首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
概述了土遗址文物的主要病害如风蚀病害、表面风化、雨蚀病害、裂缝或坍塌、基础掏蚀、生物破坏以及人类社会经济活动所产生的不良影响等的特征及成因机制;阐明了建立土遗址文物防灾减灾综合体系的重要性,提出了灾前防御、震时应急和灾后恢复的对策;针对土遗址的特殊性提出了抗震防护加固的原则,分析了其特点,针对不同病害特征的土遗址分别提出了抗震加固方案.为土遗址文物的科学保护和综合防御地震灾害提供了理论基础和工程实践指导.  相似文献   

2.
Non‐ductile reinforced concrete buildings represent a prevalent construction type found in many parts of the world. Due to the seismic vulnerability of such buildings, in areas of high seismic activity non‐ductile reinforced concrete buildings pose a significant threat to the safety of the occupants and damage to such structures can result in large financial losses. This paper introduces advanced analytical models that can be used to simulate the nonlinear dynamic response of these structural systems, including collapse. The state‐of‐the‐art loss simulation procedure developed for new buildings is extended to estimate the expected losses of existing non‐ductile concrete buildings considering their vulnerability to collapse. Three criteria for collapse, namely first component failure, side‐sway collapse, and gravity‐load collapse, are considered in determining the probability of collapse and the assessment of financial losses. A detailed example is presented using a seven‐story non‐ductile reinforced concrete frame building located in the Los Angeles, California. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
为研究近断层地震作用下框排架结构破坏的可能性,以某钢筋混凝土框排架结构为原型建立有限元非线性分析模型,选取16条近断层地震波及8条远场地震波,采用增量动力分析方法绘制易损性曲线。结果表明:对于远场地震,8度多遇地震及基本地震时,结构正常使用、基本使用、修复后使用、生命安全及防止倒塌五个极限状态均未超越,满足“小震不坏,中震可修”的抗震要求;8度罕遇地震时,仅超越正常使用极限状态的概率为2.08%,满足“大震不倒”的抗震要求。而近断层地震时,在8度多遇地震时结构前四个极限状态均被超越,基本地震时结构超过修复后使用的极限状态概率为16.62%,有2.40%的概率达到生命安全的极限状态,罕遇地震时接近倒塌的概率为15\^4%。研究结果可为近断层地区框排架结构地震风险评估提供参考。  相似文献   

4.
This paper presents a design approach for seismic rehabilitation of frames having a beam‐collapse mechanism using a technique termed minimal‐disturbance seismic rehabilitation. This technique pursues enhancing the seismic performance of buildings with the intention of improving the continuity of business. It minimizes obstruction of the visual and physical space of building users and the use of heavy construction equipment and work requiring fire permit (welding/cutting). The developed design approach is simple to use. Yet it leads to designs that limit the beams' plastic rotations to allowable values, while minimizing the number of locations where devices are installed and the devise dimensions. Furthermore, the effectiveness of the design approach and the rehabilitation technique is numerically studied through retrofitting a four‐story steel moment‐resisting frame. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Throughout the world, buildings are reaching the end of their design life and develop new pathologies that decrease their structural capacity. Usually the ageing process is neglected in seismic design or seismic risk assessment but may become important for older structures, especially, if they are intended to be in service even after they exceed their design life. Thus, a simplified methodology for seismic performance evaluation with consideration of performance degradation over time is presented, based on an extension of the SAC/FEMA probabilistic framework for estimating mean annual frequencies of limit state exceedance. This is applied to an example of an older three-storey asymmetric reinforced concrete building, in which corrosion has just started to propagate. The seismic performance of the structure is assessed at several successive times and the instantaneous and overall seismic risk is estimated for the near collapse limit state. The structural capacity in terms of the maximum base shear and the maximum roof displacement is shown to decrease over time. Consequently, the time-averaged mean annual frequency of violating the near-collapse limit state increases for the corroded building by about 10% in comparison to the typical case where corrosion is neglected. However, it can be magnified by almost 40% if the near-collapse limit state is related to a brittle shear failure, since corrosion significantly affects transverse reinforcement, raising important questions on the seismic safety of the existing building stock.  相似文献   

6.
钢筋混凝土核心筒性态水平及性能指标限值研究   总被引:1,自引:0,他引:1  
结合国内外对钢筋混凝土结构性能水平的划分标准并根据核心筒结构破坏特征及抗震性能要求,文中在现行规范基础上进一步细分,将钢筋混凝土核心筒结构的性能水准划分为良好使用、暂时使用、生命安全和接近倒塌4个水平;基于混凝土连梁及剪力墙构件的受力、变形及破坏特点,分别提出了连梁及剪力墙构件对应于4个性能水平的失效判别标准和变形限值...  相似文献   

