首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In many applications of seismic isolation, such as in high‐rise construction, lightweight construction, and structures with large height‐to‐width aspect ratios, significant tension forces can develop in bearings, raising concerns about the possible rupture of elastomeric bearings and the uplift of sliding bearings. In this paper, a novel tension‐resistant lead plug rubber bearing (TLRB) with improved tension‐resisting capabilities is developed and experimentally and numerically assessed. This TLRB consists of a common lead plug rubber bearing (LRB) and several helical springs. After describing the theory underlying the behavior of the TLRB, the mechanical properties of reduced‐scale prototype bearings are investigated through extensive horizontal and vertical loading tests. The test results indicate that TLRBs can improve the shear stiffness and tension resistance capacity even under significant tensile loads. A series of shaking table tests on scaled models of high‐rise buildings with different aspect ratios were conducted to investigate the dynamic performance of the TLRB and the seismic responses of base‐isolated high‐rise buildings. Three different cases were considered in the shaking table tests: a fixed base condition and the use of TLRB and LRB isolation systems. The results of the shaking table test show that (a) base‐isolated systems are effective in reducing the structural responses of high‐rise buildings; (b) an isolated structure's aspect ratio is an important factor influencing its dynamic response; (c) TLRBs can endure large tensile stresses and avoid rupture on rubber bearings under strong earthquakes; and (d) the experimental and numerical results of the responses of the models show good agreement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Laminated elastomeric bearings have been widely used for small-to-medium-span highway bridges in China, in which concrete shear keys are set transversely to prohibit large girder displacement. To evaluate bridge seismic responses more accurately, proper analytical models of bearings and shear keys should be developed. Based on a series of cyclic loading experiments and analyses, rational analytical models of laminated elastomeric bearings and shear keys, which can consider mechanical degradation, were developed. The effect of the mechanical degradation was investigated by examining the seismic response of a small-to-medium-span bridge in the transverse direction under a wide range of peak ground accelerations (PGA). The damage mechanism for small-to-medium-span highway bridges was determined, which can explain the seismic damage investigation during earthquakes in recent years. The experimental results show that the mechanical properties of laminated elastomeric bearings will degrade due to friction sliding, but the degree of decrease is dependent upon the influencing parameters. It can be concluded that the mechanical degradation of laminated elastomeric bearings and shear keys play an important role in the seismic response of bridges. The degradation of mechanical properties of laminated elastomeric bearings and shear keys should be included to evaluate more precise bridge seismic performance.  相似文献   

