首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
In this paper, we discuss the local discontinuous Galerkin (LDG) method applied to elliptic flow problems and give details on its implementation, focusing specifically on the case of piecewise linear approximating functions. The LDG method is one a family of discontinuous Galerkin (DG) methods proposed for diffusion models. These DG methods allow for very general hp finite element meshes, and produce locally conservative fluxes which can be used in coupling flow with transport. The drawback to DG methods, when compared to their continuous counterparts, is the number of degrees of freedom required to compute the solution. This motivates a coupled approach, discussed herein, where the solution is allowed to be continuous or discontinuous on a node-by-node basis. This coupled approximation is locally conservative in regions where the numerical solution is discontinuous. Numerical results for fully discontinuous, continuous and coupled discontinuous/continuous solutions are given, where we compare solution accuracy, matrix condition numbers and mass balance errors for the various approaches.  相似文献   

2.
A discontinuous Galerkin (DG) finite element method is described for the two-dimensional, depth-integrated shallow water equations (SWEs). This method is based on formulating the SWEs as a system of conservation laws, or advection–diffusion equations. A weak formulation is obtained by integrating the equations over a single element, and approximating the unknowns by piecewise, possibly discontinuous, polynomials. Because of its local nature, the DG method easily allows for varying the polynomial order of approximation. It is also “locally conservative”, and incorporates upwinded numerical fluxes for modeling problems with high flow gradients. Numerical results are presented for several test cases, including supercritical flow, river inflow and standard tidal flow in complex domains, and a contaminant transport scenario where we have coupled the shallow water flow equations with a transport equation for a chemical species.  相似文献   

3.
This paper presents and compares several numerical solutions of the coupled system of Navier–Stokes and Darcy equations. The schemes are based on combinations of the finite element method and the discontinuous Galerkin method. Accuracy and robustness of the methods are investigated for heterogeneous porous media. The importance of local mass conservation for filtration problems is also discussed.  相似文献   

4.
廉西猛  张睿璇 《地球物理学报》2013,56(10):3507-3513
近年来,随着地震波数值模拟对计算精度和效率的要求越来越高,间断有限元方法开始受到越来越多的关注.本文中,针对具有吸收边界条件的二维地震声波波动方程,作者提出了一种基于局部间断有限元方法的数值模拟算法.该算法在空间上使用局部间断有限元方法进行离散,在时间上采用了显式蛙跳格式.在这种时空离散的组合方式下,每个时间步上,此算法在空间剖分的每个单元上的求解计算是相互独立的,因而具有极高的并行性.通过数值算例,我们将该算法与连续有限元方法进行了比较.结果表明,本算法不仅具有对起伏构造的良好适应性,而且在计算效率和计算精度等方面,都具有优越性.  相似文献   

5.
An important part in the numerical simulation of tsunami and storm surge events is the accurate modeling of flooding and the appearance of dry areas when the water recedes. This paper proposes a new algorithm to model inundation events with piecewise linear Runge–Kutta discontinuous Galerkin approximations applied to the shallow water equations. This study is restricted to the one-dimensional case and shows a detailed analysis and the corresponding numerical treatment of the inundation problem.The main feature is a velocity based “limiting” of the momentum distribution in each cell, which prevents instabilities in case of wetting or drying situations. Additional limiting of the fluid depth ensures its positivity while preserving local mass conservation. A special flux modification in cells located at the wet/dry interface leads to a well-balanced method, which maintains the steady state at rest. The discontinuous Galerkin scheme is formulated in a nodal form using a Lagrange basis. The proposed wetting and drying treatment is verified with several numerical simulations. These test cases demonstrate the well-balancing property of the method and its stability in case of rapid transition of the wet/dry interface. We also verify the conservation of mass and investigate the convergence characteristics of the scheme.  相似文献   

