首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mathematical model was used to examine the effect of Pliocene and Quaternary changes in sea level on the development of tectonically active and inactive rock coasts. The model calculated rates of mechanical wave erosion according to such factors as the deep water wave regime, bottom topography and surface roughness, and the resistance of the rocks. Subaerial terraces were truncated or eliminated by subsequent terrace formation at lower elevations, especially on steeply sloping landmasses experiencing slow rates of uplift. Submarine terraces formed during glacial stillstands were best preserved when rapid subsidence quickly carried them below the level of wave action. On slowly subsiding landmasses, submarine terraces formed during interglacials and glacial periods experienced repeated erosional modification during subsequent periods of rising and falling sea level and were generally less distinctive. On rapidly rising or subsiding (>5 mm yr‐1) landmasses, terraces that formed during interglacial stages alternated, above and below present sea level, with terraces formed during glacial stages. Despite some differences in terrace occurrence and elevational distribution, it may be difficult to distinguish profiles cut during accelerating or decelerating uplift. The amount of erosion during sea level oscillations increases with oscillation amplitude and the larger oscillations in the middle to late Quaternary were therefore more conducive to erosion than the smaller oscillations of the Pliocene and early Quaternary. The effect of oscillation amplitude may have been countered during the earlier stages of profile development, however, by steeper submarine gradients and reduced rates of wave attenuation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Cavernous weathering (tafoni development) occurs on coastal slopes in greenschist bedrock at elevations up to 40 m above sea level. The freshly weathered surfaces of the cavern interiors are irregular in morphology, discordant to major rock structure, formed by substantially weakened rock and associated with granular weathering debris. The weathering debris contains soluble elements in proportions similar to those present in seawater, and the penetration of elements associated with sea salts into the weathering surface to estimated depths of at least 0·1–0·2 m is indicated by the presence of chlorine. Scanning electron microscopy and microprobe analyses suggest that rock breakdown occurs principally through limited chemical weathering at grain boundaries. The mechanism for the emplacement of marine salts within sheltered rock surfaces in the tafoni is postulated to be a combination of dry deposition under turbulent atmospheric conditions and wetting by coastal fog.  相似文献   

3.
The paper uses a case study in Scotland to examine the amount and processes of landscape modification by Quaternary ice sheets. There is an inverse correlation between the distribution of landforms of glacial erosion and pre-glacial landscape remnants in northeast Scotland. The implication is that in places ice sheets can preserve a pre-glacial landscape unscathed, while elsewhere they remove the pre-glacial weathered rock. The location of glacial protection or erosion is strongly influenced by the topography and its influence on former ice sheet flow and basal thermal regime. The classic glacially eroded landscape of areal scouring can be produced by the removal of only 10–50 m of weathered rock. Furthermore rock basins, often regarded as the hallmark of glacial erosion, may be directly inherited from the pre-glacial pattern of deep weathering.  相似文献   