3.
For the purpose of predicting the large‐displacement response of seismically isolated buildings, an analytical model for elastomeric isolation bearings is proposed. The model comprises shear and axial springs and a series of axial springs at the top and bottom boundaries. The properties of elastomeric bearings vary with the imposed vertical load. At large shear deformations, elastomeric bearings exhibit stiffening behavior under low axial stress and buckling under high axial stress. These properties depend on the interaction between the shear and axial forces. The proposed model includes interaction between shear and axial forces, nonlinear hysteresis, and dependence on axial stress. To confirm the validity of the model, analyses are performed for actual static loading tests of lead–rubber isolation bearings. The results of analyses using the new model show very good agreement with the experimental results. Seismic response analyses with the new model are also conducted to demonstrate the behavior of isolated buildings under severe earthquake excitations. The results obtained from the analyses with the new model differ in some cases from those given by existing models. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
This paper reports a study for the seismic performance of one large‐scaled (1/15) model of 30‐story steel‐reinforced concrete frame‐concrete core wall mixed structure. The study was implemented by both shaking table tests, in which the similarity ratio for lateral and gravitational accelerations was kept to 1:1, and numerical nonlinear dynamic analysis. The test observations presented herein include story displacement, interstory drift, natural vibration periods, and final failure mode. The numerical analysis was performed to simulate the shaking table test procedure, and the numerically obtained responses were verified by the test results. On the basis of the numerical results, the progressions of structural stiffness, base shear, and overturning moment were investigated, and the distributions of base shear and overturning moment between frame and core wall were also discussed. The test demonstrates the seismic performance of the steel‐reinforced concrete frame‐core wall mixed structure and reveals the potential overturning failure mode for high rise structures. The nonlinear analysis results indicate that the peripheral frames could take more shear forces after core wall damaged under severe earthquakes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The effects of damping in various laminated rubber bearings (LRB) on the seismic response of a ?‐scale isolated test structure are investigated by shaking table tests and seismic response analyses. A series of shaking table tests of the structure were performed for a fixed base design and for a base isolation design. Two different types of LRB were used: natural rubber bearings (NRB) and lead rubber bearings (LLRB). Three different designs for the LLRB were tested; each design had a different diameter of lead plug, and thus, different damping values. Artificial time histories of peak ground acceleration 0.4g were used in both the tests and the analyses. In both shaking table tests and analyses, as expected, the acceleration responses of the seismically isolated test structure were considerably reduced. However, the shear displacement at the isolators was increased. To reduce the shear displacement in the isolators, the diameter of the lead plug in the LLRB had to be enlarged to increase isolator damping by more than 24%. This caused the isolator stiffness to increase, and resulted in amplifying the floor acceleration response spectra of the isolated test structure in the higher frequency ranges with a monotonic reduction of isolator shear displacement. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
A full‐scale 5‐story steel moment frame building was subjected to a series of earthquake excitations using the E‐Defense shake table in August, 2011. For one of the test configurations, the building was seismically isolated by a hybrid system of lead‐rubber bearings and low friction roller bearings known as cross‐linear bearings, and was designed for a very rare 100 000‐year return period earthquake at a Central and Eastern US soil site. The building was subject to 15 trials including sinusoidal input, recorded motions and simulated earthquakes, 2D and 3D input, and a range of intensities including some beyond the design basis level. The experimental program was one of the first system‐level full‐scale validations of seismic isolation and the first known full‐scale experiment of a hybrid isolation system incorporating lead‐rubber and low friction bearings. Stable response of the hybrid isolation system was demonstrated at displacement demands up to 550 mm and shear strain in excess of 200%. Torsional amplifications were within the new factor stipulated by the code provisions. Axial force was observed to transfer from the lead‐rubber bearings to the cross‐linear bearings at large displacements, and the force transfer at large displacements exceeded that predicted by basic calculations. The force transfer occurred primarily because of the flexural rigidity of the base diaphragm and the larger vertical stiffness of the cross‐linear bearings relative to the lead‐rubber bearings.  相似文献   

7.
New types of fiber‐reinforced rubber‐based seismic isolators have been a research interest for a number of engineers in the past decade. These new types of isolators can have similar seismic performances compared with the conventional ones. In most of the previous researches, the fiber‐reinforced rubber‐based isolators is usually manufactured with placing fiber sheets between precut rubber layers with the use of a bonding agent. This research differs from the previous researches in terms of manufacturing process, use of fiber mesh instead of fiber sheets, and use of lead in the core for some of the bearings. The aim of this research is to provide comparisons in fundamental seismic response properties of the new type of fiber mesh reinforced isolators and conventional isolators. In this scope, four pairs of fiber mesh reinforced elastomeric bearings and four pairs of steel‐reinforced elastomeric bearings are subjected to various levels of compression stresses and cyclic shear strains under constant vertical pressure. The tested types of isolators are fiber mesh reinforced elastomeric bearing, fiber mesh reinforced elastomeric bearing with lead core, steel‐reinforced elastomeric bearings, and steel‐reinforced elastomeric bearings with lead core. In this research, steel‐reinforced bearings are called conventional isolators. The major advantage for fiber mesh reinforced bearings observed during the tests is that these isolators can develop a considerable low horizontal stiffness compared with the conventional isolators. The damping characteristics of the new and conventional types are similar to each other. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Storage tanks are vulnerable to earthquakes, as numerous major earthquakes have demonstrated. The trend of recent revisions to make seismic design criteria for large‐scale industrial storage tanks increasingly stringent has made development of cost‐effective earthquake‐resistant design and retrofit techniques for industrial tanks imperative. This study assesses the feasibility of seismic base isolation for making liquid‐filled storage tanks earthquake resistant. The sliding‐type friction pendulum seismic (FPS) bearings are considered rather than the elastomeric bearings because the dynamic characteristics of an FPS‐isolated tank remain unchanged regardless of the storage level. This work has devised a hybrid structural‐hydrodynamic model and solution algorithm, which would permit simple, accurate and efficient assessment of the seismic response of rigid cylindrical storage tanks in the context of seismic isolation. Extensive numerical simulations confirm the effectiveness of seismic base isolation of rigid cylindrical tanks using FPS bearings. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
为评估隔震和非隔震支座对桥梁地震易损性的影响,以一座3跨连续混凝土箱梁桥为分析对象,首先建立采用铅芯橡胶隔震支座与非隔震型盆式橡胶支座下桥梁的数值模型,求得不同程度地震作用下墩顶与支座的最大位移响应;再定义转角延性比损伤指标,结合支座剪应变,分析桥墩和支座的地震易损性情况;最后通过宽界限法建立全桥地震易损性曲线。研究结果表明,支座是较容易发生损坏的构件,而桥梁系统比桥墩或支座更易发生破坏,同时铅芯橡胶支座的破坏概率明显低于非隔震型盆式支座,可见采用隔震支座能有效减小桥墩墩顶在地震作用下的最大位移,此时桥墩地震易损性优于采用非隔震支座的情况。  相似文献   

