首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Permafrost degradation in the peat‐rich southern fringe of the discontinuous permafrost zone is catalysing substantial changes to land cover with expansion of permafrost‐free wetlands (bogs and fens) and shrinkage of forest‐dominated permafrost peat plateaux. Predicting discharge from headwater basins in this region depends upon understanding and numerically representing the interactions between storage and discharge within and between the major land cover types and how these interactions are changing. To better understand the implications of advanced permafrost thaw‐induced land cover change on wetland discharge, with all landscape features capable of contributing to drainage networks, the hydrological behaviour of a channel fen sub‐basin in the headwaters of Scotty Creek, Northwest Territories, Canada, dominated by peat plateau–bog complexes, was modelled using the Cold Regions Hydrological Modelling platform for the period of 2009 to 2015. The model construction was based on field water balance observations, and performance was deemed adequate when evaluated against measured water balance components. A sensitivity analysis was conducted to assess the impact of progressive permafrost loss on discharge from the sub‐basin, in which all units of the sub‐basin have the potential to contribute to the drainage network, by incrementally reducing the ratio of wetland to plateau in the modelled sub‐basin. Simulated reductions in permafrost extent decreased total annual discharge from the channel fen by 2.5% for every 10% decrease in permafrost area due to increased surface storage capacity, reduced run‐off efficiency, and increased landscape evapotranspiration. Runoff ratios for the fen hydrological response unit dropped from 0.54 to 0.48 after the simulated 50% permafrost area loss with a substantial reduction of 0.47 to 0.31 during the snowmelt season. The reduction in peat plateau area resulted in decreased seasonal variability in discharge due to changes in the flow path routing, with amplified low flows associated with small increases in subsurface discharge, and decreased peak discharge with large reductions in surface run‐off.  相似文献   

2.
Tritium concentrations were measured in a survey of 24 lakes, 15 wetlands, and 133 groundwaters in the oil sands region of northeastern Alberta and compared with both recent precipitation and precipitation sampled during the 1960s tritium peak caused by atmospheric thermonuclear weapons testing. Water samples from lakes included a group of 14 thaw lakes that had higher runoff attributed to melting of permafrost in peat plateaus within their watersheds. While tritium in all lakes was found to be intermediate between recent and 1960s concentrations, the thaw lakes were found to be significantly enriched in tritium compared with other lakes, as were unfrozen wetlands characterized by a thick sequence of low‐hydraulic conductivity peat. The results provide further evidence of different water sources to the thaw lakes and may indicate that melting of modern permafrost in part formed since the 1950s is occurring in these systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Intensive seismic exploration in the Northwest Territories began in the late 1960s. Since that time, the legacy of seismic surveys – i.e. straight lines cutting through boreal forest and tundra – has remained visible throughout northern Canada and Alaska. The removal of trees and compaction of the ground surface alter the thermophysical properties of the active (i.e. seasonally thawed) layer to such an extent that the underlying permafrost seriously degrades or even disappears completely. Such a transformation along linear corridors that cut indiscriminately across different terrain types with contrasting hydrological functions has potentially serious implications to the redistribution of water and energy within and among landscape units with feedbacks to permafrost thaw, land cover change and run‐off generation. This paper characterizes the flow and storage of water and energy along a seismic cut line in the high boreal zone of discontinuous permafrost in order to improve the understanding of these processes, their interactions and hydrological implications. As such, this paper lays a conceptual foundation for the development of numerical models needed to predict the hydrological and thermal impact of seismic lines in this sensitive region. We used ground‐penetrating radar and multi‐year ground temperatures and water levels along a seismic line to estimate the degree of permafrost degradation below it. The seismic line studied extends from a permafrost‐free wetland (flat bog), over a permafrost body (peat plateau) and into another permafrost‐free wetland (channel fen). It was found that once thaw had lowered the permafrost table below the ground surface elevation of the flat bog and channel fen, the seismic line forms a hydrological connection between them. It was also shown that during the permafrost thaw process, seismic lines develop a perennially thawed layer (talik) between the overlying active layer and underlying permafrost and that the talik conveys water as a conduit throughout the year. The implications of such drainage through seismic lines and networks on basin drainage in peatland‐dominated regions with discontinuous permafrost are also discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
As a result of global warming induced permafrost degradation in recent decades, thermokarst lakes in the Qinghai–Tibet plateau (QTP) have been regulating local hydrological and ecological processes. Simulations with coupled moisture–heat numerical models in the Beiluhe basin (located in the hinterland of permafrost regions on the QTP) have provided insights into the interaction between groundwater flow and the freeze–thaw process. A total of 30 modified SUTRA scenarios were established to examine the effects of hydrodynamic forces, permeability, and climate on thermokarst lakes. The results indicate that the hydrodynamic condition variables regulate the permafrost degradation around the lakes. In case groundwater recharges to the lake, a low–temperature groundwater flow stimulates the expansion of the surrounding thawing regions through thermal convection. The thawing rate of the permafrost underlying the lake intensifies when groundwater is discharged from the lake. Under different permeability conditions, spatiotemporal variations in the active layer thickness significantly influence the occurrence of an open talik at the lake bottom. A warmer and wetter climate will inevitably lead to a sharp decrease in the upper limit of the surrounding permafrost, with a continual decrease in the duration of open talik events. Overall, our results underscore that comprehensive consideration of the relevant hydrologic processes is critical for improving the understanding of environmental and ecological changes in cold environments.  相似文献   

