首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
李相虎  任立良  张奇  王刚 《湖泊科学》2010,22(5):749-756
针对目前研究蒸散发时间尺度转换方面的不足,构建了月蒸散发时间尺度转换模型,对淮河史灌河流域黄泥庄小流域1982-1987年月蒸散发能力进行逐栅格解集,并与改进后的AFFDEF分布式水文模型耦合进行日径流过程模拟.结果显示:解集产生的日蒸散发能力随时间在平均值附近波动变化,能很好地体现日蒸发量的时间变异特点;模拟的日径流过程的精度较高,平均Nash效率系数在80%以上,径流深相对误差都在10%以内,平均泊松相关系数为0.912,模拟流量过程曲线与实测值匹配的较好;经与采用平均解集模式的模拟结果对比发现,耦合蒸散发时间尺度转换模型后的模拟精度与前者大体相当,部分指标略优于前者.蒸散发时间尺度转换模型解集产生的日蒸散发量序列能够反映日蒸发量的时间变异特点,更能满足区域日降雨径流过程模拟的需要,可为解决资料匮乏区域水文模拟提供一个新途径.  相似文献   

2.
王卫光  邹佳成  邓超 《湖泊科学》2023,35(3):1047-1056
为了探讨水文模型在不同水文数据同化方案下的径流模拟差异,本文采用集合卡尔曼滤波算法,以遥感蒸散发产品、实测径流为观测数据,构建了基于新安江模型的数据同化框架。基于此框架设计了4种不同同化方案(DA-ET、DAET(K)、DA-ET-Q、DA-ET-Q(K))以及1种对照方案OL,以赣江流域开展实例研究,评估了水文数据同化中遥感蒸散发产品的时间分辨率、模型蒸散发相关参数时变与否以及多源数据同化对径流模拟的影响。结果表明:在DA-ET方案下,同化两种不同时间分辨率的蒸散发产品均能提高模型整体的径流模拟精度,且时间分辨率更高的产品的同化效果更好;在DA-ET方案的基础上,考虑加入实测径流进行同化能够提升模型径流模拟精度,且DA-ET(K)与DA-ET-Q(K)方案所得径流相对误差的减幅均超过了20%,说明在蒸散发同化过程中同时考虑蒸散发参数动态变化的结果更优;相较于OL方案,4种同化方案均能不同程度地提高模型对径流高水部分的模拟能力,但DA-ET-Q(K)方案表现最差,而其余方案差异并不显著。本研究有助于进一步了解不同数据同化方案在径流模拟中的差异,从而为水资源高效利用与科学管理提供科学依据...  相似文献   

3.
徐静  任立良  袁飞  刘晓帆 《湖泊科学》2008,20(4):507-513
为分析土地覆被变化的水文效应.构建4种土地覆被情景,采用BTOPMC模型对淮河流域黄泥庄集水区1982-1986年的日径流过程进行模拟.结果表明,土地覆被变化对蒸散发量和径流量计算影响显著,与现状覆被情景的模拟结果相比,森林覆被情景蒸散发量增加,径流量减少,而林地草原和耕地覆被情景下情况相反,且各土地覆被变化情景下枯季径流深的变化幅度明显小于雨季的变化幅度.该模型能较好地分析和评价土地覆被变化下的径流响应.  相似文献   

4.
为考虑洪水预报误差的空间变化,提出一种基于微分响应的流域产流分单元修正方法.该方法建立了各单元流域产流与流域出口流量之间的微分响应关系,采用正则化最小二乘法结合逐步迫近进行反演求解,将产流误差估计量分配给相应单元流域实现流域产流分单元修正.将构建的方法应用于大坡岭流域和七里街流域进行新安江模型产流修正,比较分析了流域产流分单元修正、流域面平均产流修正和自回归修正的效果.结果表明:流域产流分单元修正效果优于流域面平均产流修正;随着预见期的增大,产流微分响应修正效果优于自回归修正.该方法通过汇流系统将流域出口断面流量信息进行分解用于修正各单元流域产流,有利于提高实时洪水预报精度.  相似文献   