6.
The equation of transient groundwater motion is founded on the principle of mass conservation and can be mathematically described by the diffusion equation. Recently, powerful integral formulations have been developed for numerically solving the diffusion equation under complex conditions. In the literature, it is customary to formulate the integral equations by integrating point differential equations. Instead, in this paper, we shall employ a direct method of formulation, starting from the concepts of set and measure, the notion of partitions and the definition of set-averages.When the direct approach is applied to formulate the well-known finite element (FEM) equations, it is seen that the ‘Galerkin’ weighting function, which is mathematically treated as an artifice for weighting residuals, is but an appropriate spatial partition function. The logical framework of the direct approach is then applied to study the properties of ‘lumped’ and ‘consistent’ matrices arising in the use of the FEM. The lumped matrix, stemming naturally from the direct approach, seeks to conserve mass locally as well as globally, while the consistent matrix, which results only when the differential equation is integrated in a specific fashion, attempts only to preserve global mass balance.It is concluded that the direct approach is simple and complete and, in so far as the integral formulation is concerned, there is little to be gained in starting with the differential equation. Further, in formulating integral equations, it is common practice to evaluate only the time-dependent changes in the mass content of the system and ignore the evaluation of the mass content of the system at any given instant of time. In order to be complete in itself, a true integral approach should evaluate both the time-dependent changes in the mass content of the system as well as the instantaneous mass content at any given time.  相似文献   

7.
We extend the finite-volume Eulerian-Lagrangian localized adjoint method (FVELLAM) for solution of the advection-dispersion equation to two dimensions. The method can conserve mass globally and is not limited by restrictions on the size of the grid Peclet or Courant number. Therefore, it is well suited for solution of advection-dominated ground-water solute transport problems. In test problem comparisons with standard finite differences, FVELLAM is able to attain accurate solutions on much coarser space and time grids. On fine grids, the accuracy of the two methods is comparable. A critical aspect of FVELLAM (and all other ELLAMs) is evaluation of the mass storage integral from the preceding time level. In FVELLAM this may be accomplished with either a forward or backtracking approach. The forward tracking approach conserves mass globally and is the preferred approach. The backtracking approach is less computationally intensive, but not globally mass conservative. Boundary terms are systematically represented as integrals in space and time which are evaluated by a common integration scheme in conjunction with forward tracking through time. Unlike the one-dimensional case, local mass conservation cannot be guaranteed, so slight oscillations in concentration can develop, particularly in the vicinity of inflow or outflow boundaries.  相似文献   

8.
The Galerkin finite element method coupled with the Crank-Nicolson time advance procedure is often used as a numerical analog for unsaturated soil-moisture transport problems. The Crank-Nicolson procedure leads to numerical mass balance problems which results in instability. A new temporal and spatial integration procedure is proposed that exactly satisfies mass balance for the approximating function used. This is accomplished by fitting polynomials continuously throughout the time and space domain and integrating the governing differential equations. To reduce computational effort, the resulting higher order polynomials are reduced to quadratic and linear piece-wise continuous polynomial approximation functions analogous to the finite element approach. Results indicate a substantial improvement in accuracy over the combined Galerkin and Crank-Nicolson methods when comparing to simplified problems where analytical solutions are available.  相似文献   

