首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selecting three half orbits near the epicenter of Pu’er earthquake, we analyzed the Ne data recorded in their revis-ited orbits during a year before this earthquake, and extracted Ne precursors. The results show that: ① There are significant seasonal variations of ionospheric Ne in night time, which exhibit different shapes respectively in four seasons; ② There are three main shapes of Ne: single-peak, saddle-shaped and even-shaped, all of which may oc-cur in four seasons, but each season with its typical shape relatively; ③ Spatial images of Ne showed high values near the epicenter in 30 days before the earthquake, and there is a good correlation between anomaly and distribu-tion of earthquake in space and time, which reflects that these spatial anomalies were indeed concerned with the earthquake; ④There shows a certain similarity of the Ne curves among revisited orbits, which can provide back-ground information for distinguishing and identification of seismic anomaly.  相似文献   

2.
The data of ionospheric perturbations observed on DEMETER before the 2007 Pu’er earthquake are analyzed. The three-component plasma (ions, electrons and heavy ions) is studied in the fluid concept. The linear dispersion relation for ion-acoustic wave is found in the presence of heavy ions. The nonlinear dynamics is studied for arbitrary amplitude of the wave. The Sagdeev potential is calculated, which shows that solitary structure exists for Mach number within a range defined by the presence of heavy ions. ...  相似文献   

3.
Five mobile digital seismic stations were set up by the Earthquake Administration of Yunnan Province near the epicenter of the main shock after the Ning’er M6.4 earthquake on June 3, 2007. In this paper, the aftershock sequence of the Ning’er M6.4 earthquake is relocated by using the double difference earthquake location method. The data is from the 5 mobile digital seismic stations and the permanent Simao seismic station. The results show that the length of the aftershock sequence is 40km and the width is 30km, concentrated obviously at the lateral displacement area between the Pu’er fault and the NNE-trending faults, with the majority occurring on the Pu’er fault around the main shock. The depths of aftershocks are from 2km to 12km, and the predominant distribution is in the depth of 8~10km. The mean depth is 7.9km. The seismic fault dips to the northwest revealed from the profile parallel to this aftershock sequence, which is identical to the dip of the secondary fault of the NE-trending Menglian-Mojiang fault in the earthquake area. There are more earthquakes concentrated in the northwest segment than in the southeast segment, which is perhaps related to the underground medium and faults. The depth profile of the earthquake sequence shows that the relocated earthquakes are mainly located near the Pu’er fault and the seismic faults dip to the southwest, consistent with the dip of the west branch of the Pu’er fault. In all, the fault strike revealed by earthquake relocations matches well with the strike in the focal mechanism solutions. The main shock is in the top of the aftershock sequence and the aftershocks are symmetrically distributed, showing that faulting was complete in both the NE and SW directions.  相似文献   

4.
The Yajiang earthquake sequence in 2001, with the major events of Ms5.1 on Feb. 14 and of Ms6.0 on Feb.23, are significant events in the Sichuan region during the last 13 years. Eighty-eight earthquakes in the sequence with at least 5 distinct onset parameters for each recorded by the Sichuan Seismic Network in the period of Jan. 1 through June 30,2001 were chosen for this study. The events are relocated and the focal mechanism is derived from P-wave onsets for 13 events with relatively larger magnitudes. The focal depth of all earthquakes fall between a range of 2km to 16km, with dominant distribution between 9km to 11km. Theforeshocks, the Ms5.1 earthquake and the Ms6.0 earthquake and their aftershocks are all located close to the Zihe fault and the dominant epicentral distribution is in NW direction, identical to that of the fault. The fracture surface of the focal mechanism is determined in accordance to the mass transfer orientation in the recent earth deformation field in the Yajiang region. The P axes of the principal compressive stress in focal mechanism solutions of the 13 events show bigger vertical components, and the horizontal projection trending SE. The earthquakes are of left-lateral, strike-slip normal, and normal strike-slip types. The rupture surface of most earthquakes strike NW-SE, dipping SW. Based on the above information, we conclude that the Zihe fault that crosses the earthquake area, striking NW and dipping SW, is the seismogenic fault for the Yajiang earthquake sequence.  相似文献   

