首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 549 毫秒
1.
—The 4-season (12-month) running means of temperatures at five atmospheric levels (surface, 850–300 mb, 300–100 mb, 100–50 mb, 100–30 mb) and seven climatic zones (60°N–90°N, 30°N–60°N, 10°N–30°N, 10°N–10°S, 10°S–30°S, 30°S–60°S, 60°S–90°S) showed QBO (Quasi-biennial Oscillation), QTO (Quasi-triennial Oscillation) and larger periodicities. For stratosphere and tropopause, the temperature variations near the equator and North Pole somewhat resembled the 50mb low latitude zonal winds, mainly due to prominent QBO. For troposphere and surface, the temperature variations, especially those near the equator, resemble those of eastern equatorial Pacific sea-surface temperatures, mainly due to prominent QTO. In general, the temperature trends in the last 35 years show stratospheric cooling and tropospheric warming. But the trends are not monotonic. For example, the surface trends were downward during 1960–70, upward during 1970–82, downward during 1982–85 and upward thereafter. Models of green-house warming should take these non-uniformities into account.  相似文献   

2.
Stratospheric temperatures show distinct trends, not necessarily monotonically upward or downward. At the North Pole, trends were large only during winter and spring and were different for different months; downward for November, December, mixed for January and upward for February, March and April. For the 10°-90°N belt, the trends were variable, viz., downward during 1971-1975, upward during 1975–1978 and downward again from 1978 onwards up to date, opposite to the upward trend of ground temperature in the Northern hemisphere in recent years. Twelve-monthly running averages revealed strong QBO (quasi-biennial oscillation). For the North Pole, the QBO showed colder (lower) temperatures during 50-mb wind QBO westerly phase maxima. For the 10°-90°N belt, the QBO was similar for 30 mb and 50 mb but the QBO phases did not match well with 50-mb wind QBO phases.  相似文献   

3.
R. P. Kane 《Annales Geophysicae》1997,15(12):1581-1594
Data for geomagnetic activity index aa for 1868–1994 were subjected to spectral analysis for 12 intervals each of 11 consecutive years. In each interval, QBO and QTO (quasi-biennial and quasi-triennial oscillations) were observed at ∼ 2.00, 2.15, 2.40, 2.70 y and ∼ 3.20, 3.40 y, but not all in all intervals. These fluctuations are absent near (2–3 y before and after) the sunspot minima and are present only as 2 or 3 peaks in aa indices, one near or before the sunspot maximum and the other (one or two, generally the larger ones) in the declining phase of the sunspot cycle. Comparison with the solar wind (1965 onwards) showed a fairly good match, indicating that the aa variations were mostly due to similar variations in the solar wind, which must have their origin in solar physical processes. A few aa variations did not match with solar wind. When compared with terrestrial phenomena, no match was found with stratospheric low-latitude zonal wind QBO; but some QTO in aa matched QTO in ENSO (El Nino/ Southern Oscillation). This may or may not be a chance coincidence and needs further exploration.  相似文献   

4.
United States cloudiness data for 1950–1992 show quasi-biennial (QBO) and quasi-triennial (QTO) oscillations which match partly with the QBO and QTO of the Southern Oscillation (SO) index (the Tahiti minus Darwin pressure), but not with the QBO of the 50-mb equatorial zonal wind. Cloudiness also shows significant periodicities near 4.2 and 7.5 years, and probably a sunspot cycle effect (periodicities 11–14 years), with minimum cloudiness at or soon after sunspot minima, though this could also be due to periodicities of 10 and 17 years observed in the SO index. During 1955-1970, cloudiness increased by about 1%. Thereafter, it remained almost steady for the eastern and central parts of the USA, but continued to rise until about 1980 for the western USA.  相似文献   

5.
A comparison of monthly mean values of total ozone at South Pole, Buenos Aires (Argentina), Cachoeira Paulista and Natal (Brazil), and Huancayo (Peru) revealed that whereas South Pole showed an ozone depletion of 45% in October 1987 (as compared to October, 1977), Buenos Aires showed a small decrease (10%) while the other locations showed very small decreases (1–2%). When daily values are considered, the Antarctic ozone hole of October 1987 seems to have caused 10% depletion at Buenos Aires and 5% at Natal and Huancayo in December 1987. However, a large part of this is normal seasonal variation, except at Huancayo, where a residual effect of 5% depletion in December 1987 remains. The QBO effects (5–8% changes in the ozone level in 2–3 years) could cause 10–15% fluctuations in solar UVB on the ground on clear-sky days and could be a possible health hazard unless factors like cloudiness reduce the UVB intensities.  相似文献   