9.
Multiphase flow in porous media is described by coupled nonlinear mass conservation laws. For immiscible Darcy flow of multiple fluid phases, whereby capillary effects are negligible, the transport equations in the presence of viscous and buoyancy forces are highly nonlinear and hyperbolic. Numerical simulation of multiphase flow processes in heterogeneous formations requires the development of discretization and solution schemes that are able to handle the complex nonlinear dynamics, especially of the saturation evolution, in a reliable and computationally efficient manner. In reservoir simulation practice, single-point upwinding of the flux across an interface between two control volumes (cells) is performed for each fluid phase, whereby the upstream direction is based on the gradient of the phase-potential (pressure plus gravity head). This upwinding scheme, which we refer to as Phase-Potential Upwinding (PPU), is combined with implicit (backward-Euler) time discretization to obtain a Fully Implicit Method (FIM). Even though FIM suffers from numerical dispersion effects, it is widely used in practice. This is because of its unconditional stability and because it yields conservative, monotone numerical solutions. However, FIM is not unconditionally convergent. The convergence difficulties are particularly pronounced when the different immiscible fluid phases switch between co-current and counter-current states as a function of time, or (Newton) iteration. Whether the multiphase flow across an interface (between two control-volumes) is co-current, or counter-current, depends on the local balance between the viscous and buoyancy forces, and how the balance evolves in time. The sensitivity of PPU to small changes in the (local) pressure distribution exacerbates the problem. The common strategy to deal with these difficulties is to cut the timestep and try again. Here, we propose a Hybrid-Upwinding (HU) scheme for the phase fluxes, then HU is combined with implicit time discretization to yield a fully implicit method. In the HU scheme, the phase flux is divided into two parts based on the driving force. The viscous-driven and buoyancy-driven phase fluxes are upwinded differently. Specifically, the viscous flux, which is always co-current, is upwinded based on the direction of the total-velocity. The buoyancy-driven flux across an interface is always counter-current and is upwinded such that the heavier fluid goes downward and the lighter fluid goes upward. We analyze the properties of the Implicit Hybrid Upwinding (IHU) scheme. It is shown that IHU is locally conservative and produces monotone, physically-consistent numerical solutions. The IHU solutions show numerical diffusion levels that are slightly higher than those for standard FIM (i.e., implicit PPU). The primary advantage of the IHU scheme is that the numerical overall-flux of a fluid phase remains continuous and differentiable as the flow regime changes between co-current and counter-current conditions. This is in contrast to the standard phase-potential upwinding scheme, in which the overall fractional-flow (flux) function is non-differentiable across the boundary between co-current and counter-current flows.  相似文献   

10.
The discontinuous spectral Galerkin method uses a finite-element discretization of the groundwater flow domain with basis functions of arbitrary order in each element. The independent choice of the basis functions in each element permits discontinuities in transmissivity in the flow domain. This formulation is shown to be of high order accuracy and particularly suitable for accurately calculating the flow field in porous media. Simulations are presented in terms of streamlines in a bidimensional aquifer, and compared with the solution calculated with a standard finite-element method and a mixed finite-element method. Numerical simulations show that the discontinuous spectral Galerkin approximation is more efficient than the standard finite-element method (in computing fluxes and streamlines/pathlines) for a given accuracy, and it is more accurate on a given grid. On the other hand the mixed finite-element method ensures the continuity of the fluxes at the cell boundaries and it is particular efficient in representing complicated flow fields with few mesh points. Simulations show that the mixed finite-element method is superior to the discontinuous spectral Galerkin method producing accurate streamlines even if few computational nodes are used. The application of the discontinuous Galerkin method is thus of interest in groundwater problems only when high order and extremely accurate solutions are needed.  相似文献   

11.
The nodal domain integration method is used to develop a numerical model of the linear diffusion equation. The nodal domain integration approach is shown to represent an infinity of finite element mass matrix lumping schemes including the Galerkin and subdomain integration versions of the weighted residual method and an integrated finite difference method. Neumann, Dirichlet and mixed boundary conditions are accommodated analogous to the Galerkin finite element method. In order to reduce the overall integrated approximation relative error, a mass matrix lumping formulation is developed which is based on the Crank-Nicolson time advancement approximation. The optimum mass lumping factors are found to be strongly related to the model timestep size.  相似文献   

12.
The two-dimensional implementation of the analytic element method (AEM) is commonly used to simulate steady-state saturated groundwater flow phenomena at regional and local scales. However, unlike alternative groundwater flow simulation methods, AEM results are not ordinarily used as the basis for simulation of reactive solute transport. The use of AEM-simulated flow fields is impeded by the discrepancy between a continuous representation of flow and a typically discrete representation of transport, and requires translation of the flow solution to a discrete analog. This paper presents a variety of methods for analytically calculating conservative discrete water fluxes and integrated components of the dispersion tensor across cell interfaces. An Eulerian finite difference method based on these AEM-derived parameters is implemented for use in simulation of 2D (vertically averaged) solute transport. This implementation is first benchmarked against existing methods that use standard finite difference flow solutions, then used to investigate the effects of an inaccurate discrete water balance. It is shown that improper translation of AEM fluxes leads to significant water balance errors and inaccurate simulation of contaminant transport.  相似文献   

