast-wave polarization direction is basically WNW-ESE,and the delay time falls into the interval from 0.56 s to 1.56 s.The results imply that the upper mantle anisotropy in Capital area is mainly caused by the subduc-tion of the Pacific plate to Eurasian plate.The subduction has resulted in the asthenospheric material deformation in Capital area,and made the alignment of upper mantle peridotite lattice parallel to the deformation direction.And the collision between the Indian and Eurasian plates made the crust of western China thickening and uplifting and material eastwards extruding,and then caused the upper mantle flow eastwards,and made the upper mantle de-formation direction parallel to the fast-wave direction.The deformation model of the crust and upper mantle is possibly vertically coherent deformation by comparing the fast-wave polarization direction with the direction of lithospheric extension and the GPS velocity direction.  相似文献   

10.
The Qinghai-Tibet Plateau was formed by coales-cence of microcontinents of different geologic histo-ries, i.e. it consists of a series of blocks, such as Hi-malayas, Lhasa, Qiangtang, Kunlun, Qaidam and Qi- lian blocks from south to north. The blocks moved firstly in the NNE direction, then in the NE direction and at last in the ENE or E-W direction from south to north by a combined action of Indian Plate moving northward and obstruction of Tarim and other blocksnorth of the plateau. T…  相似文献   

11.
We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green's functions obtained from seismic ambient noise cross-correlation.The data we use are from the China National Seismic Network,global and regional networks and PASSCAL stations in the region.We first acquire cross-correlation seismograms between all possible station pairs.We then measure the Rayleigh wave group and phase dispersion curves using a frequency-time analysis method from 8 s to 60 s.After that,Rayleigh wave group and phase velocity dispersion maps on 1° by 1° spatial grids are obtained at different periods.Finally,we invert these maps for the 3-D shear wave velocity structure of the crust and upper mantle beneath China at each grid node.The inversion results show large-scale structures that correlate well with surface geology.Near the surface,velocities in major basins are anomalously slow,consistent with the thick sediments.East-west contrasts are striking in Moho depth.There is also a fast mid-to-lower crust and mantle lithosphere beneath the major basins surrounding the Tibetan plateau (TP) and Tianshan (Junggar,Tarim,Ordos,and Sichuan).These strong blocks,therefore,appear to play an important role in confining the deformation of the TP and constraining its geometry to form its current triangular shape.In northwest TP in Qiangtang,slow anomalies extend from the crust to the mantle lithosphere.Meanwhile,widespread,a prominent low-velocity zone is observed in the middle crust beneath most of the central,eastern and southeastern Tibetan plateau,consistent with a weak (and perhaps mobile) middle crust.  相似文献   

12.
The Mugouriwang Cenozoic volcanic rocks exposed in the north Qiangtang Block of Tibetan Plateau are mainly composed of basalt and andesitic-basalt,both characterized by the lower SiO2 (51%―54%),high refractory elements (i.e. Mg,Cr,Ni) as well as the moderate enrichment in light rare earth elements (LREE) relative to a slight depleted in Eu and high strength field elements (HFSE,i.e. Nb,Ta,Ti). Be-sides,the fairly low Sm/Yb value (3.07―4.35) could signify that the rocks should be derived directly from partial melting of the spinel lherzolite at the upper part of the asthenosphere. These rocks have radiogenic Sr and Pb (87Sr/86Sr = 0.705339 to 0.705667; 208Pb/204Pb = 38.8192 to 38.8937; 207Pb/204Pb = 15.6093 to 15.6245; 206Pb/204Pb = 18.6246 to 18.6383),and non-radiogenic Nd (143Nd/144Nd = 0.512604 to 0.512639; εNd = 0.02 to -0.66) in agreement with those values of the BSE mantle reservoir. The DUPAL anomaly of the rocks can be evidently attested by the △8/4Pb = 66.82 to 74.53 ,△7/4Pb = 9.88 to 11.42,△Sr>50,implying that the Mugouriwang volcanic rock is likely to be generated by partial melting of a Gondwana-bearing asthenospheric mantle ever matasomatised by the fluid from subduction zone. Depending on the previous study on the high-K calc-alkaline intermediate-felsic volcanics in the study area,this paper proposed that the fluids derived from the subducted Lhasa Block metasomatised the asthenosphere beneath the Qiangtang Block,and induced its partial melting,and then the melt under-plated the thickened Qiangtang lithosphere and caused the generation of the Cenozoic adakite-like felsic magmas in the Qiangtang region.  相似文献   

