首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The variability of Quaternary landforms preserved in the Tabernas basin of southeast (SE) Spain raises numerous questions concerning the roles of external forcing mechanisms (e.g. tectonics and/or climate) and internal landscape properties (e.g. lithological controls) in the evolution of the basin‐wide fluvial system over Late Quaternary timescales. In this study, we apply the FLUVER2 numerical model to investigate the significance of these landscape controls upon patterns of landscape evolution. We highlight the complications of generating realistic input datasets for use in the modelling of long‐term landscape evolution (e.g. discharge and runoff datasets). Model outputs are compared to extensive field mapping of fluvial terraces, their sedimentary architecture and optically stimulated luminescence dating results of the terraces. The results demonstrate the significance of non‐linear rates of flexural tectonic uplift towards the west of the Tabernas Basin which have controlled base levels throughout the Quaternary and promoted the formation of a series of diverging fluvial terraces. Our numerical model results further highlight the importance of climate cycles upon river terrace formation. Basin‐wide aggradation events were modelled during the transition from Marine Isotope Stage (MIS) 6 to 5 and the Last Glacial Maximum (LGM) as supported by field evidence. This aggradational pattern supports the regional hypothesis of terrace formation during global glacial cycles and cold‐to‐warm stage transitions and supports the use of sea surface temperature climate proxy data in the modelling exercise. The availability of sediments derived from the surrounding hillslopes and adjacent alluvial fans explains the generation of substantial terrace aggradations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Marine terrace flights resulting from the interaction of Quaternary glacio-eustatic fluctuations and tectonic uplift are a typical feature of the Tyrrhenian coast of Calabria in Southern Italy; in particular a térrace flight with four orders of terraces is evident in the Diamante area. The lowest terrace levels (fourth order: Diamante-Cirella terrace) are typified by a calcarenitic deposit with Cladocora caespitosa which give a Th/U age > 300,000 years. The third order terrace has a sedimentary cover formed of a basal discontinuous level of well rounded pebbles which underlies a deeply weathered coarse-grained sand horizon. The deposit ends with a paleosol locally cut by erosional scours filled by yellowish tuff deposits. The formation of this terrace dates from the Middle Pleistocene. The second order terrace presents a sedimentary cover composed of two generations of soils and is attributed to Middle Pleistocene age. The first order terrace (M. Carpinoso terrace) presents a wave-cut platform covered by a clastic deposit of marine and continental origin; this deposit consists of superimposed depositional events separated by unconformities, bounded by two diachronous surfaces. The formation of the wave-cut platform could be related to several sea-level stands during a long-lasting slow subsidence phase of the coastal area during the Lower Pleistocene. The uplift following terrace formation displaced the first order terrace most markedly; tectonic lineations controlled the hydrographic pattern and erosion of the surfaces.  相似文献   

3.
李光涛  陈国星  苏刚  杨攀新 《地震》2008,28(3):125-132
滇西地区自第四纪以来经过了复杂的构造抬升, 其上新世准平原面被差异抬升为不同高度的夷平面。 在抬升过程中, 怒江的侵蚀作用形成了深切的高山峡谷地貌, 并形成了能反映构造抬升过程的多级河流阶地。 这种高山峡谷地貌的形成不仅与构造活动有关, 还与气候变化有关, 但构造活动是主因。 通过河流阶地和夷平面的研究能够得到河流阶地特征和差异隆升特征, 并能够进一步反演该区的构造活动特征。  相似文献   

4.
应用“构造-气候旋回”年代学方法确定了祁连山地区河流阶地形成时代和抬升速率,探讨了应用该方法确定阶地形成时代的可能性,结果表明:应用该方法确定河流阶地形成时代基本可行,只是对于低级阶地形成时代的拟合结果需用实测值来校正,第四纪以来祁连山地区的构造抬升呈间歇性,经历了4个较强烈的构造抬升期。  相似文献   

5.
详细研究了离石北部一带阶地的地层地貌特征,并尝试对吕梁山山体的隆升进行分析探讨。结果表明,晚更新世以来该区有过三次间歇性隆升,并且三级阶地形成以来即晚更新世早期山体隆升相对快速强烈,二级阶地形成以来即晚更新世晚期至全新世时期山体隆升处于相对缓慢的过程。  相似文献   