5.
This study used a two‐dimensional steady‐state finite‐element groundwater flow model to simulate groundwater flow in two Newfoundland blanket peat complexes and to examine flow system sensitivity to changes in water table recharge and aquifer properties. The modelling results were examined within the context of peat‐forming processes in the two complexes. Modelled flow compared favourably with observed flow. The sensitivity analyses suggested that more highly decomposed bog peat along bog margins probably has/had a positive impact on net peat accumulation within bog interiors. Peat with lower hydraulic conductivity along bog margins effectively impedes lateral drainage, localizes water table drawdown to extreme bog margins, and elevates water tables along bog interiors. Peat formation and elevated water tables in adjacent poor fens/laggs currently rely on placic and ortstein horizons impeding vertical drainage and water flow inputs from adjacent bogs. Modest reductions in atmospheric recharge were found to govern bog‐flow‐system geometries in a way that would adversely affect paludification processes in adjacent fens/laggs. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
The fluorescent properties of dissolved organic matter (DOM) enable comparisons of humic‐like (H‐L) and fulvic‐like (F‐L) fluorescence intensities with dissolved organic carbon (DOC) in aquatic systems. The fluorescence‐DOC relationship differed in gradient, i.e. the fluorescence per gram of carbon, and in the strength of the correlation coefficient. We compare the fluorescence intensity of the F‐L and H‐L fractions and DOC of freshwater DOM in north Shropshire, England, featuring a river, wetland, spring, pond and sewage DOM sources. Correlations between fluorescence and DOC varied between sample sites. Wetland water samples for the F‐L peak gave the best correlation, r = 0·756; the lowest correlation was from final treated sewage effluent, r = 0·167. The relationship between fluorescence and DOC of commercially available International Humic Substances Society standards were also examined and they generally showed a lower fluorescence per gram of carbon for the F‐L peak than the natural samples, whereas peat wetland DOM gave a greater fluorescence per gram of carbon than river DOM. Here, we propose the strength of the fluorescence–DOC correlation to be a useful tool when discriminating sources of DOM in fresh water. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Both the inflow and outflow of supra‐permafrost water to lakes play important roles in the hydrologic process of thermokarst lakes. The accompanying thermal effects on the adjacent permafrost are required for assessing their influences on the development of thermokarst lakes. For these purposes, the lake water level, temperature dynamics, and supra‐permafrost water flow of a lake were monitored on the Qinghai‐Tibet Plateau. In addition, the spatial and temporal variation of the active layer thickness and permafrost distribution around the lake were investigated by combining ground penetrating radar, electrical resistivity tomography, and borehole temperature monitoring. The results revealed that the yearly unfrozen supra‐permafrost water flow around the lake lasted approximately 5 months. The temperature and water level measurements during this period indicate that the lake water was recharged by relatively colder supra‐permafrost water from the north‐western lakeshore and was discharged through the eastern lakeshore. This process, accompanied by heat exchange with the underlying permafrost, might cause a directional difference of the active layer thickness and permafrost characteristics around the lake. Specifically, the active layer thickness variation was minimal, and the ice‐rich permafrost was found adjacent to the lakeshore along the recharge groundwater pathways, whereas a deeper active layer and ice‐poor permafrost were observed close to the lakeshore from which the warm lake water was discharged. This study suggests that the lateral flow of warm lake water can be a major driver for the rapid expansion of thermokarst lakes and provides clues for evaluating the relationships between the thermokarst expansion process and climate warming.  相似文献   