4.
Sea stacks are common and striking coastal landforms, but few details are known about how, how quickly, and under what conditions they form. We present numerical and analytical models of sea stack formation due to preferential erosion along a pre‐existing headland to address these basic questions. On sediment‐rich rocky coasts, as sea cliffs erode and retreat, they produce beach sediment that is distributed by alongshore sediment transport and controls future sea cliff retreat rates. Depending on their width, beaches can encourage or discourage sea cliff erosion by acting either as an abrasive tool or a protective cover that dissipates wave energy seaward of the cliff. Along the flanks of rocky headlands where pocket beaches are often curved and narrow due to wave field variability, abrasion can accelerate alongshore‐directed sea cliff erosion. Eventually, abrasion‐induced preferential erosion can cut a channel through a headland, separating it from the mainland to become a sea stack. Under a symmetrical wave climate (i.e. equal influence of waves approaching the coastline from the right and from the left), numerical and analytical model results suggest that sea stack formation time and plan‐view size are proportional to preferential erosion intensity (caused by, for example, abrasion and/or local rock weakness from joints, faults, or fractures) and initial headland aspect ratio, and that sea stack formation is discouraged when the sediment input from sea cliff retreat is too high (i.e. sea cliffs retreat quickly or are sand‐rich). When initial headland aspect ratio is too small, and the headland is ‘rounded’ (much wider in the alongshore direction at its base than at its seaward apex), the headland is less conducive to sea stack formation. On top of these geomorphic and morphologic controls, a highly asymmetrical wave climate decreases sea stack size and discourages stack formation through rock–sediment interactions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
声学深拖作为一个声学设备搭载平台,主要功能是获取高分辨率的声学数据,精细刻画海底地形地貌特征以及浅层剖面结构,对于研究海底浅表层流体活动系统的类型、形成机制和演化模式有着重要作用.本文介绍的合成孔径声学深拖(Synthetic Aperture Sonar Deep-tow)搭载了合成孔径声呐、浅地层剖面仪以及多波束系统等声学设备,相比于传统的侧扫声呐,合成孔径声呐采用小物理孔径基阵通过信号处理虚拟合成大孔径基阵来获得方位向高分辨率,大大提高了测绘速率,同时结合高分辨率的浅地层剖面和多波束背散射数据,可实现海底浅表层特征的三维立体显示.为查明调查区海底浅层流体活动的声学特征,分析天然气水合物相关的流体渗漏活动性与浅层构造之间的关系,我们利用声学深拖对研究区进行了全覆盖的扫测,获得了高分辨率的合成孔径声呐图像、浅地层剖面资料以及多波束背散射数据,平面上识别出多个呈条带状的海底丘状体,火焰状的流体渗漏,新月形的麻坑构造等流体活动地质构造;浅层剖面上可见气体聚集的声学空白段落,凸起的活跃喷口,以及反射杂乱的柱状浑浊带.通过识别流体活动的特征,我们总结了浅层流体活动演化模式具有周期性:游离气体通过高渗透运移通道上升至海底,首先扩散聚集造成局部沉积物体积膨胀形成丘状体;然后受其各种外界因素影响丘状体崩塌而引起气体渗漏;最后流体逸散剥蚀海底松散沉积物而形成麻坑构造;随着流体排出,喷口重新闭合,流体在地层中再次聚集,聚集的气体又将沉积地层上拱,在麻坑底部又可能生成含气丘状体.海底浅表层蕴藏着丰富的地质信息,这对于研究海底复杂的流体活动有着重要意义.  相似文献   

6.
The main break-in-slope on the northern submarine flank of Molokai at −1500 to −1250 m is a shoreline feature that has been only modestly modified by the Wailau landslide. Submarine canyons above the break-in-slope, including one meandering stream, were subaerially carved. Where such canyons cross the break-in-slope, plunge pools may form by erosion from bedload sediment carried down the canyons. West Molokai Volcano continued infrequent volcanic activity that formed a series of small coastal sea cliffs, now submerged, as the island subsided. Lavas exposed at the break-in-slope are subaerially erupted and emplaced tholeiitic shield lavas. Submarine rejuvenated-stage volcanic cones formed after the landslide took place and following at least 400–500 m of subsidence after the main break-in-slope had formed. The sea cliff on east Molokai is not the headwall of the landslide, nor did it form entirely by erosion. It may mark the location of a listric fault similar to the Hilina faults on present-day Kilauea Volcano. The Wailau landslide occurred about 1.5 Ma and the Kalaupapa Peninsula most likely formed 330±5 ka. Molokai is presently stable relative to sea level and has subsided no more than 30 m in the last 330 ka. At their peak, West and East Molokai stood 1.6 and 3 km above sea level. High rainfall causes high surface runoff and formation of canyons, and increases groundwater pressure that during dike intrusions may lead to flank failure. Active shield or postshield volcanism (with dikes injected along rift zones) and high rainfall appear to be two components needed to trigger the deep-seated giant Hawaiian landslides.  相似文献   

