首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of inclined piles on the dynamic response of deep foundations and superstructures is still not well understood and needs further research. For this reason, impedance functions of deep foundations with inclined piles, obtained numerically from a boundary element–finite element coupling model, are provided in this paper. More precisely, vertical, horizontal, rocking and horizontal–rocking crossed dynamic stiffness and damping functions of single inclined piles and 2 × 2 and 3 × 3 pile groups with battered elements are presented in a set of plots. The soil is assumed to be a homogeneous viscoelastic isotropic half‐space and the piles are modeled as elastic compressible Euler–Bernoulli beams. The results for different pile group configurations, pile–soil stiffness ratios and rake angles are presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a parametric study that looks into the influence of pile rake angle on the kinematic internal forces of deep foundations with inclined piles. Envelopes of maximum kinematic bending moments, shear forces and axial loads are presented along single inclined piles and 2 × 2 symmetrical square pile groups with inclined elements subjected to an earthquake generated by vertically incident shear waves. Inclination angles from 0° to 30° are considered, and three different pile–soil stiffness ratios are studied. These results are obtained through a frequency–domain analysis using a boundary element–finite element code in which the soil is modelled by the boundary element method as a homogeneous, viscoelastic, unbounded region, and the piles are modelled by finite elements as Euler–Bernoulli beams. The rotational kinematic response of the pile foundations is shown to be a key factor on the evolution of the kinematic internal forces along the foundations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
When analysing the seismic response of pile groups, a vertically‐incident wavefield is usually employed even though it does not necessarily correspond to the worst case scenario. This work aims to study the influences of both the type of seismic body wave and its angle of incidence on the dynamic response of pile foundations. To this end, the formulation of SV, SH and P obliquely‐incident waves is presented and implemented in a frequency‐domain boundary element‐finite element code for the dynamic analysis of pile foundations and piled structures. Results are presented in terms of bending moments at cap level of single piles and 3 × 3 pile groups, both in frequency and in time domains. It is found that, in general, the vertical incidence is not the most unfavourable situation. In particular, obliquely‐incident SV waves with angles of incidence smaller than the critical one, a situation in which the mechanism of propagation of the waves in the soil changes and surface waves appear, yield bending moments much larger than those obtained for vertically‐incident wavefields. It is also shown that the influence of pile‐to‐pile interaction on the kinematic bending moments becomes significant for non‐vertical incidence, especially for P and SV waves. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Seismic behavior of inclined piles has been considered detrimental for years. However, recent researches show that battered piles can have a beneficial effect. In this framework, a series of centrifuge tests on an inclined pile group is performed. The analysis is based on the comparative response of two 2×1 simplified pile groups: one with vertical piles and the other with one vertical and one inclined pile. The response of these pile groups to repeated earthquakes or sinusoidal inputs is analyzed through the response frequencies, the envelop curves of bending moment profiles, the axial loads measured in both piles and the kinematic response of the cap. Results highlight that the effect of inclined pile is highly influenced by the frequency content of the input. In addition, the inclined pile induces non-negligible residual bending moments, higher horizontal stiffness at the pile cap and larger rotation.  相似文献   