8.
Investigations on the northern Seward Peninsula in Alaska identified zones of recent (<50 years) permafrost collapse that led to the formation of floating vegetation mats along thermokarst lake margins. The occurrence of floating vegetation mat features indicates rapid degradation of near‐surface permafrost and lake expansion. This paper reports on the recent expansion of these collapse features and their geometry is determined using geophysical and remote sensing measurements. The vegetation mats were observed to have an average thickness of 0.57 m and petrophysical modeling indicated that gas content of 1.5–5% enabled floatation above the lake surface. Furthermore, geophysical investigation provides evidence that the mats form by thaw and subsidence of the underlying permafrost rather than terrestrialization. The temperature of the water below a vegetation mat was observed to remain above freezing late in the winter. Analysis of satellite and aerial imagery indicates that these features have expanded at maximum rates of 1–2 m yr‐1 over a 56 year period. Including the spatial coverage of floating ‘thermokarst mats’ increases estimates of lake area by as much as 4% in some lakes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Coastal peatlands represent an interface between marine and terrestrial ecosystems; their hydrology is affected by salt and fresh water inflow alike. Previous studies on bog peat have shown that pore water salinity can have an impact on the saturated hydraulic conductivity (Ks) of peat because of chemical pore dilation effects. In this study, we aimed at quantifying the impact of higher salinities (up to 3.5% NaCl) on Ks of fen peat. Two experiments employing a constant‐head upward‐flow permeameter and differing in measurement and salinity change duration were conducted. Additionally, a third experiment to determine the impact of water salinity on the release of dissolved organic carbon (DOC) of the studied peat type was carried out. The results show a decrease of Ks with time, which does not depend on the water salinity but is differently shaped for different peat types. We assume pore clogging due to a conglomerate of physical, chemical, and biological processes, which rather depend on water movement rate and time than on water salinity. However, an increased water salinity did increase the DOC release. We conclude that salinity‐dependent behaviour of Ks is a function of peat chemistry and that for some peat types, salinity may only affect the DOC release without having a pronounced impact on water flow.  相似文献   