7.
An Erratum has been published for this article in Earth Surface Processes and Landforms 27(7) 2004, 931. Lord Howe Island, in the northern Tasman Sea, is a remnant of a much larger Late Miocene basaltic shield volcano. Much of the island's coastline is exposed to waves that have unlimited fetch, but a marked contrast is provided by a fringing coral reef and lagoon that very effectively attenuate wave energy along a portion of the western coastline. The geology of the island is varied, with hard and resistant basalt lavas, breccias and tuffs of intermediate resistance, and highly erodible eolianites. This variability provides an excellent opportunity to examine the in?uence of rock resistance on the development of the spectacular rock coast landforms that occur around the island. The hardness of rocks and the extent of weathering around the coastline were assessed using a Schmidt hammer, and statistical analysis was undertaken to remove outlying values. On all but one occasion, higher mean rebound values were returned from fresh surfaces than weathered surfaces, but only half of these differences were statistically signi?cant. Shore platforms with two distinct levels are juxtaposed along two stretches of coastline and Schmidt hammer results lend support to hypotheses that the raised surfaces may be inherited features. Relative rock resistance was assessed through a combination of Schmidt hammer data and measurements of joint density, and constrained on the basis of morphological data. This approach formed a basis for examining threshold conditions for sea‐cliff erosion at Lord Howe Island in the context of the distribution of resistant plunging cliffs and erosional shore platforms. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
—Sidescan sonar observations show that mass wasting plays an important role in the geologic development of the Savaii Island edifice. Observations on the south and west flanks indicate that debris movement on the submarine slopes between rift zones is characterized by large sheets of unchannelized debris. Farther downslope these sheets have slumped into folded although still relatively coherent slump sheets. Closer to the rift zones, more chaotic slumps are found. The presence of large detached landslide blocks, without obvious upslope headwall scarps, suggests that earlier slumps are covered by subsequent veneers of debris moving downslope.¶In contrast, on Stearns Bank west of the island of Savaii most of the features are of constructional origin, formed during the building of this volcanic edifice of unknown age. Two prominentsubmarine platforms are evident, the shallower one with a summit cone. Sea cliffs and subdued terraces record platforms cut by sea-level oscillations late in the history of the volcanic edifice. Fractures and fissures are present on the bank, however there is little evidence of landslides in this area. The absence of landslides may reflect differing ages of the bank and the island or the edifice could have remained submarine during its construction with few or no subaerially derived ashes and clays present to facilitate mass wasting.¶We conclude that mass wasting is an important influence on the evolution of the Savaii volcanic edifice. It appears that sediment and debris cover most of the slope outside the submarine rift zones. The sonar images indicate that mass wasting is a common process in the submarine environment. Unlike the giant landslides documented by GLORIA imagery around the Hawaiian Islands, the southern margin of Samoa is characterized by numerous small slumps and slides. Although we have little information at present regarding the recurrence interval for submarine landslides, their ubiquitous presence in these sidescan sonar records indicates that they are an important component of the geologic record of the Samoan Islands.  相似文献   

