首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
4.20芦山地震后,有学者在芦山县龙门乡发现一系列的线性裂缝和砖块的旋转变形等"地震地表破裂迹象",由此推测芦山—龙门一线存在隐伏逆断裂,并认为该断裂有可能是此次地震的发震断裂。因此,进一步探讨芦山—龙门一线是否存在潜在的发震断裂,无论是对研究芦山7.0级地震的发震断裂,还是对灾区的重建指导都十分重要。在龙门乡开展了地质灾害调查、跨谷地的地质剖面实测,槽探和人工地震勘探等工作。结果显示:至少在800m深度范围内,不存在芦山-龙门隐伏断裂。此带上的地裂缝等现象不是由断层位错引起,而更可能是地震动在阶地陡坎附近造成的地基或边坡效应所致。  相似文献   

2.
2013年4月20日发生在龙门山南段的芦山MS7.0地震是继发生在龙门山中北段的汶川MS8.0地震之后的又一次强震。本文通过震后地表变形特征、余震分布、震源机制解、石油地震勘探剖面、历史地震数据等资料,结合前人对龙门山南段主干断裂、褶皱构造特征的研究以及野外实地考察,应用活动褶皱及"褶皱地震"的相关理论,初步分析芦山地震的发震构造模式。认为芦山地震为典型的褶皱地震,发震断裂为前山或山前带一隐伏断裂。构造挤压产生的地壳缩短大部分被褶皱构造吸收。认为龙门山南段前缘地区具有活褶皱-逆断层的运动学特征,表明龙门山逆冲作用正向四川盆地内部扩展。  相似文献   

3.
四川省芦山MS7.0地震发震构造分析   总被引:5,自引:3,他引:2  
2013年4月20日的芦山“4·20”MS7.0地震发生在龙门山断裂带西南段,震中地区分布多条NE向断裂,构造较为复杂.这次地震震源机制解显示为逆冲型地震,破裂面为NE走向,与龙门山断裂带的运动性质和走向一致.地表调查只在大川-双石断裂(前山断裂)和新开店断裂(大邑断裂南段)发现局部分布的NE向地表裂缝、沿地表裂缝分布的喷砂冒水和砂土液化,不规则的边坡开裂等地表变形,以及断裂沿线较严重的滑坡崩塌和房屋破坏.野外调查没有发现明显的地震地表破裂.GPS测量结果显示,此次地震的发震断裂位于芦山县城附近或其以东,而芦山西侧的断裂也可能参与了部分活动.根据野外地质调查、GPS观测、震源机制解、震源深度、余震分布等结果综合判定,芦山7.0级地震的主要发震构造是芦山之下、大川-双石断裂和新开店断裂之间的龙门山前缘滑脱带.此滑脱带在该段的运动导致了这次地震的发生,并可能带动了它上面的大川-双石和新开店等断裂的活动.  相似文献   

4.
继2008年汶川MS8.0地震和2013年芦山MS7.0地震后,2022年6月1日在龙门山断裂带南段又发生了一次MS6.1强震,距离2013年芦山MS7.0地震震中位置仅10 km.为研究此次地震的发震断层及两次芦山地震的关系,对震后60天的余震序列进行重定位,获得了933个高精度定位结果,EW,NS和UD方向上的定位误差分别为0.15 km,0.13 km和0.23 km.余震序列在水平分布上沿北东—南西向略长,在深度上主要分布在12—20 km,10 km以浅余震很少.余震震源深度剖面显示发震断层面倾向南东,与2013年芦山MS7.0地震发震断层结构中的反冲断层倾向一致,两次芦山地震的发震断层结构相交为复式Y型断裂结构,此次芦山地震的发震断层为其中一条深度更深的反冲断层.此次地震没有产生地表破裂,推测发震断层为一条埋深较深的隐伏断层.两次芦山地震的余震震中分布区跨过了该区域的一条大型逆冲型断裂带,即双石—大川断裂带.深度剖面显示芦山MS7.0地震的南东...  相似文献   

5.
以往的研究显示了2013年芦山MS7.0级地震发震断层的隐伏逆冲断层基本特征,但是破裂深部细节差异较大.本文以近场密集的同震形变数据约束芦山地震破裂面几何形状及滑动分布,结果显示芦山地震破裂面具有铲状结构,上部16km为43°~50°高角度断层,深部16~25km为小于27°的低角度断层,破裂深度与重定位的余震分布深度一致.破裂分布模型清楚显示上下两个断层上各有一个滑动幅度大于0.5m的峰值破裂区,最大滑动量1.5m位于13km深处.重定位的余震分布基本都落在最大滑动量等值线外部库仑应力增加的区域.芦山地震破裂面几何形状和滑动分布特征与2008年汶川MS8.0级地震映秀—北川破裂相似,支持龙门山冲断带发育大规模的近水平滑脱层,是青藏高原东缘地壳缩短增厚、龙门山挤压隆升的重要证据.  相似文献   

