首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In situ bioremediation is being considered to optimize an existing pump‐and‐treat remedy for treatment of explosives‐contaminated groundwater at the Umatilla Chemical Depot. Push‐pull tests were conducted using a phased approach to measure in situ hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine (RDX) and 2,4,6‐trinitrotoluene (TNT) degradation rates associated with various carbon substrates. Phase I included short‐duration transport tests conducted in each well to determine dilution rates and retardation factors for RDX and TNT. Phase II included aquifer “feedings” conducted by injecting 150 gallons of treated site groundwater amended with ethanol, corn syrup, lactose or emulsified oil (concentrations 10, 25 and 27 mM, respectively; 12% by volume for emulsified oil). Wells received up to 6 substrate “feedings” over the course of 3 months followed by monitoring dissolved oxygen, nitrate, Fe(II), and sulfate to gauge in situ redox conditions as indicators of anaerobic microbial activity. Phase III included push‐pull tests conducted by injecting 150 gallons of site groundwater amended with approximately 1000 µg/L RDX, 350 µg/L TNT, carbon substrate and a conservative tracer, followed by sampling over 8 d. Corn syrup resulted in the best RDX removal (82% on average) and the largest RDX degradation rate coefficient (1.4 ± 1.1 d?1). Emulsified oil resulted in the best TNT removal (99%) and largest TNT degradation rate coefficient (5.7 × 10?2 d?1). These results will be used to simulate full‐scale in situ bioremediation scenarios at Umatilla and will support a go/no‐go decision to initiate full‐scale bioremediation remedy optimization.  相似文献   

2.
A start‐up study for biohydrogen production from palm oil mill effluent (POME) is carried out in a pilot‐scale up‐flow anaerobic sludge blanket fixed‐film reactor (UASFF). A substrate with a chemical oxygen demand (COD) of 30 g L?1 is used, starting with molasses solution for 30 days and followed by a 10% v/v increment of POME/molasses ratio. At 100% POME, a hydrogen content of 80%, hydrogen production rate of 36 L H2 per day, and maximum COD removal of 48.7% are achieved. Bio‐kinetic coefficients of Monod, first‐order, Grau second‐order, and Stover‐Kincannon kinetic models are calculated to describe the performance of the system. The steady‐state data with 100% POME shows that Monod and Stover‐Kincannon models with bio‐kinetic coefficients of half‐velocity constant (Ks) of 6000 mg COD L?1, microbial decay rate (Kd) of 0.0015 per day, growth yield constant (Y) of 0.786 mg volatile suspended solids (VSS)/mg COD, specific biomass growth rate (μmax) of 0.568 per day, and substrate consumption rate of (Umax) 3.98 g/L day could be considered as superior models with correlation coefficients (R2) of 0.918 and 0.989, respectively, compared to first‐order and Grau's second‐order models with coefficients of K1 1.08 per day, R2 0.739, and K2s 1.69 per day, a = 7.0 per day, b = 0.847.  相似文献   

3.
A bloom of Chlamydomonas botryopara was observed in an extremely acid coal mining pond (pH 2.5) with high concentrations of iron and aluminium (1160...3760 mg L–1 Fe, 133...387 mg L–1 Al). Cell density of algae was counted as 6.45 · 106 mL–1 corresponding to 700 mg L–1 fresh weight and 2660 μg L–1 chlorophyll‐a. The nutrient concentrations were 3.5 mg L–1 soluble reactive phosphorus and 0.15 mg L–1 dissolved inorganic nitrogen. This observation supports the hypothesis that a low nutrient availability rather than extreme conditions (e.g. high acidity and low pH) limit the development of phytoplankton in many acidified lakes.  相似文献   

