首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   7篇
测绘学   3篇
大气科学   13篇
地球物理   43篇
地质学   31篇
海洋学   21篇
天文学   29篇
自然地理   7篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   6篇
  2015年   5篇
  2014年   2篇
  2013年   12篇
  2012年   4篇
  2011年   11篇
  2010年   9篇
  2009年   10篇
  2008年   17篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
排序方式: 共有147条查询结果,搜索用时 750 毫秒
1.
V838 Mon is the prototype of a new class of objects. Understanding the nature of its multistage outburst and similar systems is challenging. So far, several scenarios have been invoked to explain this group of stars. In this work, the planets-swallowing model for V838 Mon is further investigated, taking into account the findings that the progenitor is most likely a massive B-type star. We find that the super-Eddington luminosity during the eruption can explain the fast rising times of the three peaks in the optical light curve. We used two different methods to estimate the location where the planets were consumed. There is a nice agreement between the values obtained from the luminosities of the peaks and from their rising time-scale. We estimate that the planets were stopped at a typical distance of one solar radius from the centre of the host giant star. The planets-devouring model seems to give a satisfying explanation to the differences in the luminosities and rising times of the three peaks in the optical light curve of V838 Mon. The peaks may be explained by the consumption of three planets or alternatively by three steps in the terminal falling process of a single planet. We argue that only the binary merger and the planets-swallowing models are consistent with the observations of the new type of stars defined by V838 Mon.  相似文献   
2.
The Mangala Valles system is an ∼ ∼900 km fluvially carved channel system located southwest of the Tharsis rise and is unique among the martian outflow channels in that it heads at a linear fracture within the crust as opposed to a collapsed region of chaos as is the case with the circum-Chryse channels. Mangala Valles is confined within a broad, north–south trending depression, and begins as a single valley measuring up to 350 km wide that extends northward from a Memnonia Fossae graben, across the southern highlands toward the northern lowlands. Approximately 600 km downstream, this single valley branches into multiple channels, which ultimately lose their expression at the dichotomy boundary. Previous investigations of Mangala Vallis suggested that many of the units mapped interior to the valley were depositional, related to flooding, and that a minimum of two distinct periods of flooding separated by tens to hundreds of millions of years were required to explain the observed geology. We use infrared and visible images from the THermal EMission Imaging System (THEMIS), and topographic data from the Mars Orbiting Laser Altimeter (MOLA), to investigate the nature of the units mapped within Mangala Vallis. We find that the geomorphology of the units, as well as their topographic and geographic distribution, are consistent with most of them originating from a single assemblage of volcanic flow deposits, once continuous with volcanic flows to the south of the Memnonia Fossae source graben. These flows resurfaced the broad, north–south trending depression into which Mangala Vallis formed prior to any fluvial activity. Later flooding scoured and eroded this volcanic assemblage north of the Mangala source graben, resulting in the present distribution of the units within Mangala Vallis. Additionally, our observations suggest that a single period of catastrophic flooding, rather than multiple periods separated by tens to hundreds of millions of years, is consistent with and can plausibly explain the interior geology of Mangala Vallis. Further, we present a new scenario for the source and delivery of water to the Mangala source graben that models flow of groundwater through a sub-cryosphere aquifer and up a fracture that cracks the cryosphere and taps this aquifer. The results of our model indicate that the source graben, locally enlarged to a trough near the head region of Mangala, would have required less than several days to fill up prior to any spill-over of water to the north. Through estimates of the volume of material missing from Mangala (13,000–20,000 km3), and calculation of mean discharge rates through the channel system (∼ ∼5 × 106 m3 s−1), we estimate that the total duration of fluvial activity through the Mangala Valles was 1–3 months.  相似文献   
3.