6.
中国地震局地球物理勘探中心芦山MS7.0地震现场工作队在地震应急考察期间发现了WNW向的箭杆林地表破裂带,并详细考察了该地表破裂带的产状、破裂面上的擦痕及断错特征,讨论了对该地表破裂带的不同认识以及对发震构造研究的意义.箭杆林地表破裂带位于雅安市上里镇箭杆林村二组西侧海拔1 529—1 578m、坡度30°—40°的山坡上.在长约80m的范围内,该地表破裂带分3段近直线展布,每段长6—10m,最宽约40cm.破裂带总体走向120°,破裂面平整,倾向SW,倾角62°—85°.破裂通过的岩性多为黏土,破裂面上有两组明显的新鲜擦痕,倾伏角较大的一组擦痕一般仅保留在距地面10—20cm以上的范围内,其下倾伏角较小的一组擦痕则覆盖倾伏角较大的一组擦痕.破裂经过处见一直径约4cm的树根被明显错断,上盘上升15cm,并向SE方向平移10cm;另见上盘地层发生翻转现象.经探槽揭示,破裂带上盘黑色腐植土层相对下盘上升约15cm.综合分析表明,箭杆林地表破裂带在芦山MS7.0地震期间经历了先逆冲、后左旋平移的运动过程.震源机制解表明,芦山MS7.0地震是错断面为NE走向的逆冲型地震.WNW向箭杆林地表破裂带可能是芦山地震产生的次级破裂带,是否存在NW--WNW向的发震构造值得研究.芦山MS7.0地震箭杆林地表破裂带的发现为发震构造和震害研究提供了重要的基础资料.  相似文献   

7.
陈晨  胥颐 《地球物理学报》2013,56(12):4028-4036
利用四川省地震台网的震相数据和双差定位方法对芦山MS7.0级地震及其余震序列进行了精确定位,根据余震分布确定了发震断层的位置和断层面的几何特征,并对余震活动进行了分析.结果显示,芦山MS7.0级地震的震中位于30.28°N、102.99°E,震源深度为16.33 km.余震沿发震断层向主震两侧延伸,主要分布在长约32 km、宽约15~20 km、深度为5~24 km的范围内.地震破裂带朝西南方向扩展范围较大,东北方向略小,余震震级随时间迅速衰减.震源深度剖面清晰地显示出发震断层的逆冲破裂特征,推测发震断层为大川—双石断裂东侧约10 km的隐伏断层.该断层走向217°、倾向北西,倾角约45°,产状与大川—双石断裂相比略缓,它们同属龙门山前山断裂带的叠瓦状逆冲断层系.受发震断裂影响,部分余震沿大川—双石断裂分布,西北方向的余震延伸至宝兴杂岩体的东南缘,与汶川地震的破裂带之间存在50 km左右的地震空区,有可能成为未来发生强震的潜在危险区.  相似文献   

8.
2013年4月20日在龙门山南段发生M_W6.7强震,造成重大人员伤亡和财产损失.芦山地震发生后,针对发震断层是高角度还是低角度断层?断层的归属、性质和地震构造模型等问题,一直存在不同的认识和争议.本次研究采用了芦山震区的三条高精度二维人工地震反射剖面,结合区域地质、钻井资料,对芦山震区浅层沉积与构造变形进行综合解释;研究同时综合了震源机制解、小震重定位结果以及深地震探测剖面,并结合龙门山地区古生代以来的构造演化史,对震区地质构造进行解析.研究认为龙门山南段主要发育了三套不同层次的滑脱层并控制了上地壳形变,呈现多层滑脱、多期变形、构造叠加的复杂特征.2013年芦山地震的主要活动断层发育在深部约20 km滑脱层之上,倾向NW、倾角较陡大约在45°~50°,并产生反冲断层形成Y字状结构.地震地质解释表明,芦山地震的同震活动断层没有突破中生界和新生界,并非先前认为的双石—大川断裂(F4)或山前大邑隐伏断裂(F6);芦山地震的发震断层为一基底盲冲断层;深地震反射结果进一步揭示芦山地震的发震断层为一早期(古生代)形成的正断层.研究认为芦山地震发震构造符合简单剪切断层转折褶皱模型(Simple-shear Fault-Bend Fold),2013年芦山地震为一次非特征型地震.晚新生代以来在青藏高原向四川盆地强烈挤压持续作用下,早期正断层重新活动并产生了芦山地震.这种深部隐伏断层活化产生的特殊型地震,无疑增加了龙门山地区地震灾害的风险和不确定性.  相似文献   