4.
In situ phosphatase, esterase, lipase, and β‐glucuronidase activities were investigated in filamentous scum bacteria by ELF (enzyme labeled fluorescence)‐technology. Microthrix parvicella exhibited significant activities for all four enzymes with lipase activity being the highest. In situ activities were considerably higher in activated sludge as compared to scum indicating M. parvicella growth to occur mainly in the sludge fraction. “Nocardioform actinomycetes” showed significant activities for phosphatase, esterase, and β‐glucuronidase, lipase activity was only moderate. Activities revealed to be similar for activated sludge and scum. As population densities of enzyme‐active actinomycetes were noticeably higher in scum they presumably find good growth conditions in the scum layer. Enzyme activities in Nostocoida limicola morphotypes were only low with no lipase activity being detected. Due to their phylogenetic diversity activity assignment should be combined with fluorescence in situ hybridization (FISH). Numerous type 0041/0675 and type 1851 filaments showed all but lipase activity. However, some of their attached bacteria revealed to be lipase‐active. Only a few morphotype 0092 filaments revealed phosphatase, esterase, and β‐glucuronidase activity. ELF investigations proved suitable for monitoring in situ filamentous activity. Present imponderabilities of Eikelboom morphotype phylogenetic affiliation are discussed.  相似文献   

5.
The release of genetically engineered microorganisms may occur from research laboratories of production plants. The most important pathway of release is via the sewage system and the sewage treatment plants into surface waters. The growth of these organisms might represent a risk to the environment. Therefore the growth of a genetically engineered strain of E. coli K-12 was investigated. Aqueous supernatant from sewage sludge of two domestic sewage plants was used as medium. This medium was treated with sterile filtration and amended with nutrients. The test strain E. coli K-12 W3110iqM15Nalr(pBR322) did not show permanent growth under the conditions employed. The result is interpreted by the presence of bacteriophages and the poor nutritional conditions in the medium.  相似文献   

6.
Concentration Profiles in Rotating Disc Reactors. Their Mathematical Model for the Anaerobic Digestion of Acetic Acid Including an Experimental Verification This paper presents rotating disc reactors for aerobic and anaerobic wastewater treatment. Unlike the activated sludge or contact processes, this reactor allows higher concentrations of biomass and lesser danger of the reactor becoming blocked. The reduced backmixing within the reactor leads to axial concentration profiles when continuously operated. These are presented for various biological processes. The axial concentration profiles generated during the continuous anaerobic degradation of acetic acid are measured and described by a mathematical model. A refined dispersion model is created on the basis of tracer experiments taking into account the actual construction of the reactor as well as the physical conditions in it. To determine the biodegradation a Haldane kinetics is used, in which the undissociated acetic acid is the substrate. The model takes into consideration all the local parameters (pH value, concentration of acetic acid, biomass, and ion activity). The difficult measurement of the concentration of the active biomass which is immobilized on the disk is accomplished by carrying out batch experiments. The results of the experiments are 22 concentration profiles with influent DOC concentrations from 200 to 2000 mg L–1 which were measured and modelled. Some examples are shown to illustrate the influence of the ion activity and the refinement of the dispersion model.  相似文献   

7.
The use of isotopic tracers for sediment source apportionment is gaining interest with recent introduction of compound‐specific stable isotope tracers. The method relies on linear mixing of source isotopic tracers, and deconvolution of a sediment mixture initially quantifies the contribution of sources to the mixture's tracer signature. Therefore, a correction to obtain real sediment source proportions is subsequently required. As far as we are aware, all published studies to date have used total isotopic tracer content or a proxy (e.g., soil carbon content) for this post‐unmixing correction. However, as the relationship between the isotopic tracer mixture and the source mixture is different for each isotopic tracer, post‐unmixing corrections cannot be carried out with one single factor. This contribution presents an isotopic tracer model structure—the concentration‐dependent isotope mixing model (CD‐IMM)—to overcome this limitation. Herein, we aim to clarify why the “conventional” approach to converting isotopic tracer proportions to source proportions using a single factor is wrong. In an initial mathematical assessment, error incurred by not using CD‐IMM (NCD‐IMM) in unmixing two sources with two isotopic tracers showed a complex relation as a function of relative tracer contents. Next, three artificial mixtures with different proportions of three soil sources were prepared and deconvoluted using 13C of fatty acids using CD‐IMM and NCD‐IMM. Using NCD‐IMM affected both accuracy (mean average error increased up to a threefold compared with the CD‐IMM output) and precision (interquartile range was up to 2.5 times larger). Finally, as an illustrative example, the proportional source contribution reported in a published study was recalculated using CD‐IMM. This resulted in changes in estimated source proportions and associated uncertainties. Content of isotopic tracers is seldom reported in published work concerning use of isotopic tracers for sediment source partitioning. The magnitude of errors made by miscalculation in former studies is therefore difficult to assess. With this contribution, we hope the community will acknowledge the limitations of prior approaches and use a CD‐IMM in future studies.  相似文献   