5.
Selecting three half orbits near the epicenter of Pu'er earthquake, we analyzed the Ne data recorded in their revis-ited orbits during a year before this earthquake, and extracted Ne precursors. The results show that: ① There are significant seasonal variations of ionospheric Ne in night time, which exhibit different shapes respectively in four seasons; ② There are three main shapes of Ne: single-peak, saddle-shaped and even-shaped, all of which may oc-cur in four seasons, but each season with its typical s...  相似文献   

6.
A M S 6.8 earthquake occurred on October 5,2008 in the Wuqia region in Xinjiang.The macroseismic epicenter is situated in the Nula village of the Kyrghyz Republic,7km southwest of the Wuqia Yierkeshitan Port in Xinjiang.The epicenter intensity is Ⅷ degrees (outside borders).The areas of intensity Ⅶ and Ⅵ are 7354km 2 and 1031km 2,respectively.This seismic event is related with movement of the NE-trending Kzikeaerkate fault belt.Buildings in the earthquake-stricken area were damaged or affected to a certain extent by this earthquake,accompanied with some phenomena of geological disaster.  相似文献   

7.
The Bachu-Jiashi earthquake of Ms6.8 occurred on February 24, 2003, about 20km from the southeast of the 1997 - 1998 Jiashi seismic region in Xinjiang, and its aftershocks are rich and strong. Did the 1997 - 1998 Jiashi strong earthquake swarm trigger the Bachu-Jiashi Ms6.8 earthquake? The Atushi earthquake of Ms6.7 occurred in 1996, and the 1997 - 1998 Jiashi strong earthquake swarm occurred about 70km from the Atushi earthquake 10 months later. Did the Atushi earthquake of Ms6.7 encourage the 1997 - 1998 Jiashi strong earthquake swarm? There were 9 earthquakes with Ms6.0 from 1996 to 1997 in the Jiashi seismic region, how did they act on each other? To answer the above questions, the article studies the triggering effect of the activity process of the whole Jiashi earthquake swarm from the 1996 Atushi earthquake of Ms6.7, the 1997 - 1998 Jiashi strong swarm to the 2003 Bachu-Jiashi earthquake of Ms6.8, and analyzes the seismicity characteristics around the Jiashi region. The results show that the 1996 Atushi earthquake of Ms6.7 encouraged the 1997 - 1998 Jiashi strong swarm to some extent, the accumulative Coulomb stress change from the previous M6.0 earthquakes of the Jiashi strong swarm had certain triggering effects on the following M6.0 events, and the Coulomb stress change converted from the Jiashi strong swarm strongly encouraged the 2003 Bachu-Jiashi earthquake with Ms6.8.  相似文献   

8.
High-value subsurface fluid anomalies appeared in the northern part of North China region for more than two years before the Zhangbei-Shangyi earthquake. Some of the anomalies have appeared alternately and were correlated with moderate and moderately strong earthquakes in the region during the last year (1997). Typical short-term subsurface fluid anomalies have appeared in the area at 100 km ~ 200 km distance from the epicenter for two months before an earthquake. Tracing these anomalies during the last two years and repeatedly improving the knowledge of seismic regime, we have more successfully performed short-term and imminent earthquake prediction at half a month before its occurrence.  相似文献   

9.
Based on relocating the Jiujiang-Ruichang earthquake sequence which occurred on November 26, 2005 in Jiangxi Province with the double-difference (DD) algorithm and master event technique, the paper discusses the focal mechanism of the main shock (MsS.7) and the probable seismo-tectonics. The precise relocation results indicate that the average horizontal error is 0.31kin in a EW direction and 0.40kin in a NS direction, and the average depth error is 0.48kin. The focal depths vary from 8kin to 14kin, with the predominant distribution at 10kin - 12kin. The epicenter of the main shock is relocated to be 29.69^oN, 115.74^oE and the focal depth is about 10.Skin. Combining the predominant distribution of the earthquake sequence, the focal mechanism of the main shock and the tectonic conditions of N-E- and NW-strike faults growth in the seismic region, we infer that the main shock of the earthquake sequence was caused by a NW striking buried fault in the Rnichang basin. The nature of seismic faults needs to be further explored.  相似文献   