7.
Masonry buildings are primarily constructed out of bricks and mortar which become discrete pieces and cannot sustain horizontal forces created by a strong earthquake.The collapse of masonry walls may cause significant human casualties and economic losses.To maintain their integrity,several methods have been developed to retrofit existing masonry buildings,such as the constructional RC frame which has been extensively used in China.In this study,a new method using precast steel reinforced concrete(PSRC)panels is developed.To demonstrate its effectiveness,numerical studies are conducted to investigate and compare the collapse behavior of a structure without retrofitting,retrofitted with a constructional RC frame,and retrofitted with external PSRC walls(PSRCW).Sophisticated finite element models(FEM)were developed and nonlinear time history analyses were carried out.The results show that the existing masonry building is severely damaged under occasional earthquakes,and totally collapsed under rare earthquakes.Both retrofitting techniques improve the seismic performance of existing masonry buildings.However,it is found that several occasional earthquakes caused collapse or partial collapse of the building retrofitted with the constructional RC frame,while the one retrofitted by the proposed PSRC wall system survives even under rare earthquakes.The effectiveness of the proposed retrofitting method on existing masonry buildings is thus fully demonstrated.  相似文献   

8.
为了能考虑地震双向性和岩土体参数多种不确定性,提出了地震荷载下崩塌堆积体稳定可靠性分析方法,进一步研究水平和竖向地震荷载对崩塌堆积体的可靠性影响.运用极限平衡法和拟静力法分析了双向地震下崩塌堆积体的安全稳定性,采用响应面法和JC法建立崩塌堆积体的地震极限状态方程,然后,运用盲数理论对岩土体参数进行盲数化处理,进一步推导...  相似文献   

9.
The seismic retrofitting of a high-rise RC building, recently realized in Italy using the seismic isolation technique, is examined in terms of cost of the intervention (compared to the replacement cost of the building), seismic performances and expected benefits (compared to the building in the as-built configuration), expressed in terms of reduction of direct and indirect seismic losses in case of attainment of different limit states.In the paper, the comparison of the building performance before and after seismic retrofitting is performed in terms of Expected Annual Loss (EAL), applying a direct displacement-based loss assessment approach. The results show a considerable reduction of the EAL (approximately of 70%), passing from the as-built to the retrofitted configuration. The time needed to get the balance between costs of the intervention and benefits due to EAL reduction turns out to be of the order of 13 years.  相似文献   

10.
抗震设计中结构的性能等级与设计性能安全指数   总被引:1,自引:0,他引:1  
通常根据结构的破坏程度可以将结构的破坏划分为:基本完好、轻微破坏、中等破坏、严重破坏、倒塌等5个阶段。根据这5个阶段,本文将结构在地震过程中的性能极限状态划分为:功能连续极限状态、破坏控制极限状态、控制损失极限状态和防止倒塌极限状态,并以此作为划分结构性能等级的标准。定义结构失效概率的自然对数的负值为设计性能安全指数,通过计算结构失效概率对各构件可靠指标的一阶偏导数的方法,求出结构的设计性能安全等级。这种方法可以考虑建筑结构构件、建筑非结构构件以及其它非结构构件的性能,而且同时可以考虑结构系统总体效应的影响,因而能够比较全面地反映结构的抗震性能等级。  相似文献   

11.
地震易损性分析方法研究综述   总被引:4,自引:0,他引:4  
结构的地震易损性分析对于预测结构的抗震性能、进行结构的抗震设计、加固和维修决策具有重要的应用价值。本文将对近几十年来地震易损性评估方法领域内的重大发展做全面综述,并对易损性分析方法的类别和优缺点及其应用作了总结和讨论。  相似文献   