8.
This study aims to remove of Cu2+, Cd2+, and Pb2+ ions from solution and to investigate the adsorption isotherms, adsorption kinetics, and ion‐exchange affinities of these metals using waste activated sludge (AS) biomass. The adsorptions of the metals on biomass were optimal at an acidic pH value of 6.0 based on its monolayer capacities. Maximum monolayer capacities of AS biomass (qmax) were calculated as 0.478, 0.358, and 0.280 mmol g?1 for Cu2+, Cd2+, and Pb2+, respectively, and the adsorption equilibrium time was found as 60 min for each metal. The adsorbed amount of metal rose with increasing of initial metal ion concentration. The equilibrium adsorption capacity of AS for initial 0.25 mmol L?1 metal concentration was determined as 0.200, 0.167, and 0.155 mmol g?1 for Cu2+, Cd2+, and Pb2+ ions, respectively. These relevant values were determined as 0.420, 0.305, and 0.282 mmol g?1 for Cu2+, Cd2+, and Pb2+ ions, respectively, when initial metal concentration was 0.50 mmol L?1. In the multi‐metal sorption system, the adsorption capacity of AS biomass was observed in the order of Cu2+ > Cd2+ > Pb2+. In the presence of 100 mmol L?1 H+ ion, the order of ion‐exchange affinity with H+ was found as Cu2+ > Cd2+ > Pb2+. The adsorption kinetics were also found to be well described by the pseudo‐second‐order and intraparticle diffusion models. Two different rate constants were obtained as ki1 and ki2 and ki1 (first stage) was found to be higher than ki2 (second stage).  相似文献   

9.
In the semi‐arid region of the Loess Plateau in China, a portable photosynthesis system (Li‐6400) and a portable steady porometer (Li‐1600) were used to study the quantitative relation between the soil water content (SWC) and trees' physiological parameters including net photosynthesis rate (Pn), carboxylation efficiency (CE), transpiration rate (Tr), water use efficiency of leaf (WUEL), stomatic conductivity (Gs), stomatal resistance (Rs), intercellular CO2 (Ci), and stomatal limitation (Ls). These are criteria for grading and evaluating soil water productivity and availability in forests of Black Locust (Robinia pseudoacacia) and Oriental Arborvitae (Platycladus orientalis). The results indicated: To the photosynthesis of Locust and Arborvitae, the SWC of less than 4.5 and 4.0% (relative water content (RWC) 21.5 and 19.0%) belong to “non‐productivity and non‐efficiency water”; the SWC of 4.5–10.0% (RWC 21.5–47.5%) and 4.0–8.5% (RWC 19.0–40.5%) belong to “low productivity and low efficiency water”; the SWC of 10.0–13.5% (RWC 47.5–64.0%) and 8.5–11.0% (RWC 40.5–52.0%) belong to “middle productivity and high efficiency water”; the SWC of 13.5–17.0% (RWC 64.0–81.0%) and 11.0–16.0% (RWC 52.0–76.0%) belong to “high productivity and middle efficiency water”; the SWC of 17.0–19.0% (RWC 81.0–90.5%) and 16.0–19.0% (RWC 76.0–90.5%) belong to “middle productivity and low efficiency water”; the SWC of more than 19.0% (RWC 90.5%) belongs to “low productivity and low efficiency water”. The SWC of about 13.5 and 11.0% (RWC 64.0 and 52.0%) are called “high productivity and high efficiency water”, which provides the further evidence for Locust and Arborvitae to get both higher productivity (Pn and CE) and the highest WUEL and adaptation to the local environment, respectively.  相似文献   

10.
The hemolytic activity of the dinoflagellate Cochlodinium polykrikoides from Bahía de La Paz, Gulf of California was investigated as part of the ichthyotoxic mechanism of this microalga. Two different kinds of erythrocytes, fish and human, were tested for the hemolytic assay. Since fatty acids have been associated with hemolytic activity in C. polykrikoides, the composition of fatty acids of this dinoflagellate was also analyzed. The concentration of C. polykrikoides causing 50% hemolysis (HE50) was 4.88 and 5.27 × 106 cells L−1, for fish and human erythrocytes, respectively. According to the standard curve of saponin, an equivalence between the hemolytic activity of saponin and the dinoflagellate concentration was found with 1 μg saponin mL−1 equivalent to 1 × 106 cells L−1 of C. polykrikoides. The polyunsaturated fatty acids: hexadecaenoic (16:0), docosahexaenoic (22:6 n3) and octadecapentaenoic (18:5 n3) were found in an abundance of 62% of total fatty acids.  相似文献   