13.
In order to constrain whether the Lhasa–Qiangtang collision contributed to an early crustal thickening of the central Tibetan Plateau prior to the India–Asia collision,we present zircon LA–ICP–MS U–Pb ages,wholerock geochemistry,and zircon Hf isotopic compositions of the newly discovered rhyolitic crystal tuffs from the Chuduoqu area in the eastern Qiangtang subterrane,central Tibet.Zircon U–Pb dating suggests that the Chuduoqu rhyolitic crystal tuffs were emplaced at ca.68 Ma.The Chuoduoqu rhyolitic crystal tuffs display high SiO2 and K2 O,and low MgO,Cr,and Ni.Combined with their zircon Hf isotopic data,we suggest that they were derived from partial melting of the juvenile lower crust,and the magma underwent fractional crystallization and limited upper continental crustal assimilation during its evolution prior to eruption.They should be formed in a post-collisional environment related to lithospheric mantle delamination.The Chuduoqu rhyolitic crystal tuffs could provide important constraints on the Late Cretaceous crustal thickening of the central Tibetan Plateau caused by the Lhasa–Qiangtang collision.  相似文献   

14.
The Qinling orogen was formed as a result of the collision between the North and South China blocks. The Qinling orogen represents the location at which the southern and northern parts of the Chinese mainland collided, and it's also the intersection of the Central China orogen and the north-south tectonic belt. There is evidence of strong deformation in this orogen, and it has had a long and complex geological history. We investigated the structure of the Moho in the southern Qinling orogen using large dynamite shot imaging techniques. By integrating the analysis of the single-shot and the move-out corrections profile, we determined the structure of the Moho beneath the northern Dabashan thrust belt and the southern Qinling orogen, including the mantle suture beneath Fenghuang mountain. The Moho is divided into two parts by the mantle suture zone beneath Fenghuang mountain:(1) from Ziyang to Hanyin, the north-dipping Moho is at about45–55 km depth and the depth increases rapidly; and(2)from Hanyin to Ningshan, the south-dipping Moho is at about 40–45 km depth and shallows slowly. The mantle suture is located beneath Fenghuang mountain, and the Moho overlaps at this location: the shallower Moho is connected to the northern part of China, and the deeper Moho is connected to the southern part. This may indicate that the lithosphere in the Sichuan basin subducts to the Qinling block and that the subduction frontier reaches at least as far as Fenghuang mountain.  相似文献   