12.
This paper discusses an analytical study that quantifies the expected earthquake‐induced losses in typical office steel frame buildings designed with perimeter special moment frames in highly seismic regions. It is shown that for seismic events associated with low probabilities of occurrence, losses due to demolition and collapse may be significantly overestimated when the expected loss computations are based on analytical models that ignore the composite beam effects and the interior gravity framing system of a steel frame building. For frequently occurring seismic events building losses are dominated by non‐structural content repairs. In this case, the choice of the analytical model representation of the steel frame building becomes less important. Losses due to demolition and collapse in steel frame buildings with special moment frames designed with strong‐column/weak‐beam ratio larger than 2.0 are reduced by a factor of two compared with those in the same frames designed with a strong‐column/weak‐beam ratio larger than 1.0 as recommended in ANSI/AISC‐341‐10. The expected annual losses (EALs) of steel frame buildings with SMFs vary from 0.38% to 0.74% over the building life expectancy. The EALs are dominated by repairs of acceleration‐sensitive non‐structural content followed by repairs of drift‐sensitive non‐structural components. It is found that the effect of strong‐column/weak‐beam ratio on EALs is negligible. This is not the case when the present value of life‐cycle costs is selected as a loss‐metric. It is advisable to employ a combination of loss‐metrics to assess the earthquake‐induced losses in steel frame buildings with special moment frames depending on the seismic performance level of interest. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
The Himalayan region is one of the major seismic areas in the world. However, similar to many other seismically active locations, there are substantial numbers of unreinforced masonry(URM) buildings; the majority of which have not been designed for seismic loads. Past seismic events have shown that such buildings are highly vulnerable to earthquakes. Retrofitting of these URM buildings is an important concern in earthquake mitigation programs. Most government school buildings in rural areas of northern India are constructed of unreinforced masonry. These school buildings are socially important structures and serve as a crucial resource for rehabilitation during any disaster. The effectiveness of ferrocement(FC) to create a URM-FC composite is described in this study by estimating the performance and fragility of a URM school building before and after a retrofit. Analytical models, based on the equivalent frame method, are developed and used for nonlinear static analysis to estimate the enhancement in capacity. The capacity enhancement due to retrofitting is presented in terms of the maximum PGA sustained and damage probabilities at the expected level of earthquake hazard.  相似文献   

14.
Operative seismic aftershock risk forecasting can be particularly useful for rapid decision‐making in the presence of an ongoing sequence. In such a context, limit state first‐excursion probabilities (risk) for the forecasting interval (a day) can represent the potential for progressive state of damage in a structure. This work lays out a performance‐based framework for adaptive aftershock risk assessment in the immediate post‐mainshock environment. A time‐dependent structural performance variable is adopted in order to measure the cumulative damage in a structure. A set of event‐dependent fragility curves as a function of the first‐mode spectral acceleration for a prescribed limit state is calculated by employing back‐to‐back nonlinear dynamic analyses. An epidemic‐type aftershock sequence model is employed for estimating the spatio‐temporal evolution of aftershocks. The event‐dependent fragility curves for a given limit state are then integrated together with the probability distribution of aftershock spectral acceleration based on the epidemic‐type aftershock sequence aftershock hazard. The daily probability of limit state first‐excursion is finally calculated as a weighted combination of the sequence of limit state probabilities conditioned on the number of aftershocks. As a numerical example, daily aftershock risk is calculated for the L'Aquila 2009 aftershock sequence (central Italy). A representative three‐story reinforced concrete frame with infill panels, which has cyclic strength and stiffness degradation, is used in order to evaluate the progressive damage. It is observed that the proposed framework leads to a sound forecasting of limit state first‐excursion in the structure for two limit states of significant damage and near collapse. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
基于IDA法与Pushover法的混凝土核心筒抗震性能对比分析   总被引:1,自引:0,他引:1  
侯炜 《地震学刊》2014,(2):242-247
足够数量地震输入的增量动力分析方法(IDA方法)是目前最为真实和先进的模拟结构抗震性能手段,而静力推覆分析方法(Pushover Analysis方法)操作简单,更为实用,可以较好揭示结构从弹性到屈服直至倒塌过程中构件的工作状态。采用2种方法对钢筋混凝土核心筒算例进行评估,并作对比分析。结果表明,采用IDA方法得到的4个性能水平与Pushover方法得到的指标限值有一定误差,但均在一定范围之内,采用IDA方法得到顶点位移角限值偏大;采用单一侧力模式的Pushover方法无法完全体现高阶振型及地震动等因素的影响,造成Pushover方法分析结果与结构实际弹塑性地震响应有一定差异。  相似文献   