6.
Upstream knickpoint propagation is an essential mechanism for channel erosion, carrying changes in base level, tectonics and climate across the landscape. Generally, the terraces on cross-sections at steady-state conditions have been widely reported. However, many landscapes in the field appear to be in a transient state. Here, we explore the mechanism of knickpoint initiation and fluvial evolution in a transient setting in the northeastern Tibetan Plateau. Analysis of channel profiles and terrace correlation indicates that the Yellow River is adjusted to match the increase in differentiated fault activity and climate change in a regional setting of continuous uplift. Consequently, a series of terraces were formed, and the number of terrace steps increased downstream, in the headwaters of the Yellow River. All terraces were dated using the optically stimulated luminescence method. The top terrace, distributed continuously in the whole basin with a gradient, was deposited during a cold period and abandoned at the climatic transition from cold to warm state, at approximately 14.6–9.5 ka. After that, one terrace formed at around 4.2 ka in the upper reach. In correlation with the continuous topographic gradient surface of this terrace, three terrace steps were formed in the down reach during the period from 9.5 ka to 4.2 ka. This phenomenon might indicate multiple phases of continuous headward migration of fluvial knickpoint waves and terrace formation during the downcutting. It was caused by fault activity and tectonic uplift of the gorge at the outlet of the basin, under influence of the gradual integration of the Yellow River from downstream. This phenomenon shows that the fluvial incision in a transient state along the high relief margin of the orogenic plateau can be caused by fault activity, in addition to widespread surface uplift, climatically driven lake spillover and the establishment of external drainage.  相似文献   

7.
位于帕米尔前缘逆冲推覆体(Pamir Front Thrust,PFT)东端的木什滑脱背斜,是帕米尔弧形推覆构造带最前缘和最新的变形带。对地形横剖面、纵剖面和水系发育特征的分析表明,木什背斜总体上具有由西向东扩展生长的特征。在背斜核部及北翼发育数级开阔平坦的沿轴向展布的河流阶地,阶地可划分为4期。利用阶地堆积细颗粒石英光释光测年获得阶地面T2a、T3和T4的形成年龄分别为(15.8±2.40)ka、(55.1±10.3)ka、(131.4±23.9)ka。伴随背斜的生长扩展,河流阶地面发生了横向和纵向掀斜,并形成断层陡坎和褶皱陡坎。木什背斜晚第四纪的缩短和隆升主要是通过褶皱翼旋转机制进行的,估算其最小缩短速率为(1.6±0.3)mm/a,最小隆升速率为(1.9±0.3)mm/a。与此同时,沿轴向背斜发生了向东的侧向迁移和旋转。根据背斜垂直隆升与侧向扩展之间的关系,估算背斜在131~16ka期间向东的侧向迁移扩展速率较快,为 (14.6±3.6)mm/a; 自16ka至今,侧向迁移扩展速率迅速减小至(1.7±0.3)mm/a,背斜向东的迁移扩展可能已基本停止,而以侧向旋转为主。  相似文献   

8.
A flight of marine terraces along the Cuban coast records Quaternary sea‐level highstands and a general slowly uplifting trend during the Pleistocene. U/Th dating of these limestone terraces is difficult because fossil reef corals have been affected by open system conditions. Terrace ages are thus often based on geological and geomorphological observations. In contrast, the minimum age of the terraces can be constrained by dating speleothems from coastal mixing (flank margin) caves formed during past sea‐level highstands and carving the marine limestones. Speleothems in Santa Catalina Cave have ages >360 ka and show various cycles of subaerial–subaqueous corrosion and speleothem growth. This suggests that the cave was carved during the MIS 11 sea‐level highstand or earlier. Some stalagmites grew during MIS 11 through MIS 8 and were submerged twice, once at the end of MIS 11 and then during MIS 9. Phreatic overgrowths (POS) covering the speleothems suggest anchialine conditions in the cave during MIS 5e. Their altitude at 16 m above present sea level indicates a late Pleistocene uplift rate of <0.1 mm/ka, but modelling also shows uplift to have been insignificant over a long timespan during the middle Pleistocene since the cave was carved. Our study shows that some flank margin caves in the region of Matanzas are older than commonly believed (i.e. MIS 11 rather than MIS 5). These caves not only can be preserved but are good markers of interglacial sea‐level highstands, more reliable than marine abrasion surfaces. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