11.
The organic composition and organic‐inorganic interaction in paper mill sludge (PS) solvent extracts (hexane, ethyl acetate, acetone and ethanol) and humic fractions, humic acid (HA) and humin (HU) were studied by electron paramagnetic resonance spectroscopy (EPR), proton and carbon‐13 nuclear magnetic resonance spectroscopy (1H NMR; 13C NMR), Fourier‐transformed infrared spectroscopy (FTIR), and ultraviolet‐visible spectroscopy (UV‐vis). The strategy of fractionating the PS, sequentially, with organic solvents of increasing polarity is a reliable analytical procedure for humic substance sample separation because it results in more purified fractions. FTIR, 1H NMR and 13C NMR results showed that hexane extract consisted mainly of aliphatic hydrocarbon structures. Their contents in the extracts decreased as the polarity of the extracting solvent increased and the content of oxygen functional groups increased. Carboxylic and carboxylate functional groups were found in the acetone extract, and ester and ether functions were predominantly found in the ethanol extract. EPR spectra revealed some Fe3+ complexes with rhombic structure (g1 = 4.3; g2 = 9.0) in the humic fractions and in all solvent extracts, except hexane. Quasi‐octahedral Fe3+ complexes (g = 2.3; ΔHpp ≤ 400 G) were found in the HU fraction and in the acetone extract. The organic free radical content in the HA fraction was higher than the non‐fractionated PS sample and HU fraction.  相似文献   

12.
Here we characterize the nutrient content in the outflow of the Green Lake 5 rock glacier, located in the Green Lakes Valley of the Colorado Front Range. Dissolved organic carbon (DOC) was present in all samples with a mean concentration of 0·85 mg L?1 . A one‐way analysis of variance test shows no statistical difference in DOC amounts among surface waters (p = 0·42). Average nitrate concentrations were 69 µmoles L?1 in the outflow of the rock glacier, compared to 7 µmoles L?1 in snow and 25 µmoles L?1 in rain. Nitrate concentrations from the rock glacier generally increased with time, with maximum concentrations of 135 µmoles L?1 in October, among the highest nitrate concentrations reported for high‐elevation surface waters. These high nitrate concentrations appear to be characteristic of rock glacier outflow in the Rocky Mountains, as a paired‐difference t‐test shows that nitrate concentrations from the outflow of 7 additional rock glaciers were significantly greater compared to their reference streams (p = 0·003). End‐member mixing analysis suggest that snow was the dominant source of nitrate in June, ‘soil’ solution was the dominant nitrate source in July, and base flow was the dominant source in September. Fluoresence index values and PARAFAC analyses of dissolved organic matter (DOM) are also consistent with a switch from terrestrial DOM in the summer time period to an increasing aquatic‐like microbial source during the autumn months. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Dissolved organic carbon (DOC) distributions in water from Lake Ipê, MS, Brazil, were investigated. The samplings were performed monthly (surface, 1 m depth, and bottom) from June 1999 to June 2000. Absorbance at 285 nm and DOC concentrations in mg dm—3, p(DOC), were highly correlated for the three depths. 77% of the surface, 85% for 1 m and bottom samples presented a variation between 20 dm3 g—1 cm—1 and 50 dm3 g—1 cm—1 of A(285 nm)/p(DOC), that characterizes the dissolved organic matter in lake water as essentially fulvic. The ratio A(254 nm)/p(DOC) was also sensitive for fulvic matter, and an A(250 nm)/A(365 nm) = 4 ratio was characteristic of strongly colored waters. The ratios A(436 nm)/p(DOC) for the three depths also showed a significant correlation. The predominance of fulvic acid is explained by environmental characteristics such as the tropical climate, temperatures above 18 °C, and the lake environment. It was demonstrated that the variation in the water carbon content due to different compartments in the lake can be monitored by UV‐vis spectroscopy ratios.  相似文献   