16.
The life‐cycle cost can be regarded as a benchmark variable in decision making problems involving the retrofit and upgrading of existing structures. A critical infrastructure is often subjected to more than one hazard during its lifetime. Therefore, the problem of evaluating the life‐cycle cost involves uncertainties in both loading and structural modeling parameters. The present study is a preliminary study aiming to calculate the expected life‐cycle cost for a critical infrastructure subjected to more than one hazard in its service lifetime. A methodology is presented that takes into account both the uncertainty in the occurrence of future events due to different types of hazard and also the deterioration of the structure as a result of a series of events. In order to satisfy life safety conditions, the probability of exceeding the limit state of collapse is constrained to be smaller than an allowable threshold. Finally, the methodology is implemented in an illustrative numerical example which considers a structure subjected to both seismic hazard and blast hazard in both upgraded and non‐upgraded configurations. It is demonstrated how expected life‐cycle cost can be used as a criterion to distinguish between the two choices while satisfying the life safety constraint. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Probabilistic seismic assessment requires extensive computational effort resulting from variability both in input ground motions and mechanical properties. Nonetheless, such methodologies are of considerable importance, namely for pre-earthquake disaster planning or development of retrofitting programs. A framework for the analytical definition of closed form expressions for exceedance probabilities of structural component limit states, defined by limit values of structural response parameters, is proposed herein. The definition of these expressions is based on the probabilistic representation of the ground motion intensity and on the establishment of suitable expressions characterizing the evolution of structural demand with increasing earthquake intensity. Distinction is made between deformation-based and force-based structural parameters in the definition of such relations. Within the proposed framework, the limit states are defined by single deterministic thresholds of structural response quantities at the component level, as defined in structural codes. Different approaches are also discussed to account for the randomness of the mechanical properties and ground motion input within the proposed methodology. An application of the assessment of different limit state probabilities of members from a reinforced concrete building is presented, for which limit states and limit state capacities are defined according to the upcoming Part 3 of the Eurocode 8. Although the presented application only deals with member chord rotation and shear force limit state probabilities, the proposed methodology can be generalized to other deformation-based and force-based structural parameters.  相似文献   

18.
在地震作用下钢筋混凝土建筑结构出现破坏倒塌为地震灾害中的关键,有效评估建筑结构抗地震破坏倒塌能力是建筑结构设计的前提,也是当前建筑结构提高抗震性能与加固的依据。提出变形指标极值、失效判断标准以及钢筋混凝土建筑结构倒塌极限状态判断标准,据此获取倒塌储备系数、倒塌易损性、结构整体超强系数、结构整体延性系数等评估标准。采用Pushover分析法选择相应地震波。依据梁柱线刚比对建筑结构抗倒塌能力的影响,以及柱端弯矩增加系数对建筑结构抗地震破坏倒塌能力的影响,对建筑结构易损性进行分析。结果表明:等跨建筑结构抗地震破坏倒塌能力更强;建筑结构底层是薄弱层,COF值越高,结构越容易倒塌。  相似文献   

19.
The buildings’ capacity to maintain minimum structural safety levels during natural disasters, such as earthquakes, is recognisably one of the aspects that most influence urban resilience. Moreover, the public investment in risk mitigation strategies is fundamental, not only to promote social and urban and resilience, but also to limit consequent material, human and environmental losses. Despite the growing awareness of this issue, there is still a vast number of traditional masonry buildings spread throughout many European old city centres that lacks of adequate seismic resistance, requiring therefore urgent retrofitting interventions in order to both reduce their seismic vulnerability and to cope with the increased seismic requirements of recent code standards. Thus, this paper aims at contributing to mitigate the social and economic impacts of earthquake damage scenarios through the development of vulnerability-based comparative analysis of some of the most popular retrofitting techniques applied after the 1998 Azores earthquake. The influence of each technique individually and globally studied resorting to a seismic vulnerability index methodology integrated into a GIS tool and damage and loss scenarios are constructed and critically discussed. Finally, the economic balance resulting from the implementation of that techniques are also examined.  相似文献   

20.
The present paper investigates the seismic reliability of the application of buckling restrained braces (BRBs) for seismic retrofitting of steel moment resisting framed buildings through fragility analysis. Samples of regular three‐storey and eight‐storey steel moment resisting frames were designed with lateral stiffness insufficient to comply with the code drift limitations imposed for steel moment resisting frame systems in earthquake‐prone regions. The frames were then retrofitted with concentrically chevron conventional braces and BRBs. To obtain robust estimators of the seismic reliability, a database including a wide range of natural earthquake ground motion records with markedly different characteristics was used in the fragility analysis. Nonlinear time history analyses were utilized to analyze the structures subjected to these earthquake records. The improvement of seismic reliability achieved through the use of conventional braces and BRBs was evaluated by comparing the fragility curves of the three‐storey and eight‐storey model frames before and after retrofits, considering the probabilities of four distinct damage states. Moreover, the feasibility of mitigating the seismic response of moment resisting steel structures by using conventional braces and BRBs was determined through seismic risk analysis. The results obtained indicate that both conventional braces and especially BRBs improve significantly the seismic behavior of the original building by increasing the median values of the structural fragility curves and reducing the probabilities of exceedance of each damage state. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号