We develop a physical model of the thermal history of the ureilite parent body (UPB) that numerically tracks the history of its heating, hydration, dehydration, partial melting and smelting as a function of its formation time and the initial values of its composition, formation temperature and water ice content. Petrologic and chemical data from the main group (non-polymict) ureilite meteorites, which sample the interior of the UPB between depths corresponding to pressures in the range 3-10 MPa, are used to constrain the model. We find that to achieve the ∼30% melting inferred for ureilites from all sampled depths, the UPB must have had a radius between ∼80 and ∼130 km and must have accreted about 0.55 Ma after CAI formation. Melting began in the body at ∼1 Ma after CAI, and the time at which 30% melting was reached varied with depth in the asteroid but was always between ∼4.5 and ∼5.8 Ma after CAI. The total rate at which melt was produced in the UPB varied from more than 100 m3 s−1 in the very early stages of melting at ∼1 Ma after CAI to ∼5 m3 s−1 between 2 and 3 Ma after CAI, decreasing to extremely small values as the end of melting was approached beyond ∼5 Ma. Although the initial period of high melt production occupied only a short time around 1 Ma after CAI, it corresponded to ∼half (16%) of total silicate melting, and all strictly basaltic (i.e. plagioclase-saturated) melts must have been produced during this period.A very efficient melt transport network, consisting of a hierarchy of veins and larger pathways (dikes), developed quickly at the start of melting, ensuring rapid (timescales of months) transport of any single parcel of melt to shallow levels, thus ensuring that chemical interaction between melts and the rocks through which they subsequently passed was negligible. Volatile (mainly carbon monoxide) production due to smelting began at the start of silicate melting in the shallowest parts of the UPB and at later times at greater depths. Except at the very start and very end of melting, the volatile content of the melts produced was always high - generally between 15 and 35 mass % - and most of the melt produced was erupted at the surface of the UPB with speeds well in excess of the escape velocity and was lost into space. However, we show that 30% melting at the 3 MPa pressure level was only possible if ∼15% of the total melt produced in the asteroid was retained as a small number (∼5) of very extensive, sill-like intrusions centered at a depth of ∼7 km below the surface, near the base of the ∼8 km thick outer crust of the asteroid that was maintained at temperatures below the basalt solidus by conductive heat loss to the surface. The horizontal extents of these sills occupied about 75% of the surface area of the UPB, and the sills acted as buffers between the steady supply of melt from depth and the intermittent explosive eruption of the melt into space. We infer that samples from these intrusions are preserved as the rare feldspathic (loosely basaltic) clasts in polymict ureilites, and show that the cooling histories of the sills are consistent with these clasts reaching isotopic closure at ∼5 Ma after CAI, as given by 26Al-26Mg, 53Mn-53Cr and Pb-Pb age dates.  相似文献   
4.
A new class of phytoplankton models with a mechanistic basis has been presented in a companion paper (Baklouti, M., Diaz, F., Pinazo, C., Faure, V., Queguiner, B., 2006. Investigation of mechanistic formulations depicting phytoplankton dynamics for models of marine pelagic ecosystems. Progress in Oceanography). It is the default class of models implemented in our new numerical tool Eco3M, which is dedicated to Ecological, Mechanistic and Modular Modelling. A brief overview of its main features is given in Section 2 of the present paper. In the next sections, a particular phytoplankton model among the aforementioned class has been tested with special emphasis on the mechanistic photosynthesis component relating the photosynthetic rate to the proportion of open photosystems II. The present study encompasses several essential steps that are inherent to any modelling, including model reduction, model sensitivity analysis and comparison of model outputs with experiments. The global sensitivity analysis of the plankton model for one-at-a-time parameter perturbations revealed a restricted set of parameters having major influence on the model outputs. Sensitivity tests involving simultaneous parameter perturbations within the range actually encountered in the literature provided a confidence interval for the outputs. Chemostat experiments performed on nitrate-limited diatoms grown under low (LL) and high-light (HL) conditions have been used for comparison with model outputs. The good fit between measured data and model outputs using the same parameter values in both the LL and HL cases demonstrates the ability of our model to represent the main features of phytoplankton dynamics including photoacclimation. Finally, Eco3M is ultimately intended to include explicit bacterial and zooplankton compartments, as well as to be coupled with ocean circulation models, but the intrinsic behavior of the phytoplankton model has been investigated first, independently of physical forcing.  相似文献   
5.