9.
本文利用2013年芦山M_S7.0级地震同震GPS数据反演了芦山断层几何与断层滑动分布,结果表明:芦山地震发震断层具有南陡北缓、上陡下缓的特征,低倾角的区域位于发震断层北段且靠近映秀断层的一侧;滑动分布模型的最大滑动量为0.82m,其深度为13.67km与小震发生集中平均深度12.5km接近.我们选取1998—2014年龙门山断裂带区域地壳形变观测数据,拟合获得了龙门山断裂带走向方向上的速度分量,发现在汶川M_S8.0地震与芦山M_S7.0地震之间宽度约30km破裂空区,龙门山断裂带西南段与东北段的形变分量以破裂空区为界方向相反.断裂带东北段(汶川地震主要发震断层)的形变分量方向与断层右旋走滑运动方向一致,而在断裂带西南段(芦山地震发震断层)的形变分量方向与断层左旋走滑运动方向一致.芦山地震走滑方向与汶川地震走滑方向相反是因为该断裂带构造运动在特有几何构造下受青藏高原东南向挤压,遇龙门山中段岩石圈楔状构造的阻挡,在汶川M_S8.0地震与芦山M_S7.0地震间的地震空区,形成了构造运动向其两侧分流的结果.  相似文献   

10.
在对2013年4月20日芦山MS7.0地震灾区大量地震地质灾害实地考察及调查的基础上, 总结了滑坡、 崩塌、 砂土液化、 地裂缝、 地表变形等地震地质灾害的分布及发育特点, 探讨了地震地质灾害与发震断裂之间的关系. 极震区和重灾区的崩塌和滑坡特别严重, 是地震巨大破坏作用的外在表现形式; 砂土液化点较少, 分布范围和规模有限; 地裂缝和地表变形并非真正意义上的地震地表破裂带. 根据极震区和重灾区地震地质灾害的分布和发育特点, 认为芦山地震最有可能的发震断裂为龙门山前山断裂的双石—大川断裂, 也有可能是龙门山山前隐伏断裂的大邑断裂, 还有可能是双石—大川断裂与大邑断裂两者共同触发的结果.   相似文献   

11.
Newmark方法在芦山地震诱发滑坡分布预测研究中的应用   总被引:9,自引:2,他引:7  
对于地震滑坡灾害而言,进行地震滑坡危险区划是降低损失的有效手段之一.因此,地震滑坡危险性预测方法的研究成为这一领域的热点.2013年4月20日芦山地震诱发了大量的滑坡崩塌,造成了严重的人员伤亡和社会经济财产损失.文中通过对地震灾区震后航片、遥感影像等的解译,初步获得此次地震诱发滑坡的分布概况.在芦山地震灾区的地形和岩性分析的基础上,基于Newmark物理平衡模型,对该区的潜在地震滑坡危险区进行了分析预测,通过对比本研究获得的潜在滑坡区域预测结果与解译的滑坡分布情况,表明Newmark模型是一种有效的地震诱发滑坡预测分析方法.进一步探讨了不同滑坡影响范围估算方法的差异,认为震级与产生滑坡最远距离之间的关系是一种较好的估算方法.  相似文献   

12.
芦山地震、汶川地震与龙门山地区水汽异常   总被引:2,自引:0,他引:2       下载免费PDF全文
对龙门山地区水汽动态的分析研究表明,在2013年芦山MS7.0地震和2008年汶川MS8.0地震前,龙门山地区大气相对湿度异常频次都出现了先逐年下降,然后快速回升的过程;下降时间较长,10a以上,上升时间较短,1~2a;震中位于异常频次相对下降和上升幅度都是最大的中心或邻近区域。在地震孕育中期阶段发生水汽异常趋势变化的原因可能是由于岩层裂隙的张合、地下流体的运动和地热能的变化,影响地面温度和潜热交换的速度所致。在地震孕育的中长期阶段(10a~几a),地壳岩石受压缩变形,孔隙、裂隙不断闭合或减少,由地下释放的热水、热汽减少,潜热交换速度也随之降低,相对湿度异常频次表现为逐年下降的趋势。在地震孕育的中短期阶段,地壳岩石变形进一步加大,可能导致微破裂不断扩展,由地下释放的热水、热汽由减少转为增加,潜热交换速度由降低转为迅速增加,相对湿度异常频度也表现出由逐年下降转为突发的快速上升。  相似文献   