9.
There is increasing evidence that shore platforms and other elements of rock coasts may be inherited, at least in part, from interglacial stages when sea level was similar to today's. Most of this evidence, which includes ancient beaches and datable terrestrial deposits, has been obtained from areas of resistant, slowly eroding rock, where the platforms often appear to be much too wide to have developed since the sea reached its present level. It is much more dif?cult to demonstrate that inheritance has occurred in areas of weaker rock, which generally lack any datable material. The coast of western Galicia in northwestern Spain has shore platforms in igneous and metamorphic rocks that were deeply weathered during the Tertiary. These platforms are closely associated with ancient beaches from the last interglacial stage, and associated periglacial and ?uvio‐nival deposits that covered and fossilized most of the Eemian platforms and cliffs during the late middle and late Weichselian glacial stage. The sedimentary processes and the thickness and facies of the sediments were determined by the height, aspect and gradient of the coastal mountains, and their distance from the coast. Radiocarbon dating, sedimentary analysis and platform morphology indicate that the shore platforms of Galicia have been inherited from at least the last interglacial stage. They were fossilized in places beneath thick Weichselian deposits and then exhumed during the Holocene transgression. The abundant evidence for inheritance in Galicia has important implications for other coasts in fairly weak rocks where such evidence is generally lacking. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Since sea level stabilized 7000 yr bp , shelf seas experiencing semi‐diurnal tides will have been affected by streaming four times per day. If tidal erosion of bedrock were even only marginally efficient, the ~10 million streamings since then should have left geomorphological imprints. We examine high‐resolution multibeam sonar data from three areas with extreme tidal currents. The Minas Passage (Bay of Fundy) experiencing 8‐knot surface tidal currents was surveyed in 2007 with a multibeam sonar. In an area near to transverse dunes, which are evidence for bedload transport, the data show local overhanging surfaces near to the sediment‐rock contact, potentially created by abrasion by saltating particles. However, they are uncommon. In the Straits of Messina, where surface currents reach 10 knots, surveying revealed ridges lying oblique to the flow that are not obviously broken into separate outcrops by erosion. In the Bristol Channel, UK, sonar data collected where currents reach 3·4 knots at 1·5 m above the bed reveal outcrops of limestone with superimposed sand dunes, but only minor rounding of blocks. Holocene tidal currents have apparently been generally ineffective at eroding bedrock. We examine this issue further by compiling extreme tidal streams around the UK and from them estimate shear stresses, representing a macro‐tidal environment where peak surface currents reach 9·7 knots. Those data are compared with shear stresses in mountainous rivers where long‐term rates of erosion are comparable with tectonic uplift rates and are thus geomorphologically significant. Whereas river stresses reach 102–103 Pa, the largest tidal stresses are generally 101 and only rarely approach 102 Pa, too small for quarrying to operate generally. However, the vertical faces in the Minas Passage may represent the onset of abrasion. Given this limited evidence for abrasion, we explore conditions in the geological past for tides that may have locally eroded bedrock. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Erosion of hard‐rock coastal cliffs is understood to be caused by a combination of both marine and sub‐aerial processes. Beach morphology, tidal elevation and significant wave heights, especially under extreme storm conditions, can lead to variability in wave energy flux to the cliff‐toe. Wave and water level measurements in the nearshore under energetic conditions are difficult to obtain and in situ observations are rare. Here we use monthly cliff‐face volume changes detected using terrestrial laser scanning alongside beach morphological changes and modelled nearshore hydrodynamics to examine how exposed cliffs respond to changes in extreme wave conditions and beach morphology. The measurements cover the North Atlantic storms of 2013 to 2014 and consider two exposed stretches of coastline (Porthleven and Godrevy, UK) with contrasting beach morphology fronting the cliffs; a flat dissipative sandy beach at Godrevy and a steep reflective gravel beach at Porthleven. Beach slope and the elevation of the beach–cliff junction were found to influence the frequency of cliff inundation and the power of wave–cliff impacts. Numerical modelling (XBeach‐G) showed that under highly energetic wave conditions, i.e. those that occurred in the North Atlantic during winter 2013–2014, with Hs = 5.5 m (dissipative site) and 8 m (reflective site), the combination of greater wave height and steeper beach at the reflective site led to amplified wave run‐up, subjecting these cliffs to waves over four times as powerful as those impacting the cliffs at the dissipative site (39 kWm‐1 compared with 9 kWm‐1). This study highlighted the sensitivity of cliff erosion to extreme wave conditions, where the majority (over 90% of the annual value) of cliff‐face erosion ensued during the winter. The significance of these short‐term erosion rates in the context of long‐term retreat illustrates the importance of incorporating short‐term beach and wave dynamics into geomorphological studies of coastal cliff change. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

12.
Analyses of shoreline and bathymetry change near Calais, northern coast of France, showed that shoreline evolution during the 20th century was strongly related with shoreface and nearshore bathymetry variations. Coastal erosion generally corresponds to areas of nearshore seabed lowering while shoreline progradation is essentially associated with areas of seafloor aggradation, notably east of Calais where an extensive sand flat experienced seaward shoreline displacement up to more than 300 m between 1949 and 2000. Mapping of bathymetry changes since 1911 revealed that significant variation in nearshore morphology was caused by the onshore and alongshore migration of a prominent tidal sand bank that eventually welded to the shore. Comparison of bathymetry data showed that the volume of the bank increased by about 10×107 m3 during the 20th century, indicating that the bank was acting as a sediment sink for some of the sand transiting alongshore in the coastal zone. Several lines of evidence show that the bank also represented a major sediment source for the prograding tidal flat, supplying significant amounts of sand to the accreting upper beach. Simulation of wave propagation using the SWAN wave model (Booij et al., 1999) suggests that the onshore movement of the sand bank resulted in a decrease of wave energy in the nearshore zone, leading to more dissipative conditions. Such conditions would have increased nearshore sediment supply, favoring aeolian dune development on the upper beach and shoreline progradation. Our results suggest that the onshore migration of nearshore sand banks may represent one of the most important, and possibly the primary mechanism responsible for supplying marine sand to beaches and coastal dunes in this macrotidal coastal environment.  相似文献   