9.
Fluvial systems in uplifting terrain respond to tectonic, climatic, eustatic and local base‐level controls modified by specific local factors, such as river capture. The Rio Alias in southeast Spain is an ephemeral, transverse‐to‐structure fluvial system. The river drains two interconnected Neogene sedimentary basins, the Sorbas and Almeria basins, and crosses two major geological structures, the Sierras de Alhamilla/Cabrera and the Carboneras Fault Zone. Regional epeirogenic uplift resulted in sustained fluvial incision during the Quaternary, punctuated by major climatically driven periods of aggradation and dissection, which created a suite of five river terraces. The river terrace sequence was radically modified in the late Pleistocene by a major river capture (itself a response to regional tectonics), localized tectonic activity and eustatic base‐level change. The Rio Alias is defined by four reaches; within each the climatically‐generated, region‐wide, fluvial response was modified by tectonics, base‐level change or river capture to varying degrees. In the upper part of the basin (Lucainena reach), climate was the dominant control on river development, with limited modification of the sequence by uplift of the Sierra Alhamilla and local drainage reorganization by a local river capture. Downstream of the Sierra Alhamilla in the Polopus reach, the climatic signal is dominant, but its expression is radically modified by the response to a major river capture whereby the Alias system lost up to 70% of its pre‐capture drainage area. In the reach adjacent to the Carboneras Fault Zone (Argamason reach), modification of the terrace sequence by local tectonic activity and a resultant local base‐level fall led to a major local incisional event (propagating c. 3–4 km upstream from the area of tectonic disturbance). At the seaward end of the system (El Saltador reach) Quaternary sea‐level changes modified the patterns of erosion and incision and have resulted in steep incisional terrace profiles. The signals generated by regional tectonics and the Quaternary climate change can be identified throughout the basin but those generated by ongoing local tectonics, river capture and sea‐level change are spatially restricted and define the four reaches. The connectivity of the system from the headwaters to the coast decreased through time as incision progressed, resulting in changes in local coupling characteristics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
We present new data about the morphological and stratigraphic evolution and the rates of fluvial denudation of the Tavoliere di Puglia plain, a low‐relief landscape representing the northernmost sector of the Pliocene‐Pleistocene foredeep of the southern Apennines. The study area is located between the easternmost part of the southern Apennine chain and the Gargano promontory and it is characterized by several orders of terraced fluvial deposits, disconformably overlying lower Pleistocene marine clay and organized in a staircase geometry, which recorded the emersion and the long‐term incision history of this sector since mid‐Pleistocene times. We used the spatial and altimetric distribution of several orders of middle to late Pleistocene fluvial terraces in order to perform paleotopographic reconstruction and GIS‐aided eroded volumes estimates. Then, we estimated denudation rates on the basis of the terraces chronostratigraphy, supported by published OSL and AAR dating. Middle to upper Pleistocene denudation rates estimated by means of such an approach are slightly lower than 0.1 mm yr‐1, in good agreement with short‐term data from direct and indirect evaluation of suspended sediment yield. The analysis of longitudinal river profiles using the stream power erosion model provided additional information on the incision rates of the studied area. Middle to late Quaternary uplift rates (about 0.15 mm yr‐1), calculated on the basis of the elevation above sea level of marine deposits outcropping in the easternmost sector of the study area, are quite similar to the erosion rates average value, thus suggesting a steady‐state fluvial incision. The approach adopted in this work has demonstrated that erosion rates traditionally obtained by quantitative geomorphic analysis and ksn estimations can be successfully integrated to quantify rates of tectonic or geomorphological processes of a landscape approaching steady‐state equilibrium. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Raised marine terraces and submerged insular shelves are used through an integrated approach as markers of relative sea level changes along the flanks of the Salina volcanic island (Aeolian Arc, southern Italy) for the purpose of evaluating its crustal vertical deformation pattern through time. Paleo sea level positions are estimated for the terrace inner margins exposed subaerially at different elevations and the erosive shelf edges recognized offshore at different depths. Compared with the eustatic sea levels at the main highstands (for the terraces) and lowstands (for the shelf edges) derived from the literature, these paleo sea level markers allowed us to reconstruct the interplay among different processes shaping the flanks of the island and, in particular, to quantify the pattern, magnitudes and rates of vertical movements affecting the different sectors of Salina since the time of their formation. A uniform uplift process at rates of 0.35 m ka−1 during the Last Interglacial is estimated for Salina (extended to most of the Aeolian Arc) as evidence of a regional (tectonic) vertical deformation affecting the sub-volcanic basement in a subduction-related geodynamic context. Before that, a dominant subsidence at rates of 0.39–0.56 m ka−1 is instead suggested for the time interval between 465 ka (MIS 12) and the onset of the Last Interglacial (MIS 5.5, 124 ka). By matching the insular shelf edges with the main lowstands of the sea level curve, a relative age attribution is provided for the (mostly) submerged volcanic centres on which the deepest (and oldest) insular shelves were carved, with insights on the chronological development of the older stages of Salina and the early emergence of the island. The shift from subsidence to uplift at the Last Interglacial suggests a major geodynamic change and variation of the stress regime acting on the Aeolian sub-volcanic basement. © 2019 John Wiley & Sons, Ltd.  相似文献   