15.
The North China Craton(NCC) hosts numerous gold deposits and is known as the most gold-productive region of China. The gold deposits were mostly formed within a few million years in the Early Cretaceous(130–120 Ma), coeval with widespread occurrences of bimodal magmatism, rift basins and metamorphic core complexes that marked the peak of lithospheric thinning and destruction of the NCC. Stable isotope data and geological evidence indicate that ore-forming fluids and other components were largely exsolved from cooling magma and/or derived from mantle degassing during the period of lithospheric extension. Gold mineralization in the NCC contrasts strikingly with that of other cratons where gold ore-forming fluids were sourced mostly from metamorphic devolatization in compressional or transpressional regimes. In this paper, we present a summary and discussion on time-space distribution and ore genesis of gold deposits in the NCC in the context of the timing, spatial variation, and decratonic processes. Compared with orogenic gold deposits in other cratonic blocks, the Early Cretaceous gold deposits in the NCC are quite distinct in that they were deposited from magma-derived fluids under extensional settings and associated closely with destruction of cratonic lithosphere. We argue that Early Cretaceous gold deposits in the NCC cannot be classified as orogenic gold deposits as previously suggested, rather, they are a new type of gold deposits, termed as "decratonic gold deposits" in this study. The westward subduction of the paleo-West Pacific plate(the Izanagi plate) beneath the eastern China continent gave rise to an optimal tectonic setting for large-scale gold mineralization in the Early Cretaceous. Dehydration of the subducted and stagnant slab in the mantle transition zone led to continuous hydration and considerable metasomatism of the mantle wedge beneath the NCC. As a consequence, the refractory mantle became oxidized and highly enriched in large ion lithophile elements and chalcophile elements(e.g., Cu, Au, Ag and Te). Partial melting of such a mantle would have produced voluminous hydrous, Au- and S-bearing basaltic magma, which, together with crust-derived melts induced by underplating of basaltic magma, served as an important source for ore-forming fluids. It is suggested that the Eocene Carlin-type gold deposits in Nevada, occurring geologically in the deformed western margin of the North America Craton, are comparable with the Early Cretaceous gold deposits of the NCC because they share similar tectonic settings and auriferous fluids. The NCC gold deposits are characterized by gold-bearing quartz veins in the Archean amphibolite facies rocks, whereas the Nevada gold deposits are featured by fine-grained sulfide dissemination in Paleozoic marine sedimentary rocks. Their main differences in gold mineralization are the different host rocks, ore-controlling structures, and ore-forming depth. The similar tectonic setting and ore-forming fluid source, however, indicate that the Carlin-type gold deposits in Nevada are actually analogous to decratonic gold deposits in the NCC. Gold deposits in both the NCC and Nevada were formed in a relatively short time interval(10 Myr) and become progressively younger toward the subduction zone. Younging of gold mineralization toward subduction zone might have been attributed to retreat of subduction zone and rollback of subducted slab. According to the ages of gold deposits on inland and marginal zones, the retreat rates of the Izanagi plate in the western Pacific in the Early Cretaceous and the Farallon plate of the eastern Pacific in the Eocene are estimated at 8.8 cm/yr and 3.3 cm/yr, respectively.  相似文献   

16.
Based on the main driving force of plate motion(the slab pull force generated by the descent of the oceanic plate in subduction zones) and the three primary mechanisms for magma generation(adding fluid, increasing temperature, and decreasing pressure), the continent-continent collisional process has been divided into three stages, including initial collision, ongoing collision, and tectonic transition. These stages are characterized by normal calc-alkaline andesitic magma(dehydration of the oceanic crust to release fluids), the migration of calc-alkaline magma toward the trench(dehydration of the oceanic crust or an increase in temperature) or small-scale crust-derived peraluminous magma(heat from intra-crustal shearing), and extensive magmatism with compositional diversity induced by slab break-off(increasing temperature and decreasing pressure), respectively.On the basis of the obtained age of slab break-off, the timing of the initial continent-continent collision can be quantitatively back-dated using the convergence rate, depth of slab break-off, and subduction angle. The spatio-temporal migration of the magmatic activity of the Gangdese Batholith, the onset of magmatic flare-up, and the increase of magma temperature at 52–51Ma documented by the volcanic rocks of the Linzizong Pana Formation were most likely the result of the break-off of the Yarlung-Zangbo Neo-Tethyan oceanic lithosphere at approximately 53 Ma. This proposed age of slab break-off suggests that the initial India-Asia collision likely occurred at approximately 55–54 Ma, which is consistent with the collision ages constrained by other abundant geological data(60–55 Ma). This magmatic method has been applied to the Bitlis orogenic belt in southern Turkey in the Arabia-Eurasia continental collision zone, yielding an age range of approximately 29–22 Ma for the initial Arabia-Asia continental collision that is close to the collision ages recently obtained by apatite fission-track dating(approximately20 Ma) and regional tectonic shortening(approximately 27 Ma). The intense folding of the Upper Cretaceous and the angular unconformity between the overlying Linzizong volcanic rocks in the southern Lhasa Terrane(90.69 Ma) are not related to the initial continental collision between India and Asia, but can be interpreted as the consequences of the strong coupling between the hot and young subducting oceanic crust immediately south of the spreading ridge and the overriding lithosphere or the subduction of the Neo-Tethys oceanic plateaux or seamounts. The tectonic event documented by the angular unconformity between the Linzizong Dianzhong Formation and the Nianbo Formation lasted approximately 3 Ma and likely marks the initial India-Asia collision. The significant deceleration of the Indian continent at approximately 51 Ma can be attributed to the disappearance of the slab pull force in the subduction zone due to the break-off of the Yarlung-Zangbo Neo-Tethyan oceanic lithosphere. The descent of the eclogitized lower crust of the northern Indian continent provides the main driving force for the current northward motion of Indian plate. The weak deformation of the lithospheric plate in the overriding plate of the India-Asia collisional zone between 60 and 40 Ma can be attributed to the high-angle subduction related to the rollback of the Yarlung-Zangbo Neo-Tethyan oceanic lithosphere after the initial India-Asia continental collision, the presence of the thick crust and high elevation on the southern margin of the Lhasa Terrane, and the decoupling between the mid-upper and lower crust and between the lower crust and lithospheric mantle of the Indian continent.  相似文献   