13.
Raised marine terraces and submerged insular shelves are used through an integrated approach as markers of relative sea level changes along the flanks of the Salina volcanic island (Aeolian Arc, southern Italy) for the purpose of evaluating its crustal vertical deformation pattern through time. Paleo sea level positions are estimated for the terrace inner margins exposed subaerially at different elevations and the erosive shelf edges recognized offshore at different depths. Compared with the eustatic sea levels at the main highstands (for the terraces) and lowstands (for the shelf edges) derived from the literature, these paleo sea level markers allowed us to reconstruct the interplay among different processes shaping the flanks of the island and, in particular, to quantify the pattern, magnitudes and rates of vertical movements affecting the different sectors of Salina since the time of their formation. A uniform uplift process at rates of 0.35 m ka−1 during the Last Interglacial is estimated for Salina (extended to most of the Aeolian Arc) as evidence of a regional (tectonic) vertical deformation affecting the sub-volcanic basement in a subduction-related geodynamic context. Before that, a dominant subsidence at rates of 0.39–0.56 m ka−1 is instead suggested for the time interval between 465 ka (MIS 12) and the onset of the Last Interglacial (MIS 5.5, 124 ka). By matching the insular shelf edges with the main lowstands of the sea level curve, a relative age attribution is provided for the (mostly) submerged volcanic centres on which the deepest (and oldest) insular shelves were carved, with insights on the chronological development of the older stages of Salina and the early emergence of the island. The shift from subsidence to uplift at the Last Interglacial suggests a major geodynamic change and variation of the stress regime acting on the Aeolian sub-volcanic basement. © 2019 John Wiley & Sons, Ltd.  相似文献   

14.
--In a sand-covered granite terrain of northwestern Rajasthan, India, a five-frequency HLEM survey along a 10-km traverse line generated several clear and strong anomalies. Subjected to a joint constrained 1-D layered earth inversion, the IP and OP frequency soundings at each point of observation yields either no solution or one which is inconsistent with the adjacent point. On the other hand, a 3-D model fitting of these anomalies with a tabular body in a layered host leads to a more meaningful interpretation, suggesting the presence of (1) pockets of weathered conductive material and (2) resistive intruding dykes, embedded in a semi-weathered layer, as the cause of the observed anomalies. The locations of weathered pockets are probably determined by pre-existing weak structures such as joints, fractures and faults, which facilitated movement of groundwater and hence weathering. Thus covered features deep in the bedrock such as intrusives, joints, fractures and faults, which are not directly detectable by the HLEM method, being under a more conductive overburden, are indirectly detected through their imprints left in the overlying weathering profile.  相似文献   

15.
The communication considers eroding coastal cliffs which consist predominantly of stiff-fissured clay overlying a more resistant stratum, the contact having a gentle component of coastwise dip. From the southern coasts of England, five such cliffs are described. In each of these a zone of dominant mudsliding exists, which stands out from the background of lesser mudslides and other forms of failure: the common feature is that in each case the zone of major mudsliding coincides closely with the length of cliff over which the base of the clay stratum lies within the tidal range, and generally within the upper part of this. It is suggested that this pattern results from optimum conditions for continuing stimulation of mudslide activity by toe erosion being reached in the above zone.  相似文献   

16.
Five consecutive multibeam bathymetries collected before, during, and after the 2007 Stromboli eruption, combined with visual inspections, allowed us to document the morphological evolution of an ‘a’ā lava-fed delta and to reconstruct the main processes acting during its submarine emplacement. The 2007 Stromboli delta extended down to 600-m water depth and covered an area of 420?×?103 m2, with a maximum thickness of 65 m and a total estimated volume of ≈7?×?106 m3, i.e., three times larger than its subaerial counterpart. The lava delta grew mainly through the emplacement of discrete lobes about 50–150 m in size. Lobes were fed from point sources along the paleoshoreline, and their subaqueous pathways seem to be mainly controlled by the submarine morphology, with flows mostly filling in depressions left by previous lobes. The main controlling factors on the lobe morphology and thickness are the effusion rates and the pre-eruption morphology, i.e., the geometry and gradients of the basal surface. Data also shows that sudden slope failure of portions of the submarine delta may occur simultaneously with accretion, implying that a significant part of the delta material can be transported to greater depths by submarine gravity flows. The present study is relevant for future monitoring and hazard assessment during the growth of active lava-fed deltas as well as for a better interpretation of ancient volcaniclastic successions inland.  相似文献   

17.
The use of data, including bathymetry, backscatter intensity and the angular response of backscatter intensity, collected using multibeam sonar (MBS) systems to recognise seabed types was evaluated in the inner shelf of central western Sardinia (western Mediterranean sea), a site characterised by a complex seabed including sandy and gravelly sediments, Posidonia oceanica seagrass beds growing on hardgrounds (i.e. biogenic carbonates) and sedimentary substrates.  相似文献   