12.
焉耆盆地北缘和静逆断裂-褶皱带中晚第四纪变形速率   总被引:4,自引:4,他引:0  
焉耆盆地为南天山内部的一个山间盆地,盆地北缘发育1排第四纪新生褶皱带,即和静逆断裂-褶皱带。中晚第四纪以来,由于和静逆断裂-褶皱带的持续活动使得在褶皱生长过程中形成的多期洪积地貌面发生反向掀斜变形。利用高精度差分GPS,对褶皱带中部哈尔莫敦背斜区内的多期变形地貌面的地形形态进行了测绘,判定背斜的生长主要以翼旋转为主。利用背斜北翼不同地貌面的反向掀斜角度,分别计算了不同期次地貌面的隆升和缩短变形量。结合原地宇宙成因核素深度剖面法和光释光测年法,对背斜区内的F4,F3b,F2洪积台地面和T1阶地面的形成年龄进行了测定,发现背斜在距今约550ka、428.3+57.6-47.2ka和354.3+34.2-34.8ka不同时段的平均隆升速率从0.31±0.24mm/a下降至0.15±0.02mm/a,同时背斜北翼的翼旋转速度也呈逐渐减小的趋势。但背斜自起始变形开始,缩短速率却大致保持恒定为约0.3mm/a。而这一恒定的缩短速率与现今横跨和静逆断裂-褶皱带所观测的GPS速率具有很好的一致性,说明在天山内部的哈尔莫敦背斜区,短尺度的GPS速率可以代表长尺度的地壳应变速率,同时反映出山体内部一系列断层和褶皱构造在吸收和调节整体变形量时也起到一定的作用。  相似文献   

13.
Geostatistical topographic analysis is widely recognized as a useful tool for the statistical reconstruction of planar geomorphic markers from relict surfaces. This work is aimed at improving the geostatistical approach used in previous works and developing a method for evaluating the incision rates of rivers in their lower catchments during the Late Quaternary. We chose the major valleys of the Adriatic foothills (central Italy), affected since Late Miocene by a differential tectonic uplift which is still active. In particular, (i) we applied the geostatistical analysis to reconstruct the original top‐surfaces of fluvial‐to‐coastal terrace bodies at the Metauro River and Cesano River mouths; (ii) we performed correlations between the height distribution of the alluvial terrace sequences and the Quaternary climatic curve to estimate the average long‐term fluvial incision rates in the lowermost reaches of the Metauro, Cesano, Misa and Esino Rivers. The obtained averaged incision rates have been interpreted also in the light of the Stream‐Length Gradient Index (SL Index), Steepness Index (Ks), and Concavity Index (θ) as proxies of the stream‐power per unit length. Results confirm that geostatistical and terrain analysis of topographic and geometric arrangements of fluvial and coastal terraces is an effective tool in detecting geomorphic and tectonic factors inducing perturbations on planar geomorphic markers. In particular, we better delineated the surface geometry and boundaries of well‐developed coastal fans at the mouths of the Metauro and Cesano Rivers, already recognized in previous works through sedimentological, morphostratigraphic, and chronological data. Moreover, we found evidence for cut‐and‐fill phases that took place during and immediately after the river aggradation of the late Quaternary glacial periods. Despite the Slope–Area analysis evidenced a widespread influence of the regional differential uplift on single river basin configuration, we observed some space and time variability of averaged incision rates for adjacent valleys, mainly explained by physiographic configuration and dynamics of drainage network. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Progressive geomorphic changes in the flight of fluvial terraces along the Rappahannock River, Virginia, provide a framework for analysing the effect of time on landforms. The oldest terrace is probably no younger than early Quaternary, and the youngest major fill terrace probably correlates with the high sea level of the last major interglacial. A uranium-series date of 187,000 yr has been obtained on coral from marine sediments related to this terrace. Indices of terrace preservation, especially drainage densities and area to perimeter ratios, show systematic changes with terrace age. Hence, these variables appear to satisfactorily indicate relative age, and could perhaps be used to estimate actual ages if suitably calibrated. The morphology of scarps formed by entrenchment of the fluvial terraces is more variable than analogous morphology of fault scarps and wave-cut bluffs. However, measurements of the fluvial scarps clearly indicate that for a given terrace age, higher scarps tend to have steeper slopes, and that for a given scarp height, older scarps tend to have gentler slopes. The terrace forms themselves are preserved for at least several million years. Depositional features such as bars and channels with l–3m of relief are preserved on terraces on the order of 105 yr old. Scarps related to the formation of terraces of this age are well preserved and have slopes of about 6–8 degrees where the scarp height is about 5 m. The preservation of fluvial landforms and scarps suggests that, if fault scarps comparable to these features were commonly formed by earthquakes in low relief areas of the eastern United States, many should be recognizable.  相似文献   