5.
中国北方半干旱地区的降水与下垫面条件具有明显的时空异质性,如何完整准确地描述该类区域的水文过程是当代水文学研究的难点之一.选择半干旱地区水文实验区域——绥德流域和曹坪流域,通过构建不同时空规律的降水场,并结合3种不同产流机制的水文模型,进行大型数值模拟实验,去探究时间、空间、产流机制等因素对半干旱地区洪水模拟的影响,为该类地区水文模型的研制工作提供借鉴.结果 表明:1)半干旱地区中小流域的产流对降雨强度较为敏感,因此降水输入的时间步长对洪水模拟效果的影响程度较大;相比之下,流域雨量站数量的增减,仅体现在降雨分布场的暴雨中心缺失以及面平均降雨量的微小差别,对洪水模拟效果的影响程度较小.2)水文模型能否准确描述主导水文过程是半干旱地区洪水模拟效果优良的关键,流域的尺度效应及其下垫面条件的空间异质性是半干旱地区不同水文模型研制和调整应当优先考虑的问题,无论时间步长、雨量站数量怎么组合,产流结构适宜的模型其模拟效果总是趋于较好的结果.  相似文献   

6.
王加虎  郝振纯  姜彤  施雅风  曾涛 《湖泊科学》2003,15(Z1):277-288
本文以联合国粮农组织推荐的改进彭曼-蒙特斯公式为基础,通过日气温计算年蒸发总量并验证,用典型年预测全流域年平均气温增加时,参照蒸散发的变化情况。研究表明:长江流域的年蒸发量将随年平均气温的上升而增加;上游增幅大于中下游,各月增幅相近;气温增幅的年内分布不容忽视,考虑到年内气温不等量增长后的计算结果相对更为合理。研究结果表明:当流域年平均气温升高1℃时,流域上、中下游参照蒸散发分别将增加5%和4%.研究中未考虑气温日较差的变化.  相似文献   

7.
在半湿润半干旱地区,下垫面条件复杂,产流机制混合多变,而现有的水文模型由于其固定的结构和模式,无法灵活地模拟不同下垫面特征的洪水过程.本文利用CN-地形指数法将流域划分为超渗主导子流域和蓄满主导子流域.将新安江模型(XAJ)、新安江-Green-Ampt模型(XAJG)和Green-Ampt模型(GA)相结合,在子流域分类的基础上构建空间组合模型(SCMs),并在半湿润的东湾流域和半干旱的志丹流域进行检验.结果表明:东湾流域的参数由水文模型来主导;而志丹流域的参数受主导径流影响很大.在东湾流域,偏蓄满的模型模拟结果优于偏超渗的模型,且SCM2模型(XAJ和XAJG的组合模型)的模拟效果最好(径流深合格率为75%,洪峰合格率75%);而SCM5模型(GA和XAJG的组合模型)在以超渗产流为主的志丹流域模拟最好(径流深合格率53.3%,洪峰合格率53.3%).在半干旱半湿润流域,SCMs模型结构灵活,在地形和土壤数据的驱动下,具有更合理的模型结构和参数,模拟精度较高,适应性较强.  相似文献   

8.
栅格新安江模型在天津于桥水库流域上游的应用   总被引:3,自引:1,他引:2  
栅格新安江模型是在概念性新安江模型的理论基础上,以栅格为计算单元,结合地形地貌和下垫面特性构建出来的水文模型.在于桥水库流域上游的水平口流域应用栅格新安江模型,研究该地区洪水要素的空间变化以及洪水形成过程,讨论洪水模拟效果来验证模型在半湿润地区的适用性.选取水平口流域1978-2012年的洪水进行模型计算,模拟结果较好地反映了流域产流面积的时空变化,且均达到乙级以上精度.初步表明栅格新安江模型在半湿润地区有较好的适用性.  相似文献   

9.
半湿润流域水文模型比较与集合预报   总被引:1,自引:0,他引:1       下载免费PDF全文
霍文博  李致家  李巧玲 《湖泊科学》2017,29(6):1491-1501
选择7种水文模型分别在中国北部3个半湿润流域做模拟对比,分析不同水文模型在各流域的适用性,并使用贝叶斯模型平均法对不同模型集合,比较各种集合方法的优势,研究贝叶斯模型平均法的应用效果.研究结果表明,以蓄满产流模式为主的模型在半湿润流域应用效果较好,针对不同流域特点对传统模型进行改进可以提高模拟精度.贝叶斯模型平均法能提供较好的确定性预报结果和概率预报结果,仅对少数模拟效果好的模型进行集合,并不能有效提高预报精度,适当增加参与集合的模型数量能使贝叶斯模型平均法更好地综合各模型优势,提高预报结果的精度.  相似文献   