18.
The Rio Icacos watershed in the Luquillo Mountains (Puerto Rico) is unique due to its extremely rapid weathering rates. The watershed is incised into a quartz diorite that has developed a large knickzone defining the river profile. Regolith thickness within the watershed generally decreases from 20 to 30 m at the ridges to several meters in the quartz diorite-dominated valley to tens of centimeters near the major river knickpoint, as determined from previous studies. Above the knickzone, we observe spheroidal corestones, but below this weathering is much less apparent. Measured erosion rates from previous studies are also high in the knickzone compared with upper elevations within the river profile. A suite of near-surface geophysical methods (i.e. ground penetrating radar and terrain conductivity) capable of fast data acquisition in rugged landscapes, was deployed at kilometer scales to characterize critical zone structure. Concentrations of chaotic ground penetrating radar (GPR) reflections and diffraction hyperbolas with low electrical conductivity were observed in vertical zones that outcrop at the land surface as areas of intense fracturing and spheroidally weathered corestones. The width of these fractured and weathered zones showed an increase with proximity to the knickpoint, and was attributed to dilation of these sub-vertical fractures near the knickpoint, as postulated theoretically by a stress model calculated for the topographic variability across the knickzone in the Rio Icacos, and that shows a release of compressive stress near the knickpoint. We hypothesize that erosion rates increase in the knickzone because of this inferred dilation of fractures. Specifically, opened fractures could enhance access of water and in turn promote spalling, erosion, and spheroidal weathering. This study shows that ground-based hydrogeophysical methods used at the landscape-scale (traditionally applied at smaller scales) can be used to explore critical zone architecture at the scales needed to explain the extreme variability in erosion rates across river profiles. © 2018 John Wiley & Sons, Ltd.  相似文献   

19.
Using geographic information system (GIS) and field measurements the nearshore morphological variability of a headland bay beach at Tenby, West Wales (51·66 N; –4·71 W) was assessed over historical timeframes (1748–2007). Three areas chosen for detailed analysis were the area between mean low water (MLW) and lowest astronomical tide (LAT) contours; LAT and one fathom contours; and one and two fathom contours. Estuary closure c. 1855 has been suggested as the genesis for long‐term beach evolution and did have an initial effect, with northward dune migration and reduced flushing effects. However, this research suggests nearshore bank migration and retrogradation associated with spit collapse took place prior to closure and continued throughout the assessed timeframe. Historical data revealed patterns of shoreward migration demonstrated by changes in orientation, Giltar headland acting as a pivot. Variations in sandbank position correlated with areal reduction of both Giltar spit and White Bank. Temporal offshore areal loss was contrasted against variable gains inshore as offshore banks welded to the beachface. Annual volumetric change analyses represented by profiles that extend 1 km offshore, confirmed Giltar spit and White Bank erosion rates of 91 m3 yr–1 and 458 m3 yr–1 respectively, and 220 m3 yr–1 beachface accretion. Diminution of sediment supply observed over historical timescales was supported by decadal evidence. Here, profile analysis revealed a trend of decreasing volumes both updrift and within the study area, and increasing downdrift volumes. This explained why proximal detachment and sediment redistribution had occurred. Distinct reversal's in shoreline trend (rotation) corresponded to nearshore change; therefore, variations in seabed configuration triggered shoreface dynamic change over century timescales. Five‐year cumulative average changes in North Atlantic Oscillation were further correlated to this reversal. As comparable scenarios are likely to exist at other worldwide coastal locations, similar analyses should be incorporated into shoreline monitoring programmes. Consequently, these assessments would inform shoreline trends and support coastal management decisions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
This study aims to analyse the combined impacts of future discharges and sea levels on erosion–sedimentation potential, and its seasonal changes, in a ~43‐km‐long coastal river reach of South‐west Finland. To our knowledge, this kind of combined study has not been performed before. In addition to surveying the present erosion–sedimentation conditions, the daily erosion–sedimentation potential is simulated with a one‐dimensional hydrodynamic model for the 1971–2000 and 2070–2099 periods by applying four discharge scenarios. Different sea level stages are also employed in the simulations. All scenarios forecast increasing autumn and winter discharges, but diminishing summer discharges. This indicates increasing river channel erosion, particularly during winters and autumns. Although discharge changes have altogether a greater influence on erosion–sedimentation potential, the importance of sea level changes on sedimentation is noticeable in the estuary. The rising sea level scenarios increase the sedimentation potential. In total, by 2070–2099, the erosion potential may increase in most parts of the study area. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号