17.
Research on the 3—D Seismic Structures in Qinghai—Xizang Plateau   总被引:1,自引:0,他引:1  
Based on the recording data from the analogue and broadband digital seismic stations in and around Qinghai-Xizang (Tibet)Platean,the three dimensiomal 3-D) seismic velocity stroctures in Qinghai-Xizang Plateau were obtained by using the regional body wave tomography and surface wave tomography.The results from these two tomography methods have similar characteristics for P-and S-wave velocity structures in crust and upper mantle.They show that there are remarkahle low velocity zones in the upper crust of L hasa block in the southern Qinghai-Xizang Plateau and the lower crust and upper mantle of Qiangtang block in the northern Qinghai-Xizang Plateau.These phenomena may be related to the different steps of collision process in southern and northern Qinghai-Xizang Plateau.  相似文献   

18.
A teleseismic profile consisting of 26 stations was deployed along 30°N latitude in the eastern Tibetan Plateau. By use of the inversion of P-wave receiver function, the S-wave velocity structures at depth from surface to 80 km beneath the profile have been determined. The inversion results reveal that there is significant lateral variation of the crustal structure between the tectonic blocks on the profile. From Linzhi north of the eastern Himalayan Syntaxis, the crust is gradually thickened in NE direction; the crustal thickness reaches to the maximum value (~72 km) at the Bangong-Nujiang suture, and then decreased to 65 km in the Qiangtang block, to 57―64 km in the Bayan Har block, and to 40―45 km in the Sichuan Basin. The eastern segment of the teleseismic profile (to the east of Batang) coincides geographically with the Zhubalong-Zizhong deep seismic sounding profile carried out in 2000, and the S-wave velocity structure determined from receiver functions is consistent with the P-wave velocity structure obtained by deep seismic sounding in respect of the depths of Moho and major crustal interfaces. In the Qiangtang and the Bayan Har blocks, the lower velocity layer is widespread in the lower crust (at depth of 30―60 km) along the profile, while there is a normal velocity distribution in lower crust in the Sichuan Basin. On an average, the crustal velocity ratio (Poisson ratio) in tectonic blocks on the profile is 1.73 (σ = 0.247) in the Lhasa block, 1.78 (σ = 0.269) in the Banggong-Nujiang suture, 1.80 (σ = 0.275) in the Qiangtang block, 1.86 (σ = 0.294) in the Bayan Har blocks, and 1.77 (σ = 0.265) in the Yangtze block, respectively. The Qiangtang and the Bayan Har blocks are characterized by lower S-wave velocity anomaly in lower crust, complicated Moho transition, and higher crustal Poisson ratio, indicating that there is a hot and weak medium in lower crust. These are considered as the deep environment of lower crustal flow in the eastern Tibetan Plateau. Flowage of the ductile material in lower crust may be attributable to the variation of the gravitational potential energy in upper crust from higher on the plateau to lower off plateau.  相似文献   