An intense, but localized rainfall event in February 2003, led to the severe erosion and failure of a tailings disposal impoundment at the Abarόa Antimony Mine in southern Bolivia. The failure released approximately 5,500 m3 of contaminated tailings into the Rio Chilco-Rio Tupiza drainage system. The impacts of the event on sediment quality are examined and compared to contamination resulting from historic mining operations in the headwaters of the basin. Of primary concern are contaminated floodplain soils located along downstream reaches of the Rio Tupiza which were found to contain lead (Pb), zinc (Zn), and antimony (Sb) concentrations that locally exceed Canadian, German, and Dutch guidelines for agricultural use. Spatial patterns in sediment-borne trace metal concentrations, combined with Pb isotopic data, indicate that Pb, Zn, and Sb are derived from three tributary basins draining the Abarόa, Chilcobija, and Tatasi-Portugalete mining districts. Downstream of each tributary, geographical patterns in trace metal concentrations reflect local geomorphic changes throughout the drainage system. Trace metal concentrations within the Rio Chilco decrease rapidly downstream as a result of dilution by uncontaminated sediments and storage of metal enriched particles (e.g., sulfide minerals) in the channel bed as a result of ongoing aggradation. Storage in the floodplains is limited. These processes significantly reduced the dispersal and, thus, the relative environmental affects of tailings eroded from the Abarόa Mine during the 2003 flood. In contrast, storage of Pb, Zn, and Sb in floodplains along the Rio Tupiza is significant, the majority of which is derived from historic mining operations, particularly mining within the Tatasi-Portugalete district.  相似文献   
6.
In the Négron River catchment area (162 km2), surface‐sediment stores are composed of periglacial calcareous ‘grèze’ (5 × 106 t) and loess (21 × 106 t), and Holocene alluvium (12·6 × 106 t), peat (0·6 × 106 t) and colluvium (18·5 × 106 t). Seventy‐five per cent of the Holocene sediments is stored along the thalwegs. Present net sediment yield, calculated from solid discharge at the Négron outlet, is low (0·6 t km?2 a?1) due to the dominance of carbonate rocks in the catchment. Mean sediment yield during the Holocene period is 7·0 t km?2 a?1 from alluvium stores and 7·6 t km?2 a?1 from colluvium stores. Thus, the gross sediment yield during the Holocene period is about 18·7 t km?2 a?1 and the sediment delivery ratio 3 per cent. The yield considerably varies from one sub‐basin to another (3·9 to 24·5 t km?2 a?1) according to lithology: about 25 per cent and 50 per cent of initial stores of periglacial grèze and loess respectively were reworked during the Holocene period. Sediment yield has increased by a factor of 6 in the last 1000 years, due to the development of agriculture. The very high rate of sediment storage on the slope during that period (88 per cent of the yield) can be accounted for by the formation of cultivation steps (‘rideaux’). It is predicted that the current destruction of these steps will result in a sediment wave reaching the valley floors in the coming decades. Subboreal and Subatlantic sediments and pollen assemblages in the Taligny marsh, where one‐third of the alluvium is stored, show the predominant influence of human activity during these periods in the Négron catchment. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
7.