10.
引入两个负指数型差值函数,估计降雨量的概率分布,以此描述流域降雨空间变异性问题.将降雨量空间统计分布与垂向混合产流模型耦合进行产流量计算,即对地表径流,采用超渗产流模式,根据降雨与土壤下渗能力的联合分布推求其空间分布;对地面以下径流,采用蓄满产流模式,以地表渗入量的均值作为输入,进行简化处理以提高其实用性;最终推导出总产流量概率分布函数计算公式.将流域概化成一个线性水库,并根据随机微分方程理论,推导任一计算时段洪水流量的概率分布,从而构建了一个完整的随机产汇流模型.以淮河支流黄泥庄流域为例进行应用研究,结果表明,该模型可提供洪水过程的概率预报,可用于防洪风险分析,若以概率分布的期望值作为确定性预报,亦具有较高精度.  相似文献   

11.
Changes in potential evapotranspiration and surface runoff can have profound implications for hydrological processes in arid and semiarid regions. In this study, we investigated the response of hydrological processes to climate change in Upper Heihe River Basin in Northwest China for the period from 1981 to 2010. We used agronomic, climatic and hydrological data to drive the Soil and Water Assessment Tool model for changes in potential evapotranspiration (ET0) and surface runoff and the driving factors in the study area. The results showed that increasing autumn temperature increased snow melt, resulting in increased surface runoff, especially in September and October. The spatial distribution of annual runoff was different from that of seasonal runoff, with the highest runoff in Yeniugou River, followed by Babaohe River and then the tributaries in the northern of the basin. There was no evaporation paradox at annual and seasonal time scales, and annual ET0 was driven mainly by wind speed. ET0 was driven by relative humidity in spring, sunshine hour duration in autumn and both sunshine hour duration and relative humility in summer. Surface runoff was controlled by temperature in spring and winter and by precipitation in summer (flood season). Although surface runoff increased in autumn with increasing temperature, it depended on rainfall in September and on temperature in October and November. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
To analyse the long‐term water balance of the Yellow River basin, a new hydrological model was developed and applied to the source area of the basin. The analysis involved 41 years (1960–2000) of daily observation data from 16 meteorological stations. The model is composed of the following three sub‐models: a heat balance model, a runoff formation model and a river‐routing network model. To understand the heat and water balances more precisely, the original model was modified as follows. First, the land surface was classified into five types (bare, grassland, forest, irrigation area and water surface) using a high‐resolution land‐use map. Potential evaporation was then calculated using land‐surface temperatures estimated by the heat balance model. The maximum evapotranspiration of each land surface was calculated from potential evaporation using functions of the leaf area index (LAI). Finally, actual evapotranspiration was estimated by regulating the maximum evapotranspiration using functions of soil moisture content. The river discharge estimated by the model agreed well with the observed data in most years. However, relatively large errors, which may have been caused by the overestimation of surface flow, appeared in some summer periods. The rapid decrease of river discharge in recent years in the source area of the Yellow River basin depended primarily on the decrease in precipitation. Furthermore, the results suggested that the long‐term water balance in the source area of the Yellow River basin is influenced by land‐use changes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Dejuan Meng  Xingguo Mo 《水文研究》2012,26(7):1050-1061
Influences of climatic change on the components of global hydrological cycle, including runoff and evapotranspiration are significant in the mid‐ and high‐latitude basins. In this paper, the effect of climatic change on annual runoff is evaluated in a large basin—Songhua River basin which is located in the northeast of China. A method based on Budyko‐type equation is applied to separate the contributions of climatic factors to changes in annual runoff from 1960 to 2008, which are computed by multiplying their partial derivatives by the slopes of trends in climate factors. Furthermore, annual runoff changes are predicted under IPCC SRES A2 and B2 scenarios with projections from five GCMs. The results showed that contribution of annual precipitation to annual runoff change was more significant than that of annual potential evapotranspiration in the Songhua River basin; and the factors contributing to annual potential evapotranspiration change were ranked as temperature, wind speed, vapour pressure, and sunshine duration. In the 2020s, 2050s, and 2080s, changes in annual runoff estimated with the GCM projections exhibited noticeable difference and ranged from ? 8·4 to ? 16·8 mm a?1 (?5·77 to ? 11·53% of mean annual runoff). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