13.
Calculating the coseismic static Coulomb stress change induced by an earthquake and interseismic stress change permits to explain the distribution of aftershocks, the earthquake sequence and other seismic observations. Four earthquakes greater than M7 have occurred in the Longmenshan area before the 2013 Lushan earthquake since 1900. This paper analyzes the influence of these four events on the Lushan earthquake, the stress evolution after the Lushan earthquake accompany with strong earthquake sequence on Longmenshan Fault, and the stress state of the gap between the Lushan and Wenchuan earthquakes. To address these issues would help future seismic risk assessment in the region. We construct a three dimensional finite element model based on the geological structure, the deep inversion results of density and velocity, and the GPS and the stress observation data. The simulation results show that the annual variation rate of Coulomb stress is higher on the Xianshuihe fault and southern segment of the Longmenshan fault, which is consistant with the regional seismicity. The coseismic Coulomb stresses induced by Kangding, Songpan, and Wenchuan earthquakes at the Lushan earthquake epicenter is greater than 0, implying that the three earthquakes may promote the occurrence of the Lushan earthquake, especially the Wenchuan earthquake. The viscous relaxation is remarkable which cannot be ignored in the analysis of stress evolution. From the stress evolution of this area, we can find that the gap between the Wenchuan and Lushan earthquakes is still at a relatively high stress level after the Lushan earthquake.  相似文献   

14.
采用多层粘弹性模型计算了2008年5月12日汶川Mw7.9地震对周围地区尤其是龙门山断裂带南段的影响,结合地震活动性分析,探讨了2013年4月20日芦山Mw6.6地震的发生机制,并对沿龙门山断裂带芦山地震与汶川地震之间的地震空段进行了分析.计算结果表明,由于下部地壳及上地幔的粘弹性效应,芦山地震震源处对应的汶川地震同震库仑应力变化(△CFS)为-0.1bar以下量级,其后随时间逐渐增加,在芦山地震前增加到了0.4bar(有效摩擦系数为0.4)或0.6bar(有效摩擦系数为0.2)以上.这表明,芦山地震的发生与汶川地震的非弹性触发密切相关.芦山地震与汶川地震之间的地震破裂空段存在1970年大邑M6.2地震的库仑应力阴影区(下降区),汶川地震及芦山地震未能使阴影区发生根本变化,因此,如没有其他不可知因素,该空段短期内整体发生破裂,引发大地震的可能性不大.  相似文献   

15.
The seismogenic structure of the Lushan earthquake has remained in suspensed until now. Several faults or tectonics, including basal slipping zone, unknown blind thrust fault and piedmont buried fault, etc, are all considered as the possible seismogenic structure. This paper tries to make some new insights into this unsolved problem. Firstly, based on the data collected from the dynamic seismic stations located on the southern segment of the Longmenshan fault deployed by the Institute of Earthquake Science from 2008 to 2009 and the result of the aftershock relocation and the location of the known faults on the surface, we analyze and interpret the deep structures. Secondly, based on the terrace deformation across the main earthquake zone obtained from the dirrerential GPS meaturement of topography along the Qingyijiang River, combining with the geological interpretation of the high resolution remote sensing image and the regional geological data, we analyze the surface tectonic deformation. Furthermore, we combined the data of the deep structure and the surface deformation above to construct tectonic deformation model and research the seismogenic structure of the Lushan earthquake. Preliminarily, we think that the deformation model of the Lushan earthquake is different from that of the northern thrust segment ruptured in the Wenchuan earthquake due to the dip angle of the fault plane. On the southern segment, the main deformation is the compression of the footwall due to the nearly vertical fault plane of the frontal fault, and the new active thrust faults formed in the footwall. While on the northern segment, the main deformation is the thrusting of the hanging wall due to the less steep fault plane of the central fault. An active anticline formed on the hanging wall of the new active thrust fault, and the terrace surface on this anticline have deformed evidently since the Quaterary, and the latest activity of this anticline caused the Lushan earthquake, so the newly formed active thrust fault is probably the seismogenic structure of the Lushan earthquake. Huge displacement or tectonic deformation has been accumulated on the fault segment curved towards southeast from the Daxi country to the Taiping town during a long time, and the release of the strain and the tectonic movement all concentrate on this fault segment. The Lushan earthquake is just one event during the whole process of tectonic evolution, and the newly formed active thrust faults in the footwall may still cause similar earthquake in the future.  相似文献   