13.
The difficulties encountered in the use of standard, Galerkin-type, parabolic isoparametric elements for explicit transient analysis are illustrated. These are associated with the mass lumping procedure as well as with incoherencies in the nodal loads induced by the element local field. To overcome these difficulties, it is suggested that the parabolic element equations be formulated by a weighted residual method in which the weighting functions are the usual serendipity functions modified by an appropriate bubble-shape function. It is shown that such a formulation enables all the shortcomings of the Galerkin approach to be overcome. An example problem indicates the extent of improvement in results that can be obtained by the proposed method.  相似文献   

14.
Within the framework of the Godunov-type cell-centered finite volume (CCFV) scheme, this paper proposes a 2D well-balanced shallow water model for unstructured grids. In this model, the face-based van Albada limiting scheme is employed in conjunction with a directional correction to reconstruct second order spatial values at the midpoint of the considered face. The Harten, Lax and van Leer approximate Riemann solver with the Contact wave restored (HLLC) is applied to compute the fluxes of mass and momentum, while the splitting implicit method is utilized to solve the friction source terms. The novel aspects of the model include the new limited directional correction with which the new local extrema caused by the unlimited correction are prevented efficiently, the simplified non-negative water depth reconstruction used to get rid of numerical instabilities and in turn to preserve mass conservation at wet–dry interfaces and the novel slope source term treatment which suits complex unstructured grids well by transforming the slope source of a cell into fluxes at its faces. This model is able to preserve the C-property and mass conservation, to achieve good convergence to steady state, to capture discontinuous flows and to handle complex flows involving wetting and drying over uneven beds on unstructured grids with poor connectivity in an accurate, efficient and robust way. These capabilities are verified against analytical solutions, numerical results of alternative models and experimental and field data.  相似文献   

15.
This work examines variable density flow and corresponding solute transport in groundwater systems. Fluid dynamics of salty solutions with significant density variations are of increasing interest in many problems of subsurface hydrology. The mathematical model comprises a set of non-linear, coupled, partial differential equations to be solved for pressure/hydraulic head and mass fraction/concentration of the solute component. The governing equations and underlying assumptions are developed and discussed. The equation of solute mass conservation is formulated in terms of mass fraction and mass concentration. Different levels of the approximation of density variations in the mass balance equations are used for convection problems (e.g. the Boussinesq approximation and its extension, fully density approximation). The impact of these simplifications is studied by use of numerical modelling.Numerical models for nonlinear problems, such as density-driven convection, must be carefully verified in a particular series of tests. Standard benchmarks for proving variable density flow models are the Henry, Elder, and salt dome (HYDROCOIN level 1 case 5) problems. We studied these benchmarks using two finite element simulators - ROCKFLOW, which was developed at the Institute of Fluid Mechanics and Computer Applications in Civil Engineering and FEFLOW, which was developed at the Institute for Water Resources Planning and Systems Research Ltd. Although both simulators are based on the Galerkin finite element method, they differ in many approximation details such as temporal discretization (Crank-Nicolson vs predictor-corrector schemes), spatial discretization (triangular and quadrilateral elements), finite element basis functions (linear, bilinear, biquadratic), iteration schemes (Newton, Picard) and solvers (direct, iterative). The numerical analysis illustrates discretization effects and defects arising from the different levels of the density of approximation. We contribute new results for the salt dome problem, for which inconsistent findings exist in literature. Applications of the verified numerical models to more complex problems, such as thermohaline and three-dimensional convection systems, will be presented in the second part of this paper.  相似文献   