Submarine pyroclastic eruptions at depths greater than a few hundred meters are generally considered to be rare or absent because the pressure of the overlying water column is sufficient to suppress juvenile gas exsolution so that magmatic disruption and pyroclastic activity do not occur. Consideration of detailed models of the ascent and eruption of magma in a range of sea floor environments shows, however, that significant pyroclastic activity can occur even at depths in excess of 3000 m. In order to document and illustrate the full range of submarine eruption styles, we model several possible scenarios for the ascent and eruption of magma feeding submarine eruptions: (1) no gas exsolution; (2) gas exsolution but no magma disruption; (3) gas exsolution, magma disruption, and hawaiian-style fountaining; (4) volatile content builds up in the magma reservoir leading to hawaiian eruptions resulting from foam collapse; (5) magma volatile content insufficient to cause fragmentation normally but low rise speed results in strombolian activity; and (6) volatile content builds up in the top of a dike leading to vulcanian eruptions. We also examine the role of bulk-interaction steam explosivity and contact-surface steam explosivity as processes contributing to volcaniclastic formation in these environments. We concur with most earlier workers that for magma compositions typical of spreading centers and their vicinities, the most likely circumstance is the quiet effusion of magma with minor gas exsolution, and the production of somewhat vesicular pillow lavas or sheet flows, depending on effusion rate. The amounts by which magma would overshoot the vent in these types of eruptions would be insufficient to cause any magma disruption. The most likely mechanism of production of pyroclastic deposits in this environment is strombolian activity, due to the localized concentration of volatiles in magma that has a low rise rate; magmatic gas collects by bubble coalescence, and ascends in large isolated bubbles which disrupt the magma surface in the vent, producing localized blocks, bombs, and pyroclastic deposits. Another possible mode of occurrence of pyroclastic deposits results from vulcanian eruptions; these deposits, being characterized by the dominance of angular blocks of country rocks deposited in the vicinity of a crater, should be easily distinguishable from strombolian and hawaiian eruptions. However, we stress that a special case of the hawaiian eruption style is likely to occur in the submarine environment if magmatic gas buildup occurs in a magma reservoir by the upward drift of gas bubbles. In this case, a layer of foam will build up at the top of the reservoir in a sufficient concentration to exceed the volatile content necessary for disruption and hawaiian-style activity; the deposits and landforms are predicted to be somewhat different from those of a typical primary magmatic volatile-induced hawaiian eruption. Specifically, typical pyroclast sizes might be smaller; fountain heights may exceed those expected for the purely magmatic hawaiian case; cooling of descending pyroclasts would be more efficient, leading to different types of proximal deposits; and runout distances for density flows would be greater, potentially leading to submarine pyroclastic deposits surrounding vents out to distances of tens of meters to a kilometer. In addition, flows emerging after the evacuation of the foam layer would tend to be very depleted in volatiles, and thus extremely poor in vesicles relative to typical flows associated with hawaiian-style eruptions in the primary magmatic gas case. We examine several cases of reported submarine volcaniclastic deposits found at depths as great as 3000 m and conclude that submarine hawaiian and strombolian eruptions are much more common than previously suspected at mid-ocean ridges. Furthermore, the latter stages of development of volcanic edifices (seamounts) formed in submarine environments are excellent candidates for a wide range of submarine pyroclastic activity due not just to the effects of decreasing water depth, but also to: (1) the presence of a summit magma reservoir, which favors the buildup of magmatic foams (enhancing hawaiian-style activity) and episodic dike emplacement (which favors strombolian-style eruptions); and (2) the common occurrence of alkalic basalts, the CO2 contents of which favor submarine explosive eruptions at depths greater than tholeiitic basalts. These models and predictions can be tested with future sampling and analysis programs and we provide a checklist of key observations to help distinguish among the eruption styles.  相似文献   
8.
Aubrite meteorites are composed of constituents which are almost certainly of igneous origin. If they were generated by the melting and fractionation of enstatite chondrite-like parental material, as seems very likely, then plagioclase-rich, basaltic complements to the aubrites should have formed. However, such materials are not known as individual meteorites, and the compositions of two plagioclase-silica clasts and one albite-silica-(diopside-anorthite) clast (probably an impact melt) in the Norton County aubrite breccia suggest that they are not the putative enstatite-plagioclase basalts. We propose a new mechanism that explains the absence of these materials, showing that the expansion of even very small amounts of volatiles present in a melt approaching the surface of a small, low-gravity body will be enough to disrupt the melt into a spray of droplets moving faster than the local escape velocity. This explosive volcanic process of melt removal requires larger melt volatile contents on larger bodies, and data on the solubility of volatiles in basaltic melts suggest that the process was limited to bodies smaller than about 100 km in radius.  相似文献   
9.
