首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Traditional flood‐frequency analysis involves the assumption of homogeneity of the flood distribution. However, floods are often generated by heterogeneous distributions composed of a mixture of two or more populations. Differences between the populations may be the result of a number of factors, including seasonal variations in the flood‐producing mechanisms, changes in weather patterns resulting from low‐frequency climate shifts and/or El Niño/La Nina oscillations, changes in channel routing owing to the dominance of within‐channel or floodplain flow, and basin variability resulting from changes in antecedent soil moisture. Not recognizing these physical processes in conventional flood‐frequency analysis probably is the main reason that many frequency distributions do not provide an acceptable fit to flood data. In this paper, we use long‐term hydroclimatic records from the Gila River basin of south‐east and central Arizona in the USA to explore the extent and significance of mixed populations. First, we discuss the probable causes of heterogeneity in the frequency distribution of annual flood and present evidence of its occurrence. Second, we investigate the implications of using various popular homogeneous distributions for predicting peak flows for basins that exhibit mixed population characteristics. Third, we demonstrate how alternative frequency models that explicitly account for floods generated by a mixture of two or more populations are both hydrologically and statistically more appropriate. We illustrate how the selection of the most plausible distribution for flood‐frequency analysis also should be based on hydrological reasoning as opposed to the sole application of the traditional statistical goodness‐of‐fit tests. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Sheng Yue 《水文研究》2000,14(14):2575-2588
Complex hydrological events such as floods always appear to be multivariate events that are characterized by a few correlated variables. A complete understanding of these events needs to investigate joint probabilistic behaviours of these correlated variables. The lognormal distribution is one of frequently selected candidates for flood‐frequency analysis. The multivariate lognormal distribution will serve as an important tool for analysing a multivariate flood episode. This article presents a procedure for using the bivariate lognormal distribution to describe the joint distributions of correlated flood peaks and volumes, and correlated flood volumes and durations. Joint distributions, conditional distributions, and the associated return periods of these random variables can be readily derived from their marginal distributions. The approach is verified using observed streamflow data from the Nord river basin, located in the Province of Quebec, Canada. The theoretical distributions show a good fit to observed ones. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
Sheng Yue  Peter Rasmussen 《水文研究》2002,16(14):2881-2898
Basic concepts such as conditional probability distributions, conditional return periods, and joint return periods are important to understand and to interpret multivariate hydrological events such as floods and storms. However, these concepts are not well documented in the open literature. This paper assembles and clarifies these concepts, and illustrates their practical utility. Relationships between joint return periods and univariate return periods are also derived. These concepts and relationships are demonstrated by applying a bivariate extreme value distribution to represent the joint distribution of flood peak and volume from an actual basin. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
The annual peak flow series of Polish rivers are mixtures of summer and winter flows. As Part II of a sequence of two papers, practical aspects of applicability of seasonal approach to flood frequency analysis (FFA) of Polish rivers are discussed. Taking A Two‐Component Extreme Value (TCEV1) model as an example it was shown in the first part that regardless of estimation method, the seasonal approach can give profit in terms of upper quantile estimation accuracy that rises with the return period of the quantile and is the greatest for no seasonal variation. In this part, an assessment of annual maxima (AM) versus seasonal maxima (SM) approach to FFA was carried out with respect to seasonal and annual peak flow series of 38 Polish gauging stations. First, the assumption of mutual independence of the seasonal maxima has been tested. The smoothness of SM and AM empirical probability distribution functions was analysed and compared. The TCEV1 model with seasonally estimated parameters was found to be not appropriate for most Polish data as it considerably underrates the skewness of AM distributions and upper quantile values as well. Consequently, the discrepancies between the SM and AM estimates of TCEV1 are observed. Taking SM and TCEV1 distribution, the dominating season in AM series was confronted with predominant season for extreme floods. The key argument for presumptive superiority of SM approach that SM samples are more statistically homogeneous than AM samples has not been confirmed by the data. An analysis of fitness to SM and AM of Polish datasets made for seven distributions pointed to Pearson (3) distribution as the best for AM and Summer Maxima, whereas it was impossible to select a single best model for winter samples. In the multi‐model approach to FFA, the tree functions, i.e., Pe(3), CD3 and LN3, should be involved for both SM and AM. As the case study, Warsaw gauge on the Vistula River was selected. While most of AM elements are here from winter season, the prevailing majority of extreme annual floods are the summer maxima. The upper quantile estimates got by means of classical annual and two‐season methods happen to be fairly close; what's more they are nearly equal to the quantiles calculated just for the season of dominating extreme floods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Some recent research on fluvial processes suggests the idea that some hydrological variables, such as flood flows, are upper-bounded. However, most probability distributions that are currently employed in flood frequency analysis are unbounded to the right. This paper describes an exploratory study on the joint use of an upper-bounded probability distribution and non-systematic flood information, within a Bayesian framework. Accordingly, the current PMF maximum discharge appears as a reference value and a reasonable estimate of the upper-bound for maximum flows, despite the fact that PMF determination is not unequivocal and depends strongly on the available data. In the Bayesian context, the uncertainty on the PMF can be included into the analysis by considering an appropriate prior distribution for the maximum flows. In the sequence, systematic flood records, historical floods, and paleofloods can be included into a compound likelihood function which is then used to update the prior information on the upper-bound. By combining a prior distribution describing the uncertainties of PMF estimates along with various sources of flood data into a unified Bayesian approach, the expectation is to obtain improved estimates of the upper-bound. The application example was conducted with flood data from the American river basin, near the Folsom reservoir, in California, USA. The results show that it is possible to put together concepts that appear to be incompatible: the deterministic estimate of PMF, taken as a theoretical limit for floods, and the frequency analysis of maximum flows, with the inclusion of non-systematic data. As compared to conventional analysis, the combination of these two concepts within the logical context of Bayesian theory, contributes an advance towards more reliable estimates of extreme floods.  相似文献   