Streamflow in the Himalayan rivers is generated from rainfall, snow and ice. The distribution of runoff produced from these sources is such that the streamflow may be observed in these rivers throughout the year, i.e. they are perennial in nature. Snow and glacier melt runoff contributes substantially to the annual flows of these rivers and its estimation is required for the planning, development and management of the water resources of this region. The average contribution of snow and glacier melt runoff in the annual flows of the Satluj River at Bhakra Dam has been determined. Keeping in view the availability of data for the study basin, a water balance approach was used and a water budget period of 10 years (October 1986-September 1996) was considered for the analysis. The rainfall input to the study basin over the water budget period was computed from isohyets using rainfall data of 10 stations located at different elevations in the basin. The total volume of flow for the same period was computed using observed flow data of the Satluj River at Bhakra Dam. A relationship between temperature and evaporation was developed and used to estimate the evapotranspiration losses. The snow-covered area, and its depletion with time, was determined using satellite data. It was found that the average contribution of snow and glacier runoff in the annual flow of the Satluj River at Bhakra Dam is about 59%, the remaining 41% being from rain.  相似文献   

15.
ABSTRACT

Hydrological processes in hilly watersheds are significantly affected by variations in elevation; however, the hydrological functions of different vertical vegetation belts, have rarely been reported. The distributed hydrological model WEP-L (Water and Energy transfer Process in Large river basins) was applied to analyse vertical variations in the hydrological processes of Qingshui River basin (QRB), Wutai Mountain (altitude: 3058 m a.s.l.), China. The results show that the highest ratio of evapotranspiration to precipitation occurs at 1800 m a.s.l. Below 1800 m, evapotranspiration is mainly controlled by precipitation, and in regions above1800 m it is controlled by energy. The runoff coefficients for different vertical vegetation belts may be ranked as follows: farmland > grassland > subalpine meadow > evergreen coniferous shrub forest > deciduous broad-leaved forest. Grassland is the largest runoff production area, contributing approximately 39.10% to the annual water yield of the QRB. The runoff from forested land decreased to a greater extent than the grassland runoff. Increasing forest cover may increase evapotranspiration and reduce runoff. These results are important, not only for further understanding of the hydrological mechanisms in this basin, but also for implementing the sustainable management of water resources and ecosystems in other mountainous regions.  相似文献   

16.
Quantitative evaluation of the effect of climate variability and human activities on runoff is of great importance for water resources planning and management in terms of maintaining the ecosystem integrity and sustaining the society development. In this paper, hydro‐climatic data from four catchments (i.e. Luanhe River catchment, Chaohe River catchment, Hutuo River catchment and Zhanghe River catchment) in the Haihe River basin from 1957 to 2000 were used to quantitatively attribute the hydrological response (i.e. runoff) to climate change and human activities separately. To separate the attributes, the temporal trends of annual precipitation, potential evapotranspiration (PET) and runoff during 1957–2000 were first explored by the Mann–Kendall test. Despite that only Hutuo River catchment was dominated by a significant negative trend in annual precipitation, all four catchments presented significant negative trend in annual runoff varying from ?0.859 (Chaohe River) to ?1.996 mm a?1 (Zhanghe River). Change points in 1977 and 1979 are detected by precipitation–runoff double cumulative curves method and Pettitt's test for Zhanghe River and the other three rivers, respectively, and are adopted to divide data set into two study periods as the pre‐change period and post‐change period. Three methods including hydrological model method, hydrological sensitivity analysis method and climate elasticity method were calibrated with the hydro‐climatic data during the pre‐change period. Then, hydrological runoff response to climate variability and human activities was quantitatively evaluated with the help of the three methods and based on the assumption that climate and human activities are the only drivers for streamflow and are independent of each other. Similar estimates of anthropogenic and climatic effects on runoff for catchments considered can be obtained from the three methods. We found that human activities were the main driving factors for the decline in annual runoff in Luanhe River catchment, Chaohe River catchment and Zhanghe River catchment, accounting for over 50% of runoff reduction. However, climate variability should be responsible for the decrease in annual runoff in the Hutuo River catchment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The topographically explicit distributed hydrology–soil–vegetation model (DHSVM) is used to simulate hydrological effects of changes in land cover for four catchments, ranging from 27 to 1033 km2, within the Columbia River basin. Surface fluxes (stream flow and evapotranspiration) and state variables (soil moisture and snow water equivalent) corresponding to historical (1900) and current (1990) vegetation are compared. In addition a sensitivity analysis, where the catchments are covered entirely by conifers at different maturity stages, was conducted. In general, lower leaf‐area index (LAI) resulted in higher snow water equivalent, more stream flow and less evapotranspiration. Comparisons with the macroscale variable infiltration capacity (VIC) model, which parameterizes, rather than explicitly represents, topographic effects, show that runoff predicted by DHSVM is more sensitive to land‐cover changes than is runoff predicted by VIC. This is explained by model differences in soil parameters and evapotranspiration calculations, and by the more explicit representation of saturation excess in DHSVM and its higher sensitivity to LAI changes in the calculation of evapotranspiration. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
The impact of interannual variability of precipitation and potential evaporation on the long-term mean annual evapotranspiration as well as on the interannual variability of evapotranspiration is studied using a stochastic soil moisture model within the Budyko framework. Results indicate that given the same long-term mean annual precipitation and potential evaporation, including interannual variability of precipitation and potential evaporation reduces the long-term mean annual evapotranspiration. This reduction effect is mostly prominent when the dryness index (i.e., the ratio of potential evaporation to precipitation) is within the range from 0.5 to 2. The maximum reductions in the evaporation ratio (i.e., the ratio of evapotranspiration to precipitation) can reach 8–10% for a range of coefficient of variation (CV) values for precipitation and potential evaporation. The relations between the maximum reductions and the CV values of precipitation and potential evaporation follow power laws. Hence the larger the interannual variability of precipitation and potential evaporation becomes, the larger the reductions in the evaporation ratio will be. The inclusion of interannual variability of precipitation and potential evaporation also increases the interannual variability of evapotranspiration. It is found that the interannual variability of daily rainfall depth and that of the frequency of daily rainfall events have quantitatively different impacts on the interannual variability of evapotranspiration; and they also interact differently with the interannual variability of potential evaporation. The results presented in this study demonstrate the importance of understanding the role of interannual variability of precipitation and potential evaporation in land surface hydrology under a warming climate.  相似文献   