15.
Where the Yellow River flows through the Haiyuan-Tongxin arc-form tectonic region on the northeastern side of the Qinghai-Xizang (Tibet) Plateau, as many as 10~21 basis and erosion terraces have been produced, among which the biggest altitude above river level is 401m and the formation age of the highest terrace is 1.57 Ma B.P. Based on comparative analysis of the Yellow River terraces located separately in the Mijiashan mountain, the Chemuxia gorge, the Heishanxia gorge and the other river terraces in the vast extent of the northern part of China, it has been found that the tectonic processes resulting in the formation of the terrace series is one of multi-gradational features, i.e., a terrace series can include the various terraces produced by tectonic uplifts of different scopes or scales and different ranks. The Yellow River terrace series in the study region can be divided into three grades. Among them, in the first grade there are 6 terraces which were formed separately at the same time in the vast extent of the northern part of China and represent the number and magnitude of uplift of the Qinghai-Xizang Plateau since 1.6 Ma B. P. ; in the second grade there are 5 terraces which were separately and simultaneously developed within the Haiyuan-Tianjingshan tectonic region and represent the number and magnitude of uplift of this tectonic region itself since 1.6Ma B. P.; in the third grade there are 10 terraces which developed on the eastern slope of the Mijiashan mountain and represent the number and amplitude of uplift of the Haiyuan tectonic belt itself since 1.6Ma B.P. Comparison of the terrace ages with loess-paleosoil sequence has also showed that the first grade terraces reflecting the vast scope uplifts of the Qinghai-Xizang Plateau are very comparable with climatic changes and their formation ages all correspond to the interglacial epochs during which paleosoils were formed. This implies that the vast extent tectonic uplifts resulting in river down-cutting are closely related to the warm-humid climatic periods which can also resnit in river downward erosion after strong dry and cold climatic periods, and they have jointly formed the tectonic-climatic cycles. There exists no unanimous and specific relationship between the formation ages of the second and third grade terraces and climatic changes and it is shown that the formation of those terraces was most mainly controlled by tectonic uplifts of the Tianjingshan block and the Haiyuan belt. The river terraces in the study region, therefore, may belong to 2 kinds of formation cause. One is a tectonic-climatic cyclical terrace produced jointly by vast extent tectonic uplifts and climatic changes, and the terraces of this kind are extensively distributed and can be well compared with each other among regions. Another is a pulse-tectonic cyclical terrace produced by local tectonic uplifts as dominant elements, and their distribution is restricted within an active belt and can not be compared with among regions.  相似文献   

16.
祁连山西段酒西盆地区阶地构造变形的研究   总被引:25,自引:3,他引:22  
对祁连山西段酒西盆地晚第四纪阶地的研究表明,该区早第四纪以挤压褶皱、逆冲为特征的构造变形在晚更新世期间乃至全新世仍继承性地进行着,表现为横穿褶皱和逆断裂带的河流及冲沟阶地面的形成、阶地类型的转变、阶地级数的增多和阶地面被断错或发生拱曲变形.其中祁连山北缘大断裂晚更新世晚期以来的垂直运动速率约为1.92~2.00mm/a.老君庙背斜逆断裂带在晚更新世初以来的垂直运动速率约为1.15~2.56mm/a.白杨河背斜逆断裂带晚更新世初以来的垂直运动速率约为0.32~0.58mm/a.  相似文献   