7.
The annual peak flow series of the Polish rivers are mixtures of summer and winter flows. In the Part I of a sequence of two papers, theoretical aspects of applicability of seasonal approach to flood frequency analysis (FFA) in Poland are discussed. A testing procedure is introduced for the seasonal model and the data overall fitness. Conditions for objective comparative assessment of accuracy of annual maxima (AM) and seasonal maxima (SM) approaches to FFA are formulated and finally Gumbel (EV1) distribution is chosen as seasonal distribution for detailed investigation. Sampling properties of AM quantile x(F) estimates are analysed and compared for the SM and AM models for equal seasonal variances. For this purpose, four estimation methods were used, employing both asymptotic approach and sampling experiments. Superiority of the SM over AM approach is stated evident in the upper quantile range, particularly for the case of no seasonal variation in the parameters of Gumbel distribution. In order to learn whether the standard two‐ and three‐parameter flood frequency distributions can be used to model the samples generated from the Two‐Component Extreme Value 1 (TCEV1) distribution, the shape of TCEV1 probability density function (PDF) has been tested in terms of bi‐modality. Then the use of upper quantile estimate obtained from the dominant season of extreme floods (DEFS) as AM upper quantile estimate is studied and respective systematic error is assessed. The second part of the paper deals with advantages and disadvantages of SM and AM approach when applied to real flow data of Polish rivers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
《水文科学杂志》2012,57(15):1867-1892
ABSTRACT

The flood peak is the dominating characteristic in nearly all flood-statistical analyses. Contrary to the general assumptions of design flood estimation, the peak is not closely related to other flood characteristics. Differentiation of floods into types provides a more realistic view. Often different parts of the probability distribution function of annual flood peaks are dominated by different flood types, which raises the question how shifts in flood regimes would modify the statistics of annual maxima. To answer this, a distinction into five flood types is proposed; then, temporal changes in flood-type frequencies are investigated. We show that the frequency of floods caused by heavy rain has increased significantly in recent years. A statistical model is developed that simulates peaks for each event type by type-specific peak–volume relationships. In a simulation study, we show how changes in frequency of flood event type lead to changes in the quantiles of annual maximum series.  相似文献   