6.
All existing data (6 years) on gravity wave activity, inferred from the nighttime A3 (oblique incidence on the ionosphere) radio wave absorption measurements in the lower ionosphere on 270 kHz at Prhonice in Central Europe, have been exploited to get information on the effects of QBO phases and the Mt. Pinatubo volcanic eruption on the gravity wave activity in the winter half of the year. There appears to be an enhancement of gravity wave activity in the two winters just after the strong volcanic eruption of Mt. Pinatubo. This enhancement is remarkable for long-period waves (T=2–3 hours). No clear effect of the phase of QBO on the level of gravity wave activity has been found; a possible effect of QBO on the correlations between gravity wave activities in individual period bands is indicated. The results are limited by a relatively short data series; however, no more data will he available.  相似文献   

7.
The minimum winter temperature series for the United States Gulf Coast for 1799–1988 (190 values) was subjected to Maximum Entropy Spectral Analysis. Significant periodicities in the QBO region (T-2–3 years) and atT=3.7, 4.5, 5.5, 6.5, 7.5, 12.9, 15.5 and 22 years were detected. Some of these were present in the first half only (1799–1893) while others in the latter half only (1894–1988), indicating a transient nature. Also, more than 50% of the variance was random. Many of the significant periodicities are seen in other geophysical parameters. Some may be harmonics of the 11-year sunspot cycle and the 22-year Hale magnetic sunspot cycle.  相似文献   

8.
van Loon et al. [2007. Coupled air–sea response to solar forcing in the Pacific region during northern winter. Journal of Geophysical Research 112, D02108, doi:10.1029/2006JD007378] showed that the Pacific Ocean in northern winter is sensitive to the influence of the sun in its decadal peaks. We extend this study by three solar peaks to a total of 14, examine the response in the stratosphere, and contrast the response to solar forcing to that of cold events (CEs) in the Southern Oscillation. The addition of three solar peak years confirms the earlier results. That is, in solar peak years the sea level pressure (SLP) is, on average, above normal in the Gulf of Alaska and south of the equator, stronger southeast trades blow across the Pacific equator and cause increased upwelling and thus anomalously lower sea surface temperatures (SSTs). Since the effect on the Pacific climate system of solar forcing resembles CEs in the Southern Oscillation, we compare the two and note that, even though their patterns appear similar in some ways, they are particularly different in the stratosphere and are thus due to separate processes. That is, in July–August (JA) of the year leading into January–February (JF) of the solar peak years, the Walker cell expands in the Pacific troposphere, and the stratospheric wind anomalies are westerly below 25 hPa and easterly above, whereas this signal in the stratosphere is absent in CEs. Thus the large-scale east–west tropical atmospheric (Walker) circulation is enhanced, though not to the extent that it is in CEs in the Southern Oscillation, and the solar influence thus appears as a strengthening of the climatological mean regional precipitation maxima in the tropical Pacific. Additionally, CEs have a 1-year evolution, while the response to solar peaks extends across 3 years such that the signal in the Pacific SLP of the solar peaks is similar but weaker in the year leading into the peak and in the year after the peak. The concurrent negative SST anomalies develop during the year before the solar peak, and after the peak the anomalies are still present but are waning. In the stratosphere in solar peaks, the equatorial quasi-biennial oscillation (QBO) is amplified when it is in its westerly phase in the lower stratosphere and easterly phase above; and the QBO is suppressed when in its easterly phase below–westerly phase above. Such an association is not evident in CEs.  相似文献   