10.
During the preparation process of a great earthquake, there are certain patterns of less randomness but more order in the space-time distribution of micro-earthquakes, which had been proved by seismic events and experiments. The information entropy concerning the dimension of the order in seismic distribution is systematically defined from the point of modern statistical physics in this paper. Relations of dynamic variations of information entropy with a strong shock occurrence time and the distribution of information with a strong shock occurrence place were approached through seismic data from the Wuqia, Xikar, Wushi, and Manasi regions in Xinjiang. It is indicated that before strong earthquakes, the value of information entropy often noticeably drops in seismic region, and generally much lower in the epicentral area than the surrounding regions. These two characters are of important significance in strong shock risk region determination and large shock tendency prediction.  相似文献   

11.
The relation between the gravity variation features and Ms=8.1 earthquake in Qinghai-Xizang monitoring area is analyzed preliminarily,by using spatial dynamic variation results of regional gravity field from absolute gravity and relative gravity observation in 1998 and 2000.The results show that:1)Ms\8.1 earthquake in Kulun mountain pass westem occurred in the gravity variation high gradient near gravity‘s high negative variation;2)The Main tectonic deformation and emnergy accumulation before MS=8.1 earthquake are distributed at south side of the epicenter;3)The range of gravity‘s high negative variation at east of the MS=8.1 earthquake epicenter relatively coincides with that rupture region according to field geology investigation;4)Gravity variation distribution in high negative value region is just consistent with the second shear strain‘s high value region of strain field obtained from GPS observation.  相似文献   

12.
Observations of the Langmuir Probe Instrument(ISL,Instrument Sonde de Langmuir) onboard the DEMETER satellite during four years from 2006 to 2009 were used to analyze the tempo-spatial variations of electron density(Ne) and temperature(Te) in the ionosphere.Twenty four research bins with each covering an area with 10° in longitude and 2° in latitude were selected to study the spatial distributions of Ne and Te.The results indicate that both Ne and Te have strong annual variations in the topside ionosphere at 660 km altitude.The semiannual anomaly and equinoctial asymmetry which are usually well known as the features of F-layer also exist in the topside ionosphere at low-and mid-latitudes.The yearly variation of Ne is opposite to the peak electron density of the F2-layer(NmF2) at higher latitudes in daytime and both are similar in nighttime.Also the yearly variations of Te at low-latitude are contrary to that at 600 km in daytime and similar in nighttime.An interesting feature of nighttime Te at low-latitude is an obvious annual variation in the northern hemisphere and semiannual variation in the southern hemisphere.The yearly variations of Te in daytime have negative and positive correlation with Ne at mid-and high-latitudes,respectively.Both Ne and Te in the neighborhood bins at the same latitude have a high correlation.In ionospheric events analyzing,this information may help to understand the characteristics of the variation and to distinguish the reliable abnormality from the normal background map.  相似文献   

13.
An earthquake measuring 5.1 on the Richter scale struck Wen'an county,Hebei Province on July 4,2006. No casualties have been reported,with only slight damage. The disaster level of this event is the slightest on the M4.9~5.1 events record tally since the CCDSN (China Center of Digital Seismic Network) was built in 1999. The epicenter intensity of this earthquake was low,while in areas like Beijing,which is 100km far away,abnormal high intensity zones appeared. This article discusses the reasons behind this abnormal phenomenon,with the diagrams of intensity isolines drawn by the intense seismic stations and networks in the capital circle area as references,as well as the seismogenic mechanism in the source,the seismic histories,the geological structures and the ray pathways of seismic waves in areas within 150km around the epicenter. It was concluded that the special dynamic and geological situations were the main causes for the lower intensity degree and slight damage in the epicenter area,but higher intensity in the surrounding areas.  相似文献   