17.
通过对河曲县城一带出露较好的黄河阶地剖面进行研究,认为河曲一带黄河三、四级阶地形成于中更新世时期,晚更新世早期形成二级阶地,全新世形成一级阶地。本区中更新世抬升速率为0.14mm/a,晚更新世抬升速率为0.18mm/a,全新世抬升速率为0.70mm/a,晚更新世和全新世抬升速率的突然加大,可能与黄河下游三门湖的贯通、区域侵蚀基准面突然降低、河流侵蚀加大有关。  相似文献   

18.
Quantifying rates of river incision and continental uplift over Quaternary timescales offer the potential for modelling landscape change due to tectonic and climatic forcing. In many areas, river terraces form datable archives that help constrain the timing and rate of valley incision. However, old river terraces, with high-level deposits, are prone to weathering and often lack datable material. Where valleys are incised through karst areas, caves and sediments can be used to reconstruct the landscape evolution because they can record the elevation of palaeo-water tables and contain preserved datable material. In Normandy (N. France), the Seine River is entrenched into an extensive karstic chalk plateau. Previous estimates of valley incision were hampered by the lack of preserved datable fluvial terraces. A stack of abandoned phreatic cave passages preserved in the sides of the Seine valley can be used to reconstruct the landscape evolution of the region. Combining geomorphological observations, palaeomagnetic and U/Th dating of speleothem and sediments in eight caves along the Lower Seine valley, we have constructed a new age model for cave development and valley incision. Six identified cave levels up to ∼100 m a.s.l. were formed during the last ~1 Ma, coeval with the incision of the Seine River. Passage morphologies indicate that the caves formed in a shallow phreatic/epiphreatic setting, modified by sediment influxes. The valley's maximum age is constrained by the occurrence of late Pliocene marine sand. Palaeomagnetic dating of cave infills indicates that the highest-level caves were being infilled prior to 1.1 Ma. The evidence from the studied caves, complemented by fluvial terrace sequences, indicates that rapid river incision occurred during marine isotope stage (MIS) 28 to 20 (0.8–1 Ma), with maximal rates of ~0.30 m ka−1, dropping to ~0.08 m ka−1 between MIS 20–11 (0.8–0.4 Ma) and 0.05 m ka−1 from MIS 5 to the present time. © 2020 John Wiley & Sons, Ltd.  相似文献   

19.
Over the past decade, in situ-produced cosmogenic nuclides have revolutionised the study of landscape evolution. In particular, numerous studies have demonstrated that, in active tectonic settings, cosmic ray exposure dating of deformed or displaced geomorphic features makes it possible to quantify long-term deformation rates. In western European countries, erosion due to climatically driven processes and human activities is probably the factor that most limits the accuracy of exposure ages and landscape modification rates. In this study, we present the results of a depth-profiling technique applied to alluvial terraces located along the Rhône and the Moyenne Durance rivers. The expected decrease with depth of the measured 10Be concentrations has been modelled using a χ2 inversion method in order to constrain the exposure history of the alluvial sediments. The results suggest that: (1) over the Quaternary, the local surface erosion rates including both regional uplift and climatically driven processes acting on landforms are on the order of 30 m/Myr in southeastern France, and (2) providing a fairly good bracketing of the exposure age, the modelled abandonment age of alluvial terraces affected by the Moyenne Durance Fault allows estimating incision rates, comparing the alluvial terrace elevations with topographic river profiles, and a minimum vertical slip rate value of roughly 0.02 mm/yr for the southern segment of the Moyenne Durance Fault.  相似文献   

20.
Terrace pediments occupy approximately 30 per cent of the bottom of the Makhtesh Ramon erosional cirque in the central Negev Desert, Israel. River terraces and terrace pediments are genetically connected landforms, where each terrace pediment corresponds with a fluvial terrace of the same relative height. A pediment and river terrace constitute a geomorphic pair and should be regarded as chronometrically synchronous morphological elements. The formation of the terrace pediment staircases is controlled mainly by local base level changes. The present‐day configuration and overall morphology of Makhtesh Ramon formed in the early stages of its development by both stream erosion and subsequent pedimentation. Less significantly, modification by intermittent erosion alternating with periods of stability, resulted in deepening of the Makhtesh Ramon bottom. The present‐day stepped relief throughout the Makhtesh valley is, thus, a composite feature. The overall rate of terrace pediment formation in Makhtesh Ramon ranges from 0·05 to 0·10 mm a−1. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号