5.
A Study of Piles during Earthquakes: Issues of Design and Analysis   总被引:1,自引:0,他引:1  
The seismic response of pile foundations is a very complex process involving inertial interaction between structure and pile foundation, kinematic interaction between piles and soils, seismically induced pore-water pressures (PWP) and the non-linear response of soils to strong earthquake motions. In contrast, very simple pseudo-static methods are used in engineering practice to determine response parameters for design. These methods neglect several of the factors cited above that can strongly affect pile response. Also soil–pile interaction is modelled using either linear or non-linear springs in a Winkler computational model for pile response. The reliability of this constitutive model has been questioned. In the case of pile groups, the Winkler model for analysis of a single pile is adjusted in various ways by empirical factors to yield a computational model for group response. Can the results of such a simplified analysis be adequate for design in all situations?The lecture will present a critical evaluation of general engineering practice for estimating the response of pile foundations in liquefiable and non-liquefiable soils during earthquakes. The evaluation is part of a major research study on the seismic design of pile foundations sponsored by a Japanese construction company with interests in performance based design and the seismic response of piles in reclaimed land. The evaluation of practice is based on results from field tests, centrifuge tests on model piles and comprehensive non-linear dynamic analyses of pile foundations consisting of both single piles and pile groups. Studies of particular aspects of pile–soil interaction were made. Piles in layered liquefiable soils were analysed in detail as case histories show that these conditions increase the seismic demand on pile foundations. These studies demonstrate the importance of kinematic interaction, usually neglected in simple pseudo-static methods. Recent developments in designing piles to resist lateral spreading of the ground after liquefaction are presented. A comprehensive study of the evaluation of pile cap stiffness coefficients was undertaken and a reliable method of selecting the single value stiffnesses demanded by mainstream commercial structural software was developed. Some other important findings from the study are: the relative effects of inertial and kinematic interactions between foundation and soil on acceleration and displacement spectra of the super-structure; a method for estimating whether inertial interaction is likely to be important or not in a given situation and so when a structure may be treated as a fixed based structure for estimating inertial loads; the occurrence of large kinematic moments when a liquefied layer or naturally occurring soft layer is sandwiched between two hard layers; and the role of rotational stiffness in controlling pile head displacements, especially in liquefiable soils. The lecture concludes with some recommendations for practice that recognize that design, especially preliminary design, will always be based on simplified procedures.  相似文献   

6.
The conventional design methods for seismically loaded piles still concentrate in providing adequate resistance from the pile to withstand only the inertial bending moments generated from the oscillation of the superstructure, thus neglecting the effect of kinematic interaction between pile and soil. By contrast there has been extensive research on kinematic effects induced by earthquakes and a number of simplified methods are available for a preliminary evaluation of kinematic bending moments at the interface between two soil layers. Less attention has been paid to the effects of kinematic interaction at the pile‐head. The paper summarizes recent research work on kinematic response analysis of fixed‐head piles aimed at the performance evaluation of a piled foundation. Results from an extensive parametric study, undertaken by means of three‐dimensional FE analyses, suggest a new criterion to predict kinematic bending effects at the pile head, where the combination of kinematic and inertial effect may be critical. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Centrifuge modelling of raked piles   总被引:1,自引:1,他引:0  
Inclined piles are prohibited by many codes in seismic areas. Nevertheless the battered effect has not yet been clarified because very few data are available. The present work is a comparison, at reduced scale in the centrifuge, of the response of two simplified pile groups: a 1 × 2 vertical piles and 1 × 2 pile group with one inclined pile. Two configurations are considered: end-bearing and floating pile group, both with pile heads rigidly fixed with a massive cap. First, repeatability tests under horizontal cyclic loading were performed on both floating pile groups. Secondly, repeated horizontal impact tests were performed on both end-bearing pile groups. These impact tests, which highlight the influence of inclined piles on the inertial response of a group, are a first step for the more complex analysis of the performance of such groups under seismic loads where inertial and kinematic interactions are combined. The first part of this work revealed the influence of sand structure around the inclined pile tip on the repeatability of the tests performed on floating pile groups. The second part highlighted differences in the dynamic response between the two end-bearing pile groups through measurements of the pile cap acceleration, the bending moment profile and the axial load in the piles.  相似文献   