10.
The replaceable coupling beam (RCB) is an innovative structural component developed to increase the seismic resilience of reinforced concrete (RC) shear wall structures. In this study, two 1/5‐scale 5‐story 3‐dimensional RC shear wall structures—one with conventional RC coupling beams and the other with RCBs—were designed, constructed, and tested on a shaking table. The failure pattern, dynamic properties, and structural responses, including the acceleration, displacement, story force, and strain responses, of the 2 structures are compared under earthquake excitations. The test results demonstrate that the seismic performance of the structure with RCBs was improved when RCBs were working compared with the structure with conventional RC coupling beams. In addition, the replaceable devices suffering the severe damage during an earthquake can be conveniently replaced after the earthquake. However, after the sudden failure of RCBs during the severe earthquakes, the inter‐story drift and floor acceleration of the structure with RCBs became larger. The design and manufacture quality of RCBs should be improved to avoid the sudden failure. Then, numerical models for the test structures were established using the commercial software PERFORM‐3D. Numerical simulations of the tests were conducted. The simulation results correspond well with the experimental results, thus verifying the accuracy of the numerical models. The RC shear wall structure installed with RCBs can be applied as a new type of earthquake‐resilient structure in engineering practice.  相似文献   

11.
Horizontal bidirectional loading tests are conducted for real-sized high-damping rubber (HDR) bearings with diameters of 700 mm (HDR700) and 1300 mm (HDR1300). The hysteresis loops of these bearings under bidirectional horizontal loadings are compared with those under unidirectional loadings. The results show that the bearing force measurement in the primary direction of loading increases when there is displacement in the orthogonal direction. Unusually, the maximum restoring force in the orthogonal direction to the primary loading direction occurs near zero displacement. On the basis of the observations of the restoring forces, a rate-independent model is proposed. This model simulates well the test results under both bidirectional loading and unidirectional loading. It can reproduce the irregular restoring forces characteristics around zero displacement as described above. Bidirectional loading induced twist deformation in the HDR bearings that increased local shear strains. This phenomenon results in an early failure as observed in HDR700. The additional shear strain is estimated based on the twist deformation measured by video image analysis. The comparison of the nominal total shear stress demonstrates that the increase of shear stress because of bidirectional loading occurs when the average shear strain is larger than about 200%. The larger the shear strain, the greater the bidirectional effect. It is shown that the nominal total shear stress of average strain of 350% under bidirectional circular loading pattern is approximately the same as the average shear strain of 400% under unidirectional loading. This means that the average shear strain of 350% under a bidirectional circular loading corresponds to a local shear strain of 400%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
铅芯叠层橡胶支座基础隔震结构双向地震反应分析   总被引:6,自引:1,他引:6  
本文对铅芯叠层橡胶支座双向耦合恢复力模型进行了改进,采用基础隔震结构动力分析程序DABIS对铅芯叠层橡胶支座基础隔震结构进行了单向及双向地震反应对比分析。结果表明,在单向和双向地震作用下,基础隔震结构的加速度反应和位移反应较为接近,但在双向地震作用下,支座的最大位移明显大于单向地震作用时的支座最大位移,因而在确定支座最大位移时应考虑双向地震作用的影响。  相似文献   