19.
The Yiluo River is the largest tributary for the middle and lower reaches of the Yellow River below Sanmenxia Dam. Changes of the hydrological processes in the Yiluo River basin, influenced by the climatic variability and human activities, can directly affect ecological integrity in the lower reach of the Yellow River. Understanding the impact of the climatic variability and human activities on the hydrological processes in the Yiluo River basin is especially important to maintain the ecosystem integrity and sustain the society development in the lower reach of the Yellow River basin. In this study, the temporal trends of annual precipitation, air temperature, reference evapotranspiration (ET0) and runoff during 1961–2000 in the Yiluo River basin were explored by the Mann‐Kendall method (M‐K method), Yamamoto method and linear fitted model. The impacts of the climatic variability and vegetation changes on the annual runoff were discussed by the empirical model and simple water balance model and their contribution to change of annual runoff have been estimated. Results indicated that (i) significant upwards trend for air temperature and significant downwards trend both for precipitation and ET0 were detected by the M‐K method at 95% confidence level. And the consistent trends were obtained by the linear fitted model; (ii) the abrupt change started from 1987 detected by the M‐K method and Yamamoto method, and so the annual runoff during 1961–2000 was divided into two periods: baseline period (1961–1986) and changeable period (1987–2000); and (iii) the vegetation changes were the main cause for change of annual runoff from baseline period to changeable period, and climatic variability contributed a little to the change of annual runoff of the Yiluo River. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Quantifying the impact of landscape on hydrological variables is essential for the sustainable development of water resources. Understanding how landscape changes influence hydrological variables will greatly enhance the understanding of hydrological processes. Important vegetation parameters are considered in this study by using remote sensing data and VIC-CAS model to analyse the impact of landscape changes on hydrology in upper reaches of the Shule River Basin (URSLB). The results show there are differences in the runoff generation of landscape both in space and time. With increasing altitude, the runoff yields increased, with approximately 79.9% of the total runoff generated in the high mountains (4200–5900 m), and mainly consumed in the mid-low mountain region. Glacier landscape produced the largest runoff yields (24.9% of the total runoff), followed by low-coverage grassland (LG; 22.5%), alpine cold desert (AL; 19.6%), mid-coverage grassland (MG; 15.6%), bare land (12.5%), high-coverage grassland (HG; 4.5%) and shrubbery (0.4%). The relative capacity of runoff generation by landscapes, from high to low, was the glaciers, AL, LG, HG, MG, shrubbery and bare land. Furthermore, changes in landscapes cause hydrological variables changes, including evapotranspiration, runoff and baseflow. The study revealed that HG, MG, and bare land have a positive impact on evapotranspiration and a negative impact on runoff and baseflow, whereas AL and LG have a positive impact on runoff and baseflow and a negative impact on evapotranspiration. In contrast, glaciers have a positive impact on runoff. After the simulation in four vegetation scenarios, we concluded that the runoff regulation ability of grassland is greater than that of bare land. The grassland landscape is essential since it reduced the flood peak and conserved the soil and water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号