8.
The paper presents a numerical model for the dynamic analysis of pile groups with inclined piles in horizontally layered soil deposits. Piles are modelled with Euler–Bernoulli beams, while the soil is supposed to be constituted by independent infinite viscoelastic horizontal layers. The pile–soil–pile interaction as well as the hysteretic and geometric damping is taken into account by means of two‐dimensional elastodynamic Green's functions. Piles cap is considered by introducing a rigid constraint; the condensation of the problem permits a consistent derivation of both the dynamic impedance matrix of the soil–foundation system and the foundation input motion. These quantities are those used to perform inertial soil–structure interaction analyses in the framework of the substructure approach. Furthermore, the model allows evaluating the kinematic stress resultants in piles resulting from waves propagating in the soil deposit, taking into account the pile–soil–pile interactions. The model validation is carried out by performing accuracy analyses and comparing results in terms of dynamic impedance functions, kinematic response parameters and pile stress resultants, with those furnished by 3D refined finite element models. To this purpose, classical elastodynamic solutions are adopted to define the soil–pile interaction problem. The model results in low computational demands without significant loss of precision, compared with more rigorous approaches or refined finite element models. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Dynamic response of single piles to seismic waves is fundamentally different from the free‐field motion because of the interaction between the pile and the surrounding soil. Considering soil–pile interaction, this paper presents a new displacement model for the steady‐state kinematic response of single piles to vertically incident P‐waves on the basis of a continuum model. The governing equations and boundary conditions of the two undetermined functions in the model are obtained to be coupled by using Hamilton's principle. Then, the two unknown functions are decoupled and solved by an iterative algorithm numerically. A parametric study is performed to investigate the effects of the properties of the soil–pile system on the kinematic response of single piles. It is shown that the effects of the pile–soil modulus ratio, the slenderness ratio of the pile, and the frequency of the incident excitations are very significant. By contrast, the influence of soil damping on the kinematics of the system is slight and can be neglected. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Although batter pile foundations are widely used in civil engineering structures, their behavior under seismic loadings is not yet thoroughly understood. This paper provides insights about the differences in the behavior of batter and vertical piles under seismic soil-pile-superstructure interaction. An experimental dynamic centrifuge program is presented, where the influences of the base shaking signal and the height of the gravity center of the superstructure are investigated. Various seismic responses are analyzed (displacement and rotation of the pile cap, total shear force at the pile cap level, overturning moment, residual bending moment, total bending moment and axial forces in piles). It is found that in certain cases batter piles play a beneficial role on the seismic behavior of the pile foundation system. The performance of batter piles depends not only on the characteristics of the earthquakes (frequency content and amplitude) but also on the type of superstructures they support. This novel experimental work provides a new experimental database to better understand the behavior of batter pile foundations in seismic regions.  相似文献   

11.
The paper presents a numerical model for the analysis of the soil–structure kinematic interaction of single piles and pile groups embedded in layered soil deposits during seismic actions. A finite element model is considered for the pile group and the soil is assumed to be a Winkler‐type medium. The pile–soil–pile interaction and the radiation problem are accounted for by means of elastodynamic Green's functions. Condensation of the problem permits a consistent and straightforward derivation of both the impedance functions and the foundation input motion, which are necessary to perform the inertial soil–structure interaction analyses. The model proposed allows calculating the internal forces induced by soil–pile and pile‐to‐pile interactions. Comparisons with data available in literature are made to study the convergence and validate the model. An application to a realistic pile foundation is given to demonstrate the potential of the model to catch the dynamic behaviour of the soil–foundation system and the stress resultants in each pile. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Research on the action of pile groups in resisting lateral loading is usually based on analysis, field and centrifuge tests of small pile groups. The interaction between piles in these groups is modelled by modifying the lateral resistance p–y curves developed for a single pile using row dependent reduction factors or a group factor for the entire group to simulate the effect of soil–pile–soil interaction. The modifying factors for the p–y curves and the appropriate group factors for pile groups are based entirely on static tests and there is no direct verification that these factors are appropriate to handle the dynamic loading of earthquake induced ground motions. In this paper we investigate the interaction effects between piles under static and seismic loading using the computer program VERSAT-P3D, which uses an equivalent linear constitutive model for the soil. The analytical procedure is calibrated using data from a static field load test on a single pile. Several pile groups, 2 × 2, 3 × 3, 4 × 4, 5 × 5, 8 × 8, 10 × 10, 10 × 2 and 15 × 2 were analysed for the study. Each group was subjected to static pushover and earthquake loading and the distribution of static and dynamic shear forces at various lateral displacements were evaluated. The study shows that the distribution of load within a pile group under dynamic loading varies significantly from the distribution under static loading and is strongly load intensity dependent. Current practice assumes that the distributions are similar.  相似文献   