14.
The relationships between the intrusion of gneissose granitoids and the attainment of regional high‐T conditions recorded in metamorphic rocks from the Ryoke belt of the Mikawa area, central Japan, are explored. Seven gneissose granitoid samples (tonalite, granodiorite, granite) were collected from three distinct plutonic bodies that are mapped as the so‐called “Older Ryoke granitoids.” Based on bulk‐rock compositions and U–Pb zircon ages obtained by laser ablation inductively coupled plasma mass spectrometry, the analyzed granitoids can be separated into two groups. Gneissose granitoids from the northern part of the area give weighted mean 206Pb/238U ages of 99 ±1 Ma (two samples) and 95 ±1 Ma (one sample), whereas those from the southern part yield 81 ±1 Ma (two samples) and 78–77 ±1 Ma (two samples). Regional comparisons allow correlation of the northern granitoids (99–95 Ma) with the Kiyosaki granodiorite, and mostly with the Kamihara tonalite found to the east. The southern granitoids are tentatively renamed as “78–75 Ma (Hbl)?Bt granite” and “81–75 Ma Hbl?Bt tonalite” (Hbl, hornblende; Bt, biotite). and seem to be broadly coeval members of the same magmatic suite. With respect to available age data, no gneissose granitoid from the Mikawa area shows a U–Pb zircon age which matches that of high‐T metamorphism (ca 87 Ma). The southern gneissose granitoids (81–75 Ma), although they occur in the highest‐grade metamorphic zone, do not seem to represent the heat source which produced the metamorphic field gradient with a low dP/dT slope.  相似文献   

15.
In a survey in Greece from 1987 to 2000 hepatotoxic cyanobacterial blooms were observed in 9 out of 33 freshwaters. Microcystins (MCYSTs) were detected by HPLC in 7 of these lakes, and the total MCYST concentration per scum dry weight ranged from 50.3 to 1638 ± 464 μg g—1. Cyanobacterial genera (Microcystis, Anabaena, Anabaenopsis, Aphanizomenon, Cylindrospermopsis) with known toxin producing taxa were present in 31 freshwaters. From our data and a review of the literature, it would appear that Mediterranean countries are more likely 1) to have toxic cyanobacterial blooms consisting of Microcystis spp. and 2) to have higher intracellular MCYST concentrations. A case study in Lake Kastoria is used to highlight seasonal patterns of cyanobacterial and MCYST‐LR occurrence and to assess cyanotoxin risk. Cyanobacterial biovolume was high (> 11 μL L—1) throughout the year and was in excess of Guidance Level 2 (10 μL L—1) proposed by WHO for recreational waters and Alert Level 2 for drinking water. Further, surface water samples from April to November exceeded Guidance Level 3, with the potential for acute cyanobacterial poisoning. Intracellular MCYST‐LR concentrations (max 3186 μg L—1) exceeded the WHO guideline for drinking water (1 μg L—1) from September to November with a high risk of adverse health effects. Preliminary evidence indicates that in 3 lakes microcystins are accumulated in some aquatic organisms. Generally, a high risk level can be deduced from the data for the Mediterranean region.  相似文献   

16.
Solid‐contacted Potentiometric Electrodes for Measurements of Sulfate Ions in Aqueous Solutions A solid‐contact electrode for potentiometric measurement of sulfate ions in aqueous solutions was developed and examined. The electrode is based on a PVC membrane which contains the ionophore 3‐decyl‐1,5,8‐triazacyclodecan‐2,4‐dione (DTADD). Instead of the usual inner fluid junction, a polypyrrole layer applied on the inner side of the PVC membrane was employed as inner solid contact. The performance of this electrode was compared to solid‐state sulfate‐selective electrodes with the ionophore α,α′‐bis(N′‐phenylthioureylene)‐m‐xylene (BTH) and to electrodes in the coated‐wire configuration. For the parameters sensitivity, selectivity, and long‐term stability, electrodes with the DTADD ionophore show improved properties. In the sulfate concentration range of 5·10–5...10–2 mol L–1 the slope of the response is –(26.8 ± 0.5) mV/decade. The new solid contact sulfate electrodes showed a very low drift of the electrode potential within a period of 150 days when the electrode was stored in 10–2 M Na2SO4. In Na2SO4 solutions of the pH range of 4...9 the electrode potentials were constant. The 95% response time was about 10 s when the sulfate concentration was changed from 10–4 mol L–1 to 10–3 mol L–1. The selectivity with DTADD ionophore relating to the nitrate ions is higher than the selectivity with BTH. Improvements are also made in comparison with sulfate‐selective electrodes described in the literature which contain other ionophores with fluid inner reference electrolytes.  相似文献   