14.
By scanning modulated or un-modulated earthquakes spatio-temporally in the region of Sichuan-Yunnan,short-term non-stationary seismic precursory patterns were extracted with significant difference and the characteristic of non-stationary short-term seismic anomalies were analyzed as well as prediction efficiency of modulated small earthquakes before a strong earthquake. Besides,small earthquake modulation ratios near the region of the epicenter were calculated and sorted by time. The results indicated that there were significant effects using the modulated earthquake method to predict earthquakes greater than MS6. 0 in a short time. Before the MS8. 0 Wenchuan earthquake,there were obvious short-term precursory seismicity gap patterns of modulated small earthquakes.  相似文献   

15.
An earthquake measuring 5.1 on the Richter scale struck Wen'an county,Hebei Province on July 4,2006. No casualties have been reported,with only slight damage. The disaster level of this event is the slightest on the M4.9~5.1 events record tally since the CCDSN (China Center of Digital Seismic Network) was built in 1999. The epicenter intensity of this earthquake was low,while in areas like Beijing,which is 100km far away,abnormal high intensity zones appeared. This article discusses the reasons behind this abnormal phenomenon,with the diagrams of intensity isolines drawn by the intense seismic stations and networks in the capital circle area as references,as well as the seismogenic mechanism in the source,the seismic histories,the geological structures and the ray pathways of seismic waves in areas within 150km around the epicenter. It was concluded that the special dynamic and geological situations were the main causes for the lower intensity degree and slight damage in the epicenter area,but higher intensity in the surrounding areas.  相似文献   

16.
Using a time series method that combines both the persistent scatterer and small baseline approaches, we analyzed 9 scenes Envisat ASAR data over the L'Aquila earthquake, and obtained a Shocke's displacement field and its evolution processes. The results show that: (1) Envisat ASAR clearly detected the whole processes of displacement field of the L'Aquila earthquake, and distinct variations at different stages of the displacement field. (2) Preseismic creep displacement → displacement mutation when faulting → constantly slowed down after the earthquake. (3) The area of the strongest deformation and ground rupture was a low-lying oval depression region to the southeast. Surface faulting within a zone of about 22 km× 14 km, with an orientation of 135°, occurred along the NW-striking and SW-dipping Paganica-S. Demetrio normal fault. (4) In analyzing an area of about 54 km x 59 km, bounded by north-south axis to the epicenter, the displacement field has significant characteristics of a watershed: westward of the epicenter shows uplift with maximum of 130 mm in line-of-sight (LOS), and east of the epicenter was a region with 220 mm of maximum subsidence in the LOS, concentrating on the rupture zone, the majority of which formed in the course of faulting and subsequence.  相似文献   

17.
Complete records of more than 3,000 earthquake events in the Shanxi, Wenzhou reservoir earthquake sequence were recorded from August to November,2014 by the high-density,high-resolution monitoring stations of the Zhejiang Regional Digital Seismic Network and the reservoir earthquake monitoring network,with a maximum magnitude of M4. 2. Based on 3-D epicenter location, focal mechanism solutions, and in combination with the geological and tectonic characteristics of the reservoir area,the earthquake sequence is discussed in this paper. The linear fitting of the Hypo SAT location results show that the main shock occurred in the NW trending fault and the earthquake sequence is concentrated in bands along the active faults,with a strike of305 °,dipping SW with dip angle of 85 °. By using P-wave first motion symbols, we obtained the average focal mechanism of M ≥ 3. 5 earthquakes,with a strike 308 ° and dip 84 ° for nodal plane II. The field geological survey and research show that the strike,dip and rake of nodal plane II are roughly consistent with the occurrence of the Shuangxi-Jiaoxi fault. The comprehensive analysis reveals that the NW-trending Shuangxi-Jiaoxi fault is the seismogenic structure of the earthquakes.  相似文献   