13.
A three-dimensional formulation based on Green's functions of cylindrical loads in layered semi-infinite media is employed to investigate the dynamic behaviour of piles in homogeneous and non-homogeneous half spaces. The pile-soil-pile interaction taking place in pile groups is incorporated in the model. The results presented in this paper include the dynamic stiffnesses and dampings of single piles as well as those of representative 2 × 2 and 4 × 4 square pile groups in the soil media considered in this study. In addition, the distribution of forces applied on the pile cap among the individual piles in a group is investigated.  相似文献   

14.
The aim of this paper is to study the effects of soil–structure interaction on the seismic response of coupled wall-frame structures on pile foundations designed according to modern seismic provisions. The analysis methodology based on the substructure method is recalled focusing on the modelling of pile group foundations. The nonlinear inertial interaction analysis is performed in the time domain by using a finite element model of the superstructure. Suitable lumped parameter models are implemented to reproduce the frequency-dependent compliance of the soil-foundation systems. The effects of soil–structure interaction are evaluated by considering a realistic case study consisting of a 6-storey 4-bay wall-frame structure founded on piles. Different two-layered soil deposits are investigated by varying the layer thicknesses and properties. Artificial earthquakes are employed to simulate the earthquake input. Comparisons of the results obtained considering compliant base and fixed base models are presented by addressing the effects of soil–structure interaction on displacements, base shears, and ductility demand. The evolution of dissipative mechanisms and the relevant redistribution of shear between the wall and the frame are investigated by considering earthquakes with increasing intensity. Effects on the foundations are also shown by pointing out the importance of both kinematic and inertial interaction. Finally, the response of the structure to some real near-fault records is studied. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Kinematic effects at the head of a flexible vertical pile embedded in a two‐layer soil deposit are investigated by means of rigorous three‐dimensional elastodynamic finite‐element analyses. Both pile and soil are idealized as linearly viscoelastic materials, modelled by solid elements, without the restrictions associated with the use of strength‐of‐materials approximations. The system is analyzed by a time‐Fourier approach in conjunction with a modal expansion in space. Constant viscous damping is considered for each natural mode, and an FFT algorithm is employed to switch from frequency to time domain and vice versa in natural or generalized coordinates. The scope of the paper is to: (a) elucidate the role of a number of key phenomena controlling the amplitude of kinematic bending moments at the pile head; (b) propose a simplified semi‐analytical formula for evaluating such moments; and (c) provide some remarks about the role of kinematic bending in the seismic design of pile foundations. The results of the study provide a new interpretation of the interplay between interface kinematic moments and corresponding head moments, as a function of layer thickness, pile‐to‐soil stiffness ratio, and stiffness contrast between the soil layers. In addition, the role of diameter in designing against kinematic action, with or without the presence of an inertial counterpart, is discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A three-dimensional method of analysis is presented for the seismic response of structures constructed on pile foundations. An analysis is formulated in the time domain and the effects of material nonlinearity of soil on the seismic response are investigated. A subsystem model consisting of a structure subsystem and a pile-foundation subsystem is used. Seismic response of the system is found using a successive-coupling incremental solution scheme. Both subsystems are assumed to be coupled at each time step. Material nonlinearity is accounted for by incorporating an advanced plasticity-based soil model, HiSS, in the finite element formulation. Both single piles and pile groups are considered and the effects of kinematic and inertial interaction on seismic response are investigated while considering harmonic and transient excitations. It is seen that nonlinearity significantly affects seismic response of pile foundations as well as that of structures. Effects of nonlinearity on response are dependent on the frequency of excitation with nonlinearity causing an increase in response at low frequencies of excitation.  相似文献   