17.
Although the anaerobic biodegradation of methyl tert‐butyl ether (MTBE) and tert‐butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA‐stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate‐reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio‐Sep® beads amended with 13C5‐MTBE, 13C1‐MTBE (only methoxy carbon labeled), or 13C4‐TBA. 13C‐DNA and 12C‐DNA extracted from the Bio‐Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert‐butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13C‐labeled MTBE and TBA in situ and the 13C was incorporated into their DNA. Several sequences related to known MTBE‐ and TBA‐degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three 13C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate‐reducing bacteria and iron‐reducers, such as Geobacter and Geothrix, were only detected in the clone libraries where MTBE and TBA were fully labeled with 13C, suggesting that they were involved in processing carbon from the tert‐butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13C. It is likely that members of this genus were secondary degraders cross‐feeding on 13C‐labeled metabolites such as acetate.  相似文献   

18.
Effects of short‐term (1 h exposure) and long‐term (7 d exposure) aluminium stress on photosynthesis and reproductive capacity have been studied in Euglena gracilis strain Z. Following concentrations of Altot (added as AlCl3) were tested: 0.5 mg L‐1, 1.0 mg L‐1, 1.5 mg L‐1, 2.5 mg L‐1, 5.0 mg L‐1, 7.5 mg L‐1, 10.0 mg L‐1, and 15.0 mg L‐1 Al, respectively. Growth rates at different aluminium concentrations did not show significant differences, except at 15.0 mg L‐1Al. Initial respiration was higher in long‐term than in the short‐term experiments. It is supposed that an energy‐dependent mechanism of excretion of aluminium ions has been active in the stressed cells. Consequently, the cells of E. gracilis after long‐term exposure to aluminium are believed to be more acclimatised to the aluminium stress. Photosynthetic efficiency (PE) has been negatively affected by aluminium in all experiments performed. Differences between control algae and those treated with aluminium were significant in all cases. PE in long‐term experiments was in general significantly higher at all concentrations of aluminium studied, compared to the short‐term experiments. The aluminium concentrations tested led only to a general decrease in PE while the level of decrease was not especially concentration‐dependent. In general, aluminium tolerance of E. gracilis can be estimated as low, especially by short‐term exposure. However, good acclimatisation capacity of this green flagellate to aluminium doses by long‐term exposure can be supposed.  相似文献   

19.
The effect of mature compost (MC) used as a bulking agent on ammonia, hydrogen sulfide, and short‐chain fatty acids emission reduction during sewage sludge (SS) composting process was studied in this paper. Three types of mixtures, single SS, SS + wood chips (SS + WC), and SS + MC, were composted in a laboratory reactor. Among the different treatments, decrement rates of NH3 emission (based on initial TN) from SS to SS + MC and SS + WC to SS + MC were 63 and 59%, respectively. The H2S concentration ranged from 0.759 to 1.140 mg m?3 for SS, from 0.075 to 0.455 mg m?3 for SS + WC, and from 0.075 to 0.425 mg m?3 for SS + MC and the short‐chain fatty acids (C2–C5) concentration ranged from 0.10 to 1.00 ppm for SS, from 0.10 to 1.50 ppm for SS + WC, and from 0.10 to 0.80 ppm for SS + MC. In addition, the temperature apparently, as well as the thermophilic stage, was also elevated by bulking agent addition, especially by the MC addition. The denaturing gradient gel electrophoresis analysis indicated that there was more diversity of the bacterial community during the SS + MC process. According to these results, MC was a suitable bulking agent for reduction ammonia, hydrogen sulfide, and short‐chain fatty acids emission during the SS composting.  相似文献   

20.
The carbon isotopic compositions of individual lip-ids can provide the genetic information about sedi-mentary lipids so that it has extensively applied pros-pects in geochemically studied field[1―8]. However, this applied research relies heavily on the accumula-tion of studied data in the genetic relationships between carbon isotopic compositions of individual lipids and their biological precursors in different sedi-mentary environments. Recently, the useful δ 13C data of individual lipids f…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号