16.
Based on 60 records from the 20 stations within 100km to the epicenter of Lushan earthquake, the predominant period, period of peak response spectrum, duration of ground motion, and source duration are investigated. By the study, we conclude that within 100km to the epicenter, the scope of predominant period is 0.013~0. 275s in EW, NS and UD direction; the scope of period of peak response spectrum for 5% damping ratio is 0.03~0.65s; the scope of 90% ground motion durations is 5. 1~35. 9s; the scope of averaging source duration is 6.41 (EW), 6.05 (NS) and 5.47s (UD). Furthermore, based on the ground motion duration calculated by 20 stations dada, the predictive curve and equation of ground motion duration is regressed and compared with the recent equation of ground motion duration by Bommer (2009). We find that the ground motion durations of most stations are larger than predictively mean value by Bommer (2009), which means that the source effect of Lushan earthquake is relatively larger. Lastly, by the contour figure of ground motion duration and source duration, we conclude that the directivity character of duration is relatively apparent in NE direction. The relatively larger source duration and ground motion duration in NE direction indicate more energy release in the main shock of Lushan earthquake, which perhaps causes the relatively less aftershocks in this direction. The duration has no hanging wall effect, which perhaps results from the blind-reverse fault structure of Lushan earthquake.  相似文献   

17.
2013年4月20日8点02分在四川省雅安市芦山县发生7.0级地震,震源深度13.0km,造成了196人死亡,中国地震局启动地震应急一级响应.在芦山地震中,人员伤亡损失远低于同等规模但人口远少于芦山的玉树地震.全部地震灾区都处于汶川地震的老震区,汶川地震震后受损房屋多数采取了加固或拆除措施,新建农村民居普遍采用多种抗震措施,当地新建房屋比例很高,很好地提高了房屋的抗震性能.在地震中,新建民居极少完全倒塌,这是此次地震伤亡较少的重要原因.但是,由于新建民居多数没有严格按照汶川地震后国家下发的抗震设防民居建设要求进行建设,因此破坏依然十分严重.芦山地震人员伤亡少是防震减灾第1阶段减少人员伤亡目标的体现.然而,芦山地震中抗震措施不达标的农居破坏十分严重,防震减灾实现减轻人民财产损失的目标依然任重道远.  相似文献   

18.
2013年四川省芦山“4.20”7.0级强烈地震触发滑坡   总被引:5,自引:2,他引:3  
2013年4月20日,四川省芦山县发生了MS7.0地震.文中简要介绍了芦山地震的基本情况与芦山地震区历史地震及其相关地震滑坡情况.依据2008年汶川地震滑坡与地震动峰值加速度(PGA)的空间关系,对芦山地震滑坡大体分布范围进行了推测.根据地震滑坡分类学,将芦山地震滑坡分为破坏型滑坡、连贯型滑坡、流滑型滑坡3大类.其中,破坏型滑坡包括岩质崩塌、岩质滑动、岩质崩滑、土质崩塌、土质滑动等5类;连贯型滑坡包括土质坍塌与慢土流2类;流滑型滑坡为快速流滑.破坏型滑坡如岩质崩塌、岩石滑动、土质崩塌这3类是芦山地震滑坡中最常见的类型.基于震后可利用的高分辨率航片,初步解译得到3 883处滑坡位置点数据.最后,从余震对滑坡的影响,芦山地震滑坡与邻区地震滑坡对比分析,对后续基于高分辨率遥感影像的滑坡精细解译的启示等3个方面开展了分析与讨论.  相似文献   

19.
利用强震记录校正的芦山7.0级地震峰值加速度震动图   总被引:2,自引:2,他引:0  
运用考虑场地效应的震动图快速生成方法,综合考虑震中地区地质构造背景、震源机制解结果及中国西部地区地震动参数衰减特征,估计了2013年4月20日芦山7.0级地震加速度分布图.利用地震后获得的强震记录计算了强震台站观测值与借助经验性衰减关系估计值之间的系统偏差,进一步修正了峰值加速度分布图.结果显示,由于芦山地震属于高角度逆冲型地震,加大了震区的震动程度,特别是震中附近30km范围内震动程度比校正前的结果更高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号