17.
The seismic response of a pile foundation is usually analyzed by approximate methods in practice. These methods typically neglect one or more of the important factors that affect seismic response such as inertial interaction, kinematic interaction, seismic pore water pressures, soil nonlinearity, cross stiffness coupling and dynamic pile to pile interaction. A nonlinear 3-D analysis is used to show how all these factors affect pile response, to demonstrate some of the consequences of using various approximate methods and to provide a comprehensive overview of how pile foundations behave during earthquakes in liquefiable and non-liquefiable soils.  相似文献   

18.
In this paper the kinematic seismic interaction of single piles embedded in soil deposits is evaluated by focusing the attention on the bending moments induced by the transient motion. The analysis is performed by modeling the pile like an Euler–Bernoulli beam embedded in a layered Winkler-type medium. The excitation motion is obtained by means of a one-D propagation analysis. A comprehensive parametric analysis is carried out by varying the main parameters governing the dynamic response of piles like the soil properties, the bedrock location, the diameter and embedment in the bedrock of piles. On the basis of the parametric analysis, a new design formula for predicting the kinematic bending moments for both the cross-sections at the deposit–bedrock interface and at the pile head is proposed.  相似文献   

19.
This paper deals with the effect of the foundation mass on the filtering action exerted by embedded foundations. The system under examination comprises a rigid rectangular foundation embedded in a homogeneous isotropic viscoelastic half‐space under harmonic shear waves propagating vertically. The problem is addressed both theoretically and numerically by means of a hybrid approach, where the foundation mass is explicitly included in the kinematic interaction between the foundation and the surrounding soil, thus referring to a “quasi‐kinematic” interaction problem. Based on the results of an extensive parametric study, it is shown that the filtering problem depends essentially on three dimensionless parameters, i.e.: the dimensionless frequency of the input motion, the foundation width‐to‐embedment depth ratio, and the foundation‐to‐soil mass density ratio. In complements to the translational and rotational kinematic interaction factors that are commonly adopted to quantify the filtering effect of rigid massless foundations on the free‐field motion, an additional kinematic interaction factor is introduced, referring to the horizontal motion at the top of a rigid massive foundation. New analytical expressions for the above kinematic interaction factors are proposed and compared with foundation‐to‐free‐field transfer functions computed from available earthquake recordings on two instrumented buildings in LA (California) and Thessaloniki (Greece). Results indicate that the foundation mass can have a strong beneficial effect on the filtering action with increasing foundation‐to‐soil mass density and foundation width‐to‐embedment depth ratios.  相似文献   

20.
Under the action of Rayleigh waves, pile head is easy to rotate with a concrete pile cap, and pure fixed-head condition is rarely achieved, which is a common phenomenon for it usually occurs on the precast piles with insufficient anchorage. In addition, the propagation characteristics of Rayleigh wave have been changed significantly due to the existence of capillary pressure and the coupling between phases in unsaturated soil, which significantly affects the pile-soil interaction. In order to study the above problems, a coupled vibration model of unsaturated soil–pile system subjected to Rayleigh waves is established on the basis that the pile cap is equivalent to a rigid mass block. Meanwhile, the soil constitution is simplified to linear-elastic and small deformations are assumed to occur during the vibration phase of soil–pile system. Then, the horizontal dynamic response of a homogeneous free-field unsaturated soil caused by propagating Rayleigh waves is obtained by using operator decomposition theory and variable separation method. The dynamic equilibrium equation of a pile is established by using the dynamic Winkler model and the Timoshenko beam theory, and the analytical solutions of the horizontal displacement, rotation angle, bending moment and shear force of pile body are derived according to the boundary conditions of flexible constraint of pile top. Based on the present solutions, the rationality of the proposed model is verified by comparing with the previous research results. Through parametric study, the influence of rotational stiffness and yield bending moment of pile top on the horizontal dynamic characteristics of Rayleigh waves induced pile is investigated in detailed. The analysis results can be utilized for the seismic design of pile foundation under Rayleigh waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号