New Zealand's biggest and most destructive volcanic eruption of historical times was that of Tarawera in 1886. The resulting scoria fall has a dispersal very similar in extent to that of the Vesuvius A.D. 79 pumice fall and is one of the few known examples of a basaltic deposit of plinian type. A new estimate of the volume (2 km3) is significantly greater than previous estimates. The basalt came mainly from a 7-km length of fissure, and emission and exit velocity were fairly uniform along at least 4 km of it, this is one of the few documented examples of a plinian eruption from a fissure vent. Primary welding of the scoria fall resulted where the accumulation rate exceeded about 250 mm min−1. A model of the eruption dynamics is proposed which leads to an estimate of 28 km for the height of the eruption cloud and implies a magma volatile fraction of 1.5–3%. Violent phreatic explosions occurred in the southwestern extension of the fissure across the Rotomahana geothermal field, and it is thought that some of the water responsible for the power of the plinian eruption came from this source, though its amount was not sufficient to turn the eruption into a phreatoplinian one.  相似文献   
10.
We have used a suite of remotely sensed data, numerical lava flow modeling, and field observations to determine quantitative characteristics of the 1995 Fernandina and 1998 Cerro Azul eruptions in the western Galápagos Islands. Flank lava flow areas, volumes, instantaneous effusion rates, and average effusion rates were all determined for these two eruptions, for which only limited syn-eruptive field observations are available. Using data from SPOT, TOPSAR, ERS-1, and ERS-2, we determined that the 1995 Fernandina flow covers a subaerial area of 6.5×106 m2 and has a subaerial dense rock equivalent (DRE) volume of 42×106 m3. Field observations, ATSR satellite data, and the FLOWGO numerical model allow us to determine that the effusion rate declined exponentially from a high of ~60–200 m3 s-1 during the first few hours to <5 m3 s-1 prior to ceasing after 73 days, with a mean effusion rate of 4–16 m3 s-1. Integrating the ATSR-derived, exponentially declining effusion rate over the eruption duration produces a total (subaerial + submarine) DRE volume of between 27 and 100×106 m3, the range in values being due to differing assumptions about heat loss characteristics; only values in the higher part of this range are consistent with the independently derived subaerial volume. Using SPOT, TOPSAR, ERS-1, and ERS-2 data, we determine that the 1998 Cerro Azul flow is 16 km long, covers 16 km2, and has a DRE volume of 54×106 m3. FLOWGO produces at-vent velocity and effusion rate values of 11 m s-1 and ~600 m3 s-1, respectively. The velocity value agrees well with the 12 m s-1 estimated in the field. The mean effusion rate (total DRE volume/duration) was 7–47 m3 s-1. Dike dimensions, fissure lengths, and pressure gradients along the conduit based on magma chamber depth estimates of 3–5 km produce mean effusion rates for the two eruptions that range over nearly four orders of magnitude, the range being due to uncertainty in the magma viscosity, dike dimensions, and pressure gradient between magma chamber and vent. Although somewhat consistent with mean effusion rates from other techniques, their wide range makes them less useful. The exponentially declining effusion rates during both eruptions are consistent with release of elastic strain being the driving mechanism of the eruptions. Our results provide independent input parameters for previously published theoretical relationships between magma chamber pressurization and eruption rates that constrain chamber volumes and increases in volume prior to eruption, as well as time constants of exponential decay during the eruption. The results and theoretical relationships combine to indicate that at both volcanoes probably 25–30% of the volumetric increase in the magma chamber erupted as lava onto the surface. In both eruptions the lava flow volumes are less than 1% of the magma chamber volume.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号