16.
Abstract

In order to calculate the transmissivity from the inverse problem corresponding to the groundwater flow in an isotropic horizontal aquifer, a numerical conservative approach is tested. The method deals with triangulation of the domain and applies the conservation of mass to elements of the mesh using the harmonic mean for internodal transmissivities. An optimal sweeping algorithm is used to evaluate nodal transmissivities from one element to another with a minimal relative error accumulation. The practical importance of the method is demonstrated through two synthetic examples representing those experienced in the field, then through application to a Moroccan aquifer. The computed hydraulic head is well fitted to the reference one, which confirms the validity of the identified transmissivity model.  相似文献   

17.
We develop two characteristic methods for the solution of the linear advection diffusion equations which use a second order Runge–Kutta approximation of the characteristics within the framework of the Eulerian–Lagrangian localized adjoint method. These methods naturally incorporate all three types of boundary conditions in their formulations, are fully mass conservative, and generate regularly structured systems which are symmetric and positive definite for most combinations of the boundary conditions. Extensive numerical experiments are presented which compare the performance of these two Runge–Kutta methods to many other well perceived and widely used methods which include many Galerkin methods and high resolution methods from fluid dynamics.  相似文献   

18.
In this paper, a computational model for the simulation of coupled hydromechanical and electrokinetic flow in fractured porous media is introduced. Particular emphasis is placed on modeling CO2 flow in a deformed, fractured geological formation and the associated electrokinetic flow. The governing field equations are derived based on the averaging theory and the double porosity model. They are solved numerically with a mixed discretization scheme, formulated on the basis of the standard Galerkin finite element method, the extended finite element method, the level-set method and the Petrov–Galerkin method. The standard Galerkin method is utilized to discretize the equilibrium and the diffusive dominant field equations, and the extended finite element method, together with the level-set method and the Petrov–Galerkin method, are utilized to discretize the advective dominant field equations. The level-set method is employed to trace the CO2 plume front, and the extended finite element method is employed to model the high gradient in the saturation field front. The proposed mixed discretization scheme leads to a convergent system, giving a stable and effectively mesh-independent model. The accuracy and computational efficiency of the proposed model is evaluated by verification and numerical examples. Effects of the fracture spacing on the CO2 flow and the streaming potential are discussed.  相似文献   

19.
渤海湾及其邻区地壳温度分布的有限单元模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
根据地下三百米深处的温度与居里面深度分布的资料,利用伽勒金有限元法配合未知边界流量的杂交法,计算了渤海湾邻近的地壳剖面的温度分布。结果表明:(1)莫氏面上的温度不是常数,最高处可达810℃;(2)大地震往往发生在温度与重力梯度带附近而温度较低密度较小的一侧;(3)本区地壳低速层的温度约为600℃,在该层以下,随着温度的增高,介质的弹性模量或粘滞系数显著减少,而泊松比反而增大,故地壳深部的剪应力减小,这说明大陆内部地震大多发生在低速层以上的原因  相似文献   

20.
The water‐level decline of the High Plains/Ogallala aquifer is one of the largest water management concerns in the United States. The economy and livelihood of people living in that vast region depend almost exclusively on water extracted from that aquifer. A debate about its future is ongoing, and questions remain as to how best to conserve the groundwater resource. Maintaining the aquifer will require reductions in pumping and irrigated hectarage and adopting additional conservation measures. Eventually, the agricultural system will have to be based dominantly on the renewable water resources of the region. In effect, this means a limited‐irrigation and/or dry‐farming regime. What Kansas is currently doing to further extend the life of the aquifer is presented here together with additional measures that could be taken. A key management approach to help sustain the aquifer in western Kansas is to divide the aquifer into subunits on which to base localized management decisions. Another recently adopted measure is the establishment of local enhanced management areas, which would allow locally agreed upon specific corrective controls in those areas. History has shown that incentive and voluntary plans alone have not been successful in halting water‐level declines. Thus, limits and timelines need to be set and checks must be in place to enforce strict administration of conservation measures. It is advocated that water laws be reformed and modernized so that “water rights” are constrained by the current availability of water and the preservation of the resource base for future generations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号