9.
Ugo Moisello 《水文研究》2007,21(10):1265-1279
The use of partial probability weighted moments (PPWM) for estimating hydrological extremes is compared to that of probability weighted moments (PWM). Firstly, estimates from at‐site data are considered. Two Monte Carlo analyses, conducted using continuous and empirical parent distributions (of peak discharge and daily rainfall annual maxima) and applying four different distributions (Gumbel, Fréchet, GEV and generalized Pareto), show that the estimates obtained from PPWMs are better than those obtained from PWMs if the parent distribution is unknown, as happens in practice. Secondly, the use of partial L‐moments (obtained from PPWMs) as diagnostic tools is considered. The theoretical partial L‐diagrams are compared with the experimental data. Five different distributions (exponential, Pareto, Gumbel, GEV and generalized Pareto) and 297 samples of peak discharge annual maxima are considered. Finally, the use of PPWMs with regional data is investigated. Three different kinds of regional analyses are considered. The first kind is the regression of quantile estimates on basin area. The study is conducted applying the GEV distribution to peak discharge annual maxima. The regressions obtained with PPWMs are slightly better than those obtained with PWMs. The second kind of regional analysis is the parametric one, of which four different models are considered. The congruence between local and regional estimates is examined, using peak discharge annual maxima. The congruence degree is sometimes higher for PPWMs, sometimes for PWMs. The third kind of regional analysis uses the index flood method. The study, conducted applying the GEV distribution to synthetic data from a lognormal joint distribution, shows that better estimates are obtained sometimes from PPWMs, sometimes from PWMs. All the results seem to indicate that using PPWMs can constitute a valid tool, provided that the influence of ouliers, of course higher with censored samples, is kept under control. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
长江流域历史水旱灾害分析   总被引:2,自引:1,他引:1  
黄忠恕  李春龙 《湖泊科学》2003,15(Z1):210-215
长江流域有丰富和长期的水旱灾害史料,最早的水灾和旱灾记载有2000余年的历史,经过系统整理和分析的历史水旱灾害资料有1000余年的旱涝型年表和500余年的旱涝分布图集.在以上资料基础上,对长江流域历史水旱灾害的地域分布特性和时间变化规律进行了初步分析:500余年历史水旱灾害的地域分布显示,流域水旱灾害总体特征是水灾重于旱灾,各级水旱灾害频率的地域分布极不均匀,存在着显著的灾害多发和少发地带,它们与自然地理环境、水系特征、气候条件和社会经济条件等因素有关;1000余年旱涝型年表分析表明,长江流域洪涝和干旱频次在时间上的非均匀分布并非完全随机,表现出多种时间尺度的年际变化特征,其中主要表现为约100a上下的大干湿气候期变化及40a左右的小旱涝期振动.  相似文献   

11.
Sheng Yue 《水文研究》2001,15(6):1033-1045
A gamma distribution is one of the most frequently selected distribution types for hydrological frequency analysis. The bivariate gamma distribution with gamma marginals may be useful for analysing multivariate hydrological events. This study investigates the applicability of a bivariate gamma model with five parameters for describing the joint probability behavior of multivariate flood events. The parameters are proposed to be estimated from the marginal distributions by the method of moments. The joint distribution, the conditional distribution, and the associated return periods are derived from marginals. The usefulness of the model is demonstrated by representing the joint probabilistic behaviour between correlated flood peak and flood volume and between correlated flood volume and flood duration in the Madawask River basin in the province of Quebec, Canada. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
Parametric method of flood frequency analysis (FFA) involves fitting of a probability distribution to the observed flood data at the site of interest. When record length at a given site is relatively longer and flood data exhibits skewness, a distribution having more than three parameters is often used in FFA such as log‐Pearson type 3 distribution. This paper examines the suitability of a five‐parameter Wakeby distribution for the annual maximum flood data in eastern Australia. We adopt a Monte Carlo simulation technique to select an appropriate plotting position formula and to derive a probability plot correlation coefficient (PPCC) test statistic for Wakeby distribution. The Weibull plotting position formula has been found to be the most appropriate for the Wakeby distribution. Regression equations for the PPCC tests statistics associated with the Wakeby distribution for different levels of significance have been derived. Furthermore, a power study to estimate the rejection rate associated with the derived PPCC test statistics has been undertaken. Finally, an application using annual maximum flood series data from 91 catchments in eastern Australia has been presented. Results show that the developed regression equations can be used with a high degree of confidence to test whether the Wakeby distribution fits the annual maximum flood series data at a given station. The methodology developed in this paper can be adapted to other probability distributions and to other study areas. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