13.
为了提高采用板式橡胶支座的斜梁桥横向抗震能力,揭示其在不同设计参数下的横向抗震行为,考虑板式橡胶支座的滑移、钢筋混凝土挡块的滞回力学性能、桥台-背土效应等非线性因素,采用OpenSEES建立某连续斜梁桥的三维分析模型,提出支座位移评价指标、主梁平面转角指标、墩柱曲率延性指标和抗剪指标,研究不同挡块强度和间隙组合下桥梁的横向抗震性能。研究表明:同时增大挡块强度和间隙,总体上会降低支座的横向变形,但会增加其纵向变形;挡块强度越高,主梁的横向位移有所下降,但平面转角越大,对两侧桥台处的支座抗剪越不利;挡块强度越高,间隙越小,墩柱越有可能进入弹塑性状态。在本文桥例中,当挡块强度取40%支反力,间隙取0.08m时,所有抗震指标都可满足规范要求。  相似文献   

14.
This paper describes the results of shaking table tests to ascertain the ultimate behavior of slender base‐isolated buildings and proposes a time history response analysis method, which can predict the ultimate behavior of base‐isolated buildings caused by buckling fracture in laminated rubber bearings. In the tests, a base‐isolated structure model weighing 192 kN supported by four lead rubber bearings is used. The experimental parameters are the aspect ratio of height‐to‐distance between the bearings and the shape of and the axial stress on the bearings. The test results indicate that the motion types of the superstructure at large input levels can be classified into three types: the sinking type; the uplift type; and the mixed type. These behaviors depend on the relationship between the static ultimate lateral uplifting force on the superstructure and the lateral restoring characteristics of the base‐isolated story. In the analysis method, bearing characteristics are represented by a macroscopic mechanical model that is expanded by adding an axial spring to an existing model. Nonlinear spring characteristics are used for its rotational, shear, and axial spring. The central difference method is applied to solve the equation of motion. To verify the validity of the method, simulation analysis of the shaking table tests are carried out. The results of the analysis agree well with the test results. The proposed model can express the buckling behavior of bearings in the large deformation range. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
During past strong earthquakes, highway bridges have sustained severe damage or even collapse due to excessive displacements and/or very large lateral forces. For commonly used isolation bearings with a pure friction sliding surface, seismic forces may be reduced but displacements are often unconstrained. In this paper, an alternative seismic bearing system, called the cable-sliding friction bearing system, is developed by integrating seismic isolation devices with displacement restrainers consisting of cables attached to the upper and lower plates of the bearing. Restoring forces are provided to limit the displacements of the sliding component. Design parameters including the length and stiffness of the cables, friction coefficient, strength of the shear bolt in a fixed-type bearing, and movements under earthquake excitations are discussed. Laboratory testing of a prototype bearing subjected to vertical loads and quasi-static cyclic lateral loads, and corresponding numerical finite element simulation analysis, were carried out. It is shown that the numerical simulation shows good agreement with the experimental force-displacement hysteretic response, indicating the viability of the new bearing system. In addition, practical application of this bearing system to a multi-span bridge in China and its design advantages are discussed.  相似文献   

16.
变刚度隔震保护装置试验研究   总被引:1,自引:1,他引:0  
通过在距离隔震层一定位移处设置由弹簧和与其串联的限位挡板组成的变刚度保护装置作为第二道防线,成功地进行了五层框架的变刚度隔震保护模拟地震振动台试验。理论分析和试验结果表明,变刚度隔震保护装置能有效改变结构动力特性,减小隔震层的变形,使之限制在允许的范围内。  相似文献   