9.
Approximately one thousand microearthquakes with body-wave magnitude mb have been located in northern Venezuela and the southern Caribbean region (9–12° N; 64–70° W) since the installation in 1980 of the Venezuelan Seismological Array, together with forty events of mb 4, one of them with surface-wave magnitude Ms 6. Focal depths are in the range of 0 to <15 km. This geologically complex region is part of the boundary between the Caribbean and the South American Plates. Epicentral locations indicate that this E–W oriented portion of the boundary is formed by two 400 km long subparallel fault zones: San Sebastián fault zone (SSF), 20 km north of Caracas along the coast; and La Victoria fault zone (LVF), 25 km south of the city. They are clearly delineated by the microseismicity. New composite focal mechanism solutions (CFMS) along these faults show right-lateral strike-slip (RLSS) motion on nearly E–W oriented fault planes. NW-striking subsidiary active faults occur in the region and intercept the two main E–W fault zones. These interceptions show high levels of microearthquake activity and seismic moment release when compared to other portions of both, the main and subsidiary faults. New CFMS at those fault crossing sites show NW-striking RLSS motion and normal faulting, in an en-echelon-like structural behavior. Geological data and quantitative comparisons with other transcurrent plate boundaries in the world suggest that the rate of plate motion in this area is on the order of 20 mm/y. Several moderate and large shocks have occurred along the SSF and LVF since 1640, including an Ms 7.6 event in 1900 on SSF. Although the region may be relatively far from a repeat of this earthquake, seismicity data indicate that strong shocks could take place along segments of the seismically active faults identified in this study.  相似文献   

10.
Rock magnetic investigations of archaeological materials of burnt clay from Eneolithic ovens (4500 years BC) showed particular changes with time in the magnetic mineralogy of samples, stored under normal conditions. Our results indicate that well-burnt clay from the archaeological materials contains a significant amount of very fine magnetic grains, which could notably influence the rock magnetic properties and behavior at room temperature. The main observations after 4 years of storage under laboratory conditions are as follows: 1) decrease in the final unblocking temperature of NRM from 600–620°C to 580°C and 2) increase in the capacity of laboratory TRM acquisition. The most probable mechanism responsible for the observed changes is supposed to be fast low-temperature oxidation of the finest (superparamagnetic) grains and the development of the maghemite shell in coarser single-domain grains. The Thellier palaeointensity experiments, carried out at the beginning of the study, showed very good results, which satisfy all acceptance criteria, applied to evaluation of the results, quite well. Palaeointensity determinations repeated 4 years later on samples from the same material showed the experimental results to be of significantly inferior quality. The main difference is the presence of the significant deviation (change in the slope) on the Arai diagram after T>350–400°C. The calculated palaeointensity is either higher than the one obtained before, or similar, but evaluated with large uncertainty. Therefore, we conclude that the possibility to obtain biased palaeointensity values increases during short-time storage (i.e. several years) due to the low-temperature changes of the material.  相似文献   

11.
High time resolution data from the CUTLASS Finland radar during the interval 01:30–03:30 UT on 11 May, 1998, are employed to characterise the ionospheric electric field due to a series of omega bands extending 5° in latitude at a resolution of 45 km in the meridional direction and 50 km in the azimuthal direction. E-region observations from the STARE Norway VHF radar operating at a resolution of 15 km over a comparable region are also incorporated. These data are combined with ground magnetometer observations from several stations. This allows the study of the ionospheric equivalent current signatures and height integrated ionospheric conductances associated with omega bands as they propagate through the field-of-view of the CUTLASS and STARE radars. The high-time resolution and multi-point nature of the observations leads to a refinement of the previous models of omega band structure. The omega bands observed during this interval have scale sizes 500 km and an eastward propagation velocity 0.75 km s–1. They occur in the morning sector (05 MLT), simultaneously with the onset/intensification of a substorm to the west during the recovery phase of a previous substorm in the Scandinavian sector. A possible mechanism for omega band formation and their relationship to the substorm phase is discussed.  相似文献   

12.
EISCAT observations of interplanetary scintillation have been used to measure the velocity of the solar wind at distances between 15 and 130R (solar radii) from the Sun. The results show that the solar wind consists of two distinct components, a fast stream with a velocity of 800 km s–1 and a slow stream at 400 kms–1. The fast stream appears to reach its final velocity much closer to the Sun than expected. The results presented here suggest that this is also true for the slow solar wind. Away from interaction regions the flow vector of the solar wind is purely radial to the Sun. Observations have been made of fast wind/slow wind interactions which show enhanced levels of scintillation in compression regions.  相似文献   