Abstract A new theoretically-based distribution in frequency analysis is proposed. The extended three-parameter Burr XII distribution includes the generalized Pareto distribution, which is used to model the exceedences over threshold; log-logistic distribution, which is also advocated in flood frequency analysis; and Weibull distribution, which is a part of the generalized extreme value distribution used to model annual maxima as special cases. The extended Burr distribution is flexible to approximate extreme value distribution. Note that both the generalized Pareto and generalized extreme value distributions are limiting results in modelling the exceedences over threshold and block extremes, respectively. From a modelling perspective, generalization might be necessary in order to obtain a better fit. The extended three-parameter Burr XII distribution is therefore a meaningful candidate distribution in the frequency analysis. Maximum likelihood estimation for this distribution is investigated in the paper. The use of the extended three-parameter Burr XII distribution is demonstrated using data from China.  相似文献   

14.
In the last few years, the scientific community has developed several hydrological models aimed at the simulation of hydrological processes acting at the basin scale. In this context, the portion of peak runoff contributing areas represents a critical variable for a correct estimate of surface runoff. Such areas are strongly influenced by the saturated portion of a river basin (influenced by antecedent conditions) but may also evolve during a specific rainfall event. In the recent years, we have developed 2 theoretically derived probability distributions that attempt to interpret these 2 processes adopting daily runoff and flood‐peak time series. The probability density functions (PDFs) obtained by these 2 schematisations were compared for humid river basins in southern Italy. Results highlighted that the PDFs of the peak runoff contributing areas can be interpreted by a gamma distribution and that the PDF of the relative saturated area provides a good interpretation of such process that can be used for flood prediction.  相似文献   

15.
The index flood procedure coupled with the L‐moments method is applied to the annual flood peaks data taken at all stream‐gauging stations in Turkey having at least 15‐year‐long records. First, screening of the data is done based on the discordancy measure (Di) in terms of the L‐moments. Homogeneity of the total geographical area of Turkey is tested using the L‐moments based heterogeneity measure, H, computed on 500 simulations generated using the four parameter Kappa distribution. The L‐moments analysis of the recorded annual flood peaks data at 543 gauged sites indicates that Turkey as a whole is hydrologically heterogeneous, and 45 of 543 gauged sites are discordant which are discarded from further analyses. The catchment areas of these 543 sites vary from 9·9 to 75121 km2 and their mean annual peak floods vary from 1·72 to 3739·5 m3 s?1. The probability distributions used in the analyses, whose parameters are computed by the L‐moments method are the general extreme values (GEV), generalized logistic (GLO), generalized normal (GNO), Pearson type III (PE3), generalized Pareto (GPA), and five‐parameter Wakeby (WAK). Based on the L‐moment ratio diagrams and the |Zdist|‐statistic criteria, the GEV distribution is identified as the robust distribution for the study area (498 gauged sites). Hence, for estimation of flood magnitudes of various return periods in Turkey, a regional flood frequency relationship is developed using the GEV distribution. Next, the quantiles computed at all of 543 gauged sites by the GEV and the Wakeby distributions are compared with the observed values of the same probability based on two criteria, mean absolute relative error and determination coefficient. Results of these comparisons indicate that both distributions of GEV and Wakeby, whose parameters are computed by the L‐moments method, are adequate in predicting quantile estimates. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

Abstract A parameter estimation method is proposed for fitting the generalized extreme value (GEV) distribution to censored flood samples. Partial L-moments (PL-moments), which are variants of L-moments and analogous to ?partial probability weighted moments?, are defined for the analysis of such flood samples. Expressions are derived to calculate PL-moments directly from uncensored annual floods, and to fit the parameters of the GEV distribution using PL-moments. Results of Monte Carlo simulation study show that sampling properties of PL-moments, with censoring flood samples of up to 30% are similar to those of simple L-moments, and also that both PL-moment and LH-moments (higher-order L-moments) have similar sampling properties. Finally, simple L-moments, LH-moments, and PL-moments are used to fit the GEV distribution to 75 annual maximum flow series of Nepalese and Irish catchments, and it is found that, in some situations, both LH- and PL-moments can produce a better fit to the larger flow values than simple L-moments.  相似文献   