19.
We invert S-wave velocities for the 3D upper-mantle temperatures, in which the position with a temperature crossing the 1300℃ adiabat is corresponding to the top of the seismic low velocity zone. The temperatures down to the depth of 80 km are then calculated by solving steady-state thermal conduction equation with the constraints of the inverted upper-mantle temperatures and the surface temperatures, and then surface heat flows are calculated from the crustal temperatures. The misfit between the calculated and observed surface heat flow is smaller than 20% for most regions. The result shows that, at a depth of 25 km, the crustal temperature of eastern China (500―600℃) is higher than that of western China (<500℃). At a depth of 100 km, temperatures beneath eastern and southeastern China are higher than the adiabatic temperature of 1300℃, while that beneath west China is lower. The Tarim craton and the Sichuan basin show generally low temperature. At a depth of 150 km, temperatures beneath south China, eastern Yangtze craton, North China craton and around the Qiangtang terrane are higher than the adiabatic temperature of 1300℃, but is the lowest beneath the Sichuan basin and the regions near the Indian-Eurasian collision zone. At a depth of 200 km, very low temperature occurs beneath the Qinghai-Tibet Plateau and the south to the Tarim craton.  相似文献   

20.
We obtained the 2-D P-wave velocity structure of the lithosphere in the eastern North China Craton, Shanxi fault subsidence zone, and Yinchuan-Hetao fault subsidence zone by ray tracking technology based on six groups of clearly identified crustal phases and one group of lithospheric interface reflection phases from seismic recording sections of 21 shots along the 1300-km-long Yancheng-Baotou deep seismic wide-angle reflection/refraction profile. The results indicate significant differences between the lithospheric structure east and west of the Taihang Mountains, which is a gravity-gradient zone as well as a zone of abrupt change in lithospheric thickness and a separation zone of different rock components. East of the Taihang Mountains, the Mesozoic and Cenozoic lithospheric structure of the North China Craton has undergone strong reformation and destruction, resulting in the lithosphere thickness decreasing to 70–80 km. The North China Basin has a very thick Cenozoic sedimentary cover and the deepest point of crystalline basement is about 7.0 km, with the crustal thickness decreasing to about 31.0 km. The crystalline basement of the Luxi uplift zone is relatively shallow with a depth of 1.0–2.0 km and crustal thickness of 33.0–35.0 km. The Subei Basin has a thicker Cenozoic sedimentary cover and the bottom of its crystalline basement is at about 5.0–6.0 km with a crustal thickness of 31.0–32.0 km. The Tanlu fault is a deep fracture which cuts the lithosphere with a significant velocity structure difference on either side of the fault. The Tanlu fault plays an important role in the lithospheric destruction in the eastern part of the North China Craton. West of the Taihang Mountains, the crustal thickness increases significantly. The crust thickness beneath the Shanxi fault depression zone is about 46 km, and there is a low-velocity structure with a velocity of less than 6.1 km s?? in the upper part of the middle crust. Combined with other geophysical study results, our data shows that the lithospheric destruction at the Shaanxi-Shanxi fault depression zone and the Yinchuan-Hetao rift surrounding the Ordos block is non-uniform. The lithosphere thickness is about 80–90 km in the Datong-Baotou area, 75–137 km at the Dingxiang-Shenmu region, and about 80–120 km in the Anyang-Yichuan area. The non-uniform lithospheric destruction may be related to the ancient tectonic zone surrounding the Ordos block. This zone experienced multi-period tectonic events in the long-term process of its tectonic evolution and was repeatedly transformed and weakened. The weakening level is related to the interactions with the Ordos block. The continental collision between the Cenozoic India and Eurasia plates and N-E thrusting by the Qinghai Tibet Plateau block is causing further reformation and reduction of the lithosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号