13.
During solar cycle 21 (1976–86), the primary solar irradiance at 300 nm was steady during 1980–82 and thereafter decreased until 1986 by only 2–3%. The stratospheric ozone in middle latitudes had a QBO of 3–4% in this interval but the long-term ozone trend was less than 3% per decade, which could result in a UVB increase of only 5–6% per decade. Thus, the combined effect of changes in primary solar irradiance and ozone changes could be an increase of 5–6% in UVB, observed at ground during 1977–81 and a steady level during 1981–86. During 1976–86, the average cloudiness changed by less than 5% indicating UVB changes of 5% or less on this count. The aerosol level was almost constant during 1976–82 and increased abruptly in 1982 due to the E1 Chichon eruption and decayed slowly unitl 1986. Thus, due to aerosols only, the UVB was expected to be constant during 1976–82, to decrease sharply in 1982 and to recoup slowly thereafter.Measurements of clear-sky solar UVB at ground made at Jungfraujoch (Swiss Alps, 47°N, 8°E) during 1981–89 and at Rockville, USA (39°N, 77°W) were not comparable between themselves and did not follow the above expected patterns. Neither did the all-day R-B meter UVB measurements at Philadelphia, USA (40°N, 75°W) and Minneapolis, USA (45°N, 93°W). We suspect that some of these measurements are erroneous. This needs further detailed scrutiny.  相似文献   

14.
Phase velocities of Rayleigh waves for the Adriatic Sea area are obtained in the period range 25–190 sec along the path (l'Aquila-Trieste) AQU-TRI and 20–167 sec along the path (Trieste-Bari) TRI-BAI.The phase velocities are systematically higher than the known values for the surrounding regions. The data inversion indicates the presence of a lithosphere typical of stable continental areas with clear high-velocity lid (V s 4.6 km/sec) overlying a well developed low velocity zone (V s 4.2 km/sec).P. F. Geodinamica C.N.R., Roma Pubbl. N. 189.  相似文献   

15.
We present for the first time a statistical study of 50 keV ion events of a magnetospheric origin upstream from Earths bow shock. The statistical analysis of the 50–220 keV ion events observed by the IMP-8 spacecraft shows: (1) a dawn-dusk asymmetry in ion distributions, with most events and lower intensities upstream from the quasi-parallel pre-dawn side (4 LT-6 LT) of the bow shock, (2) highest ion fluxes upstream from the nose/dusk side of the bow shock under an almost radial interplanetary magnetic field (IMF) configuration, and (3) a positive correlation of the ion intensities with the solar wind speed and the index of geomagnetic index Kp, with an average solar wind speed as high as 620 km s–1 and values of the index Kp 2. The statistical results are consistent with (1) preferential leakage of 50 keV magnetospheric ions from the dusk magnetopause, (2) nearly scatter free motion of 50 keV ions within the magnetosheath, and (3) final escape of magnetospheric ions from the quasi-parallel dawn side of the bow shock. An additional statistical analysis of higher energy (290–500 keV) upstream ion events also shows a dawn-dusk asymmetry in the occurrence frequency of these events, with the occurrence frequency ranging between 16%-34% in the upstream region.  相似文献   

16.
Kp and Ap indices covering the period 1932 to 1995 are analysed in a fashion similar to that attempted by Bartels for the 1932–1961 epoch to examine the time variations in their characteristics. Modern analysis techniques on the extended data base are used for further insight. The relative frequencies of occurrence of Kp with different magnitudes and the seasonal and solar cycle dependences are seen to be remarkably consistent despite the addition of 35 years of observations. Many of the earlier features seen in the indices and special intervals are shown to be replicated in the present analysis. Time variations in the occurrence of prolonged periods of geomagnetic calm or of enhanced activity are presented and their relation to solar activity highlighted. It is shown that in the declining phase the occurrence frequencies of Kp = 4–5 (consecutively over 4 intervals) can be used as a precursor for the maximum sunspot number to be expected in the next cycle. The semiannual variation in geomagnetic activity is reexamined utilising not only the Ap index but also the occurrence frequencies of Kp index with different magnitudes. Lack of dependence of the amplitude of semiannual variation on sunspot number is emphasised. Singular spectrum analysis of the mean monthly Ap index shows some distinct periodic components. The temporal evolution of 44 month, 21 month and 16 month oscillations are examined and it is postulated that while QBO and the 16 month oscillations could be attributed to solar wind and IMF oscillations with analogous periodicity, the 44 month variation is associated with a similar periodicity in recurrent high speed stream caused by sector boundary passage. It is reconfirmed that there could have been only one epoch around 1940 when solar wind speed could have exhibited a 1.3-year periodicity comparable to that seen during the post-1986 period.  相似文献   