10.
11.
The growth of segregated ice lenses in frost susceptible sediments in the discontinuous permafrost zone is the dominant mechanism for the formation of permafrost mounds, such as palsas, lithalsas and permafrost plateaus. Thawing of these mounds creates thermokarst lakes, which are particularly abundant in Nunavik, east of the Hudson Bay area. The inception of the permafrost in mounds and their growth are regulated by climate conditions, by local Quaternary geology and by environmental factors such as topography, vegetation, snow cover and surface humidity. Variable sizes and morphology of the permafrost mounds can be attributed to local factors that affect the ice segregation process, particularly the supply of water needed for ice‐lens growth and grain‐size composition of the soil into which aggradation takes place. Computer image analysis of CT scans on high quality cores obtained from permafrost mounds and plateaus of various shapes reveal that the ice layer sequences and permafrost internal structure vary with landform types. A relationship therefore exists between different morphological type within a family of landforms and their microscale internal structure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
While the role of groundwater in flushing of solutes has long been recognized, few studies have explicitly studied the within‐event changes in groundwater chemistry. We compared the changes in groundwater chemistry during storm events for a wetland and hillslope position in a small (1·5 ha) glaciated, forested catchment in western New York. Flushing responses for dissolved organic carbon (DOC) and nitrogen (DON), nitrate (NO3) and sulfate (SO4) in wetland and hillslope groundwaters were also compared against the corresponding responses in stream water. Eight storm events with varying intensity, amount, and antecedent moisture conditions were evaluated. Solute flushing patterns for wetland and hillslope groundwaters differed dramatically. While DOC concentrations in wetland groundwater followed a dilution trend, corresponding values for hillslope groundwater showed a slight increase. Concentrations for NO3 in wetland groundwater were below detection limits, but hillslope groundwaters displayed high NO3 concentrations with a pronounced increase during storm events. Flushing responses at all positions were also influenced by the size of the event and the time between events. We attributed the differences in flushing to the differences in hydrologic flow paths and biogeochemical conditions. Flushing of the wetland did appear to influence storm‐event stream chemistry but the same could not be said for hillslope groundwaters. This suggests that while a variety of flushing responses may be observed in a catchment, only a subset of these responses affect the discharge chemistry at the catchment outlet. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The change of frozen soil environment is evaluated by permafrost thermal stability, thermal thaw sensibility and surface landscape stability and the quantitatively evaluating model of frozen soil environment is proposed in this paper. The evaluating model of frozen soil environment is calculated by 28 ground temperature measurements along Qinghai-Xizang Highway. The relationships of thermal thaw sensibility and freezing and thawing processes and seasonally thawing depth, thermal stability and permafrost table temperature, mean annual ground temperature and seasonally thawing depth, and surface landscape stability and freezing and thawing hazards and their forming possibility are analyzed. The results show that thermal stability, thermal thaw sensibility and surface landscape stability can be used to evaluate and predict the change of frozen soil environment under human engineering action.  相似文献   

14.
Wetlands are known for their water filtration (or purification) function. Although different wetland types differ in their filtration capacity, they are usually aggregated together in economic valuation studies. Here, we explicitly separate the valuation of the suspended sediment and phosphorus (P) filtration services of the four major wetland types—bogs, fens, marshes and swamps—found in southern Ontario, Canada. The areal extents of the four wetland types are derived from the Canadian Wetland Inventory (CWI) progress map, while the sediment accretion rate is used as the key variable regulating the suspended sediment and P filtration functions. Based on available literature data, we assess the relationship of the sediment accretion rate to wetland size. Because only weak positive correlations are found, we assign a mean (average) sediment accretion rate to each wetland type. The sediment accretion rates are combined with mean soil P concentrations to estimate Pretention rates by the wetlands. The replacement cost method is then applied to valuate the sediment and P filtration services. The unit values for both sediment and P retention decrease in the order: marshes > bogs ≈ swamps > fens. The total value of sediment plus phosphorus removal by all wetlands in southern Ontario amounts to $4.2 ± 2.9 billion per year, of which about 80% is accounted for by swamps. We further assess the costs of different options to offset the additional P loading generated in a hypothetical scenario whereby all wetlands are converted to agriculture. The results demonstrate that replacing the P filtration function of existing wetlands with conventional land management and water treatment solutions is not cost-effective, hence reinforcing the importance of protecting existing wetlands.  相似文献   

15.
Zeyong Gao  Fujun Niu  Zhanju Lin 《水文研究》2020,34(26):5659-5673
Thermokarst lakes play a key role in the hydrological and biogeochemical cycles of permafrost regions. Current knowledge regarding the changes caused by permafrost degradation to the hydrochemistry of lakes in the Qinghai-Tibet Plateau (QTP) is limited. To address this gap, a systematic investigation of thermokarst lake water, suprapermafrost water, ground ice, and precipitation was conducted in the hinterland of the QTP. The thermokarst lake water in the QTP was identified to be of the Na-HCO3-Cl type. The mean concentrations of HCO3 and Na+ were 281.8 mg L−1 (146.0–546.2 mg L−1) and 73.3 mg L−1 (9.2–345.8 mg L−1), respectively. The concentrations of Li+, NH4+, K+, F, NO2, and NO3 were relatively low. Freeze-out fractionation concentrated the dissolved solids within the lake water during winter, which was deeply deepened on lake depth and lake ice thickness. Owing to solute enrichment, the ground ice was characterized by high salinity. Conversely, repeated replenishment via precipitation led to lower solute concentrations in the ground ice near the permafrost table compared to that within the permafrost. Although lower solute concentration existed in precipitation, the soil leaching and saline ground ice melting processes enhanced the solute load in suprapermafrost water, which is considered an important water and solute resource in thermokarst lakes. The influencing mechanism of permafrost degradation on thermokarst lake hydrochemistry is presumably linked to: (1) the liberation of soluble materials sequestered in ground ice; (2) the increase of solutes in suprapermafrost water and soil pore water; and (3) the changes in lake morphometry. These results have major implications on the understanding of the effects of ground ice melting on ecosystem functions, biogeochemical processes, and energy balance in a rapidly changing climate.  相似文献   