17.
This paper presents a mechanical model for predicting the behavior of elastomeric seismic isolation bearings subject to combined end rotations and shear deformation. The mechanical model consists of a series of axial springs at the top, mid‐height and bottom of the bearing to vertically reproduce asymmetric bending moment distribution in the bearings. The model can take into account end rotations of the bearing, and the overall rotational stiffness includes the effect of the variation of vertical load on the bearing and the imposed shear deformation. Static bending tests under various combinations of vertical load and shear deformation were performed to identify the mechanical characteristics of bearings. The test results indicate that bearing rotational stiffness increases with increasing vertical load but decreases with increasing shear deformation. Simulation analyses were conducted to validate the new mechanical model. The results of analyses using the new model show very good agreement with experimental observations. A series of seismic response analyses were performed to demonstrate the dynamic behavior of top‐of‐column isolated structures, a configuration where the end rotations of isolation bearings are typically expected to be larger. The results suggest that the end rotations of elastomeric bearings used in practical top‐of‐column isolated structures do not reduce the stability limit of isolation system. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This paper reports on the investigation of novel fiber reinforced elastomeric isolator (FREI) bearings, which do not have thick end plates, and are used in an unbonded application. Owing to the stable lateral load‐displacement response exhibited by the unbonded FREI bearings, the proposed bearings are referred to as stable unbonded (SU)‐FREIs. A shake table test program was conducted on a two‐story test‐structure having well‐defined elastic response characteristics. Compared with the results for the corresponding fixed base (FB) structure, the peak response values, distribution of lateral response throughout the height of the structure, and response time histories of the tested base isolated (BI) structure indicate that significantly improved response can be achieved. This study clearly indicates that SU‐FREI bearings can provide an effective seismic isolation system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Xia  Xiushen  Wu  Suiwen  Shi  Jun  Jia  Junfeng  Chen  Xingchong  Ma  Huajun 《地震工程与工程振动(英文版)》2020,19(4):1005-1015

In this study, sacrificial components were incorporated into self-centering railway bridge piers to improve the lateral stiffness. The seismic response of this new detail was investigated. First, the method to compute the initial uplift moment of the self-centering pier is given. In addition, shaking table tests were conducted on a free-rocking pier without sacrificial components, which was used to validate a two-spring numerical model. Good agreement was obtained between the numerical results and experimental data. Furthermore, the validated model was employed to investigate the influence of sacrificial components on the seismic response of rocking piers. For this purpose, two models were developed, with and without sacrificial components. Nonlinear response history analysis was then performed on both models under three historical motions. The results showed that compared to the one without sacrificial components, the rocking pier with sacrificial components has comparable displacement at the top of the pier, and maximum uplift moment at high amplitude motion. Therefore, incorporating sacrificial components into the rocking pier can increase the lateral stiffness at service load and low amplitude frequent earthquakes but can produce comparable response at high seismic excitation. These results provide support for performance-based seismic design of self-centering rocking piers.

  相似文献   

20.
The concentrically braced frame (CBF) structure is one of the most efficient steel structural systems to resist earthquakes. This system can dissipate energy during earthquakes through braces, which are expected to yield in tension and buckle in compression, while all other elements such as columns, beams and connections are expected to behave elastically. In this paper, the performance of single‐storey CBFs is assessed with nonlinear time‐history analysis, where a robust numerical model that simulates the behaviour of shake table tests is developed. The numerical model of the brace element used in the analysis was calibrated using data measured in physical tests on brace members subjected to cyclic loading. The model is then validated by comparing predictions from nonlinear time‐history analysis to measured performance of brace members in full scale shake table tests. Furthermore, the sensitivity of the performance of the CBF to different earthquake ground motions is investigated by subjecting the CBF to eight ground motions that have been scaled to have similar displacement response spectra. The comparative assessments presented in this work indicate that these developed numerical models can accurately capture the salient features related to the seismic behaviour of CBFs. A good agreement is found between the performance of the numerical and physical models in terms of maximum displacement, base shear force, energy dissipated and the equivalent viscous damping. The energy dissipated and, more particular, the equivalent viscous damping, are important parameters required when developing an accurate displacement‐based design methodology for CBFs subjected to earthquake loading. In this study, a relatively good prediction of the equivalent viscous damping is obtained from the numerical model when compared with data measured during the shake table tests. However, it was found that already established equations to determine the equivalent viscous damping of CBFs may give closer values to those obtained from the physical tests. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号