17.
The present study attempts to investigate potential impacts of climate change on floods frequency in Bazoft Basin which is located in central part of Iran. A combination of four general circulation models is used through a weighting approach to assess uncertainty in the climate projections. LARS-WG model is applied to downscale large scale atmospheric data to local stations. The resulting data is in turn used as input of the hydrological model Water and Energy Transfer between Soil, plants and atmosphere (WetSpa) to simulate runoff for present (1971–2000), near future (2020–2049) and far future (2071–2100) conditions. Results demonstrate good performance of both WetSpa and LARS-WG models. In addition in this paper instantaneous peak flow (IPF) is estimated using some empirical equations including Fuller, Sangal and Fill–Steiner methods. Comparison of estimated and observed IPF shows that Fill–Steiner is better than other methods. Then different probability distribution functions are fit to IPF series. Results of flood frequency analysis indicate that Pearson III is the best distribution fitted to IPF data. It is also indicated that flood magnitude will decrease in future for all return periods.  相似文献   

18.
Abstract

Seasonal design floods which consider information on seasonal variation are very important for reservoir operation and management. The seasonal design flood method currently used in China is based on seasonal maximum (SM) samples and assumes that the seasonal design frequency is equal to the annual design frequency. Since the return period associated with annual maximum floods is taken as the standard in China, the current seasonal design flood cannot satisfy flood prevention standards. A new seasonal design flood method, which considers dates of flood occurrence and magnitudes of the peaks (runoff), was proposed and established based on copula function. The mixed von Mises distribution was selected as marginal distribution of flood occurrence dates. The Pearson Type III and exponential distributions were selected as the marginal distribution of flood magnitude for annual maximum flood series and peak-over-threshold samples, respectively. The proposed method was applied at the Geheyan Reservoir, China, and then compared with the currently used seasonal design flood methods. The case study results show that the proposed method can satisfy the flood prevention standard, and provide more information about the flood occurrence probabilities in each sub-season. The results of economic analysis show that the proposed design flood method can enhance the floodwater utilization rate and give economic benefits without lowering the annual flood protection standard.

Citation Chen, L., Guo, S. L., Yan, B. W., Liu, P. & Fang, B. (2010) A new seasonal design flood method based on bivariate joint distribution of flood magnitude and date of occurrence. Hydrol. Sci. J. 55(8), 1264–1280.  相似文献   

19.
Statistical data over the past 30 years show that the cumulative sum of losses caused by floods S(t) has been increasing with time approximately as t1·3, i.e. faster than the linear growth expected for a stationary process. (Losses are evaluated by the number of homeless caused by floods, since these data are the most systematically reported.) At the same time, the factors determining flood losses (the rate of floods and single loss distribution) appear to be stationary over the period of observation. An explanation of this paradox is suggested based on a heavy-tail distribution function of losses, i.e. a distribution function with infinite expectation value. The proposed stochastic model predicts a faster than linear growth of the cumulative losses until some limiting time, which corresponds to the recurrence period of the maximal possible single loss. Similar pseudo-non-stationary effects can be observed for other types of catastrophes and hydrological characteristics with heavy-tail distributions © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
Many civil infrastructures are located near the confluence of two streams, where they may be subject to inundation by high flows from either stream or both. These infrastructures, such as highway bridges, are designed to meet specified performance objectives for floods of a specified return period (e.g. the 100 year flood). Because the flooding of structures on one stream can be affected by high flows on the other stream, it is important to know the relationship between the coincident exceedence probabilities on the confluent stream pair in many hydrological engineering practices. Currently, the National Flood Frequency Program (NFF), which was developed by the US Geological Survey (USGS) and based on regional analysis, is probably the most popular model for ungauged site flood estimation and could be employed to estimate flood probabilities at the confluence points. The need for improved infrastructure design at such sites has motivated a renewed interest in the development of more rigorous joint probability distributions of the coincident flows. To accomplish this, a practical procedure is needed to determine the crucial bivariate distributions of design flows at stream confluences. In the past, the copula method provided a way to construct multivariate distribution functions. This paper aims to develop the Copula‐based Flood Frequency (COFF) method at the confluence points with any type of marginal distributions via the use of Archimedean copulas and dependent parameters. The practical implementation was assessed and tested against the standard NFF approach by a case study in Iowa's Des Moines River. Monte Carlo simulations proved the success of the generalized copula‐based joint distribution algorithm. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号