16.
The Malloryville Wetland Complex, a small kettle-hole peatland, contains a diversity of peatland types. The wetland has a ‘rich’ side that contains wetland vegetation associated with solute-rich, near-neutral pH (minerotrophic) water, and a ‘poor’ side containing vegetation that grows in solute-poor and acidic (ombrotrophic) water. Vertical head gradients at piezometer clusters located in the rich side clearly show that groundwater is moving upwards towards the land surface, consistent with the vegetation types and surface water quality. In contrast, vertical head gradients also show that groundwater is moving upward in the poor side even though the vegetation and surface water chemistry are not minerotrophic. An incipient raised bog in the center of the poor side is the only site where groundwater moves consistently downward.

A peat core collected at the bog center shows that the bog site was initially covered by minerotrophic vegetation, typically found in groundwater discharge zones, which was later replaced by ombrotrophic bog vegetation. Theoretical computer simulation experiments of the bog hydrogeologic setting through time suggest that the direction of vertical groundwater flow at the bog site permanently changed from up to down when a water table mound developed under a convex-shaped fen peat mound that probably formed because of differential peat accumulation. Ombrotrophic conditions and bog vegetation probably began when the fen water table mound grew sufficiently large enough to divert the upward movement of regional groundwater. The transition from rich to poor environments probably occurred when the wetland water table was substantially below the elevation of the surrounding regional water table.  相似文献   


17.
Climate warming and human disturbance in north‐western Canada have been accompanied by degradation of permafrost, which introduces considerable uncertainty to the future availability of northern freshwater resources. This study demonstrates the rate and spatial pattern of permafrost loss in a region that typifies the southern boundary of permafrost. Remote‐sensing analysis of a 1·0 km2 area indicates that permafrost occupied 0·70 km2 in 1947 and decreased with time to 0·43 km2 by 2008. Ground‐based measurements demonstrate the importance of horizontal heat flows in thawing discontinuous permafrost, and show that such thaw produces dramatic land‐cover changes that can alter basin runoff production in this region. A major challenge to northern water resources management in the twenty‐first century therefore lies in predicting stream flows dynamically in the context of widely occurring permafrost thaw. The need for appropriate water resource planning, mitigation, and adaptation strategies is explained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Large peatland complexes dominate the landscape of the James Bay Lowland in subarctic Ontario, Canada. However, there is not a thorough understanding of the hydrological processes occurring in these important systems, particularly how ladder fens connect large domed bogs to the aquatic ecosystems that drain the peatland complex. Ladder fens consist of a pool‐rib topography where flow downgradient is controlled by the peat ribs. Within the ribs, low‐lying preferential flow paths typically enhance the transmission of water, whereas the elevated ridge microforms impede water flow to downgradient aquatic ecosystems. To assess the hydrological connectivity, we study the role of the water table, peat transmissivity, and microtopography of a small ladder fen for 3 summers (2013–2015) in the James Bay Lowland. The system was manipulated with a sustained hydrological forcing (water addition) to the upslope boundary of the fen during 2014 (38 m3/day) and 2015 (30 m3/day). There was an exponential increase in transmissivity towards the peat surface due to extremely high‐hydraulic conductivities within the upper few centimeters of the peat deposit. At the maximum water table, the saturated hydraulic conductivity of the 0.1 m layer of peat below the water table varied depending on peat microtopography (preferential flow paths = 42–598 m/day and ridges = 16–52 m/day), resulting in high‐hydrological connectivity periods. Furthermore, during 2015, there was an abnormally large amount of precipitation (300 mm vs. long‐term average ~ 100 mm) that resulted in complete surface water connectivity of the site. This caused rapid movement of water from the head of system to the outlet (~15 hr) and runoff ratios >1, compared to low‐water table periods (runoff ratio ~ 0.05). This study highlights the profound importance of the transmissivity–water table feedback mechanism in ladder fens, on controlling the water retention and drainage of large peatland complexes.  相似文献   