17.
Ozone depression in the polar stratosphere during the energetic solar proton event on 4 August 1972 was observed by the backscattered ultraviolet (BUV) experiment on the Nimbus 4 satellite. Distinct asymmetries in the columnar ozone content, the amount of ozone depressions and their temporal variations above 4 mb level (38 km) were observed between the two hemispheres. The ozone destroying solar particles precipitate rather symmetrically into the two polar atmospheres due to the geomagnetic dipole field These asymmetries can be therefore ascribed to the differences mainly in dynamics and partly in the solar illumination and the vertical temperature structure between the summer and the winter polar atmospheres. The polar stratosphere is less disturbed and warmer in the summer hemisphere than the winter hemisphere since the propagation of planetary wave from the troposphere is inhibited by the wind system in the upper troposphere, and the air is heated by the prolonged solar insolation. Correspondingly, the temporal variations of stratospheric ozone depletion and its recovery appear to be smooth functions of time in the (northern) summer hemisphere and the undisturbed ozone amount is slighily, less than that of its counterpart. On the other hand, the tempotal variation of the upper stratospheric ozone in the winter polar atmosphere (southern hemisphere) indicates large amplitudes and irregularities due to the disturbances produced by upward propagating waves which prevail in the polar winter atmosphere. These characteristic differences between the two polar atmospheres are also evident in the vertical distributions of temperature and wind observed by balloons and rocker soundings.  相似文献   

18.
During the 6th August 1995, the CUTLASS Finland HF radar ran in a high time resolution mode, allowing measurements of line-of-sight convection velocities along a single beam with a temporal resolution of 14 s. Data from such scans, during the substorm expansion phase, revealed pulses of equatorward flow exceeding 600 m s–1 with a duration of 5 min and a repetition period of 8 min. Each pulse of enhanced equatorward flow was preceded by an interval of suppressed flow and enhanced ionospheric Hall conductance. These transient features, which propagate eastwards away from local midnight, have been interpreted as ionospheric current vortices associated with fieldaligned current pairs. The present study reveals that these ionospheric convection features appear to have an accompanying signature in the magnetosphere, comprising a dawnward perturbation and dipolarisation of the magnetic field and dawnward plasma flow, measured in the geomagnetic tail by the Geotail spacecraft, located at L = 10 and some four hours to the east, in the postmidnight sector. These signatures are suggested to be the consequence of the observation of the same field aligned currents in the magnetosphere. Their possible relationship with bursty Earthward plasma flow and magnetotail reconnection is discussed.  相似文献   

19.
Subsurface geothermal exploration has considerably added to our knowledge of the Latera volcanic complex. A syenitic body is located about 2 km below the present-day surface; K-Ar data point a 0.9 Ma age. The primary magma was a silica-saturated trachyte; undersaturated, hauyne-bearing products are found near the carbonatic wall-rocks and have been interpreted as reaction products. Subsurface data from deep drilling and geophysical surveys suggest that the Latera caldera resulted from three main successive collapse phases: (i) formation of an old caldera, now buried, related to the eruption of ignimbrites from the syenitic magma chamber; (ii) sinking of the eastern sector as a consequence of the formation of the nearby Bolsena caldera (0.3 Ma); (iii) multistage formation of the present Latera caldera (0.16 Ma).  相似文献   

20.
The 12-month running means of the surface-to-500 mb precipitable water obtained from analysis of radiosonde data at seven selected locations showed three types of variability viz: (1) quasi-biennial oscillations; these were different in nature at different latitudes and also different from the QBO of the stratospheric tropical zonal winds; (2) decadal effects; these were prominent at middle and high latitudes and (3) linear trends; these were prominent at low latitudes, up trends in the Northern Hemisphere and downtrends in the Southern Hemisphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号