18.
The time and spatial feature of the regional seismicity triggered by the Hyogo-Ken Nanbu, Japan, M=7.2 earthquake on January 17,1995, was studied. The concerned region is about several hundred kilometers in length and breadth surrounding the epicenter (33°~37°N, 133°~138°E). It is divided into 16 subregions. The seismicity of these subregions from January of 1976 to June of 1996 has been analyzed. It is showed that,① there were significant seismicity changes in 10 subregions triggered by the Hyogo-Ken Nanbu, Japan, M=7.2 earthquake on January 17, 1995. These changes passed a Z statistic test exceeding 0.95 confidence level and the greatest epicenter distance of these subregions was 280 km;②seismicity changes were triggered within 1~5 days in three subregions near the main shock while in other subregions the seismicity changes were triggered within several ten days after the main shock;③ the greatest triggered event is 5.4, which is about the same size as the greatest aftershock;④the regional stress change resulted from the main shock may be the triggered mechanism of the regional seismicity.  相似文献   

19.
The tectonic characteristics and research problems of five earthquakes with M≥7.0 on the North China Plain over the last 300 years are addressed in the paper, including the cognition that there were no ground fractures in the 1966 Xingtai earthquake, the question caused by the thrust activity of the seismic fault of the Tangshan Earthquake and the discussion of the seismotectonic environment of the 1830 Cixian earthquake and the 1937 Heze earthquake. The author thinks that the main reason for the problems in research of strong earthquake tectonics in the region is that the status of activity of the main tectonics during the Late Quaternary are unknown. This affects the founding of discrimination criteria for seismotectonics of strong earthquakes on the North China Plain. Discriminating the Holocene active faults from the large number of faults is the most effective method for seismic hazard assessment in the area in future.  相似文献   

20.
After the Ms6.6 earthquake occurred in the border region between Min and Zhang counties of Gansu Province on July 22, 2013, we preliminarily estimated the earthquake sequence to be a main shock-aftershock type based on the history of moderate-strong earthquake sequences in this area. As time went on, there were more aftershock events. These could be used for further analysis, and then for further decision on the earthquake sequence type. Finally, we determined the Ms6.6 earthquake sequence that occurred in the border region between Min and Zhang counties, Gansu Province as having been a main shock-aftershock type, with the largest Ms5.6 aftershock having occurred on the same day as the main Ms6.6 shock, from a comprehensive analysis of the historical characteristics of moderatety strong earthquakes of the earthquake zone, and the space-time evolution characteristics and parameters of the earthquake sequence. These provided a correct basis for anti- earthquake relief work and played an important role in mitigating the earthquake disaster and stabilizing the disturbed soci- ety after the earthquake in the earthquake zone and its neighboring areas. Reviewing the forecasting process and the re- sults, we found that we had successfully predicted the Ms6.6 earthquake that occurred in the border region between Min and Zhang counties on July 22, 2013 several years before it occurred. The magnitude and location of the earthquake had been predicted accurately, and the accuracy of the prediction was much higher than any other example in Chinese earth- quake prediction history. Forecasting on a monthly scale, we had indicated at the monthly meeting on earthquake prediction at the end of February, 2013 that there would be a risk of a moderately strong earthquake in Gansu Province from the change in moderately strong earthquake activity on the Chinese mainland. Even for short and impending earthquake prediction from several days to several dozens of days, we had proposed the likelihood of a moderate-strong earthquake happening in Gansu Province and the adjacent areas from the results of previous studies and the cases of earthquakes with MI ≥ 4.0 from the time before the Ms6.6 earthquake occurred. In a meeting about earthquake prediction held several days before the occurrence of the Ms6.6 event, we made the prediction that there would be an earthquake of M≥ 5.0 happening somewhere in Gansu Province and the surrounding area within dozens of days. The fact we had successfully predicted the Ms6.6 earth-quake on a several-year scale, as well as over a short time period to some extent, reinforces our belief that earthquakes can be forecast. Even with our present level of understanding, we can still capture some information on the gestation and occurrence of earthquakes before the arrival of a disaster. However, in order to achieve the goal of earthquake prediction in China, earthquake scientists still need to make arduous efforts. As long as earthquake scientists use the correct approach, and government supplies the necessary manpower and material resources to predict earthquakes, we believe that there will be a hope to achieve the aim of earthquake prediction with a relief effect. It is promising that we have achieved at least one or two earthquake forecasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号