19.
Large raised bogs and patterned fens cover 56% of the landscape in the Glacial Lake Agassiz region of northern Minnesota (USA). Organic acids supply most of the acidity in the surface water of the bogs, but groundwater upwelling from the underlying glacial deposits neutralizes these organic acids within deep peat. Substantial concentrations of organic acids also occur in the surface waters of fens mixed with variable amounts of inorganic solutes contributed by groundwater discharge. We used a triprotic analog model to determine the extent to which organic acids in fen and bog waters behave as strong or weak acids. The modeling approach optimized charge balance by calibrating estimates of mole site density in the DOC (dissolved organic carbon) of surface and pore waters with estimates of triprotic acid dissociation constants. Before the calibration process, all of the bog waters and 76% of the fen waters had more than +20% imbalance in charge balance. After calibration, more than 75% of all waters were electrochemically balanced within 20%. In the best calibration, the mole site denisty of bog DOC was estimated as 0.05 mmol/mmol C., approximately six times smaller than that estimated for fen DOC or the DOC in the fen deeper fen peats that underlie all bog landforms. The three modeled de-protonation constants were; pKa1=3.0, pKa2=4.5 and pKa3=7.0 for the bog DOC, and; pKa1=5.2, pKa2= 6.5 and pKa3=7.0 for the fen DOC. Bog DOC, behaves as a strong acid despite its small mole site density. The DOC in bog runoff can therefore theoretically acidify the surface waters in adjacent fens wherever these waters do not receive sufficient buffering alkalinity from active groundwater seepage.  相似文献   

20.
Wetlands often form the transition zone between upland soils and watershed streams, however, stream–wetland interactions and hydrobiogeochemical processes are poorly understood. We measured changes in stream nitrogen (N) through one riparian wetland and one beaver meadow in the Archer Creek watershed in the Adirondack Mountains of New York State, USA from 1 March to 31 July 1996. In the riparian wetland we also measured changes in groundwater N. Groundwater N changed significantly from tension lysimeters at the edge of the peatland to piezometer nests within the peatland. Mean N concentrations at the peatland perimeter were 1·5, 0·5 and 18·6 µmol L?1 for NH4+, NO3? and DON (dissolved organic nitrogen), respectively, whereas peatland groundwater N concentration was 56·9, 1·5 and 31·6 µmol L?1 for NH4+, NO3? and DON, respectively. The mean concentrations of stream water N species at the inlet to the wetlands were 1·5, 10·1 and 16·9 µmol L?1 for NH4+, NO3? and DON, respectively and 1·6, 28·1 and 8·4 µmol L?1 at the wetland outlet. Although groundwater total dissolved N (TDN) concentrations changed more than stream water TDN through the wetlands, hydrological cross‐sections for the peatland showed that wetland groundwater contributed minimally to stream flow during the study period. Therefore, surface water N chemistry was affected more by in‐stream N transformations than by groundwater N transformations because the in‐stream changes, although small, affected a much greater volume of water. Stream water N input–output budgets indicated that the riparian peatland retained 0·16 mol N ha?1 day?1 of total dissolved N and the beaver meadow retained 0·26 mol N ha?1 day?1 during the study period. Nitrate dominated surface water TDN flux from the wetlands during the spring whereas DON dominated during the summer. This study demonstrates that although groundwater N changed significantly in the riparian peatland, those changes were not reflected in the stream. Consequently, although in‐stream changes of N concentrations were less marked than those in groundwater, they had a greater effect on stream water chemistry—because wetland groundwater contributed minimally to stream flow. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号