首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deviations of slip vector azimuths of interplate thrust earthquakes from expected plate convergence directions at oblique subduction zones provide kinematic information about the deformation of forearcs and indirect evidence on the dynamics of the plate boundary. A global survey of slip vectors at major trenches of the world reveals a large variability in the kinematic response of forearcs to shear produced by oblique convergence. The variability in forearc deformation inferred from slip vector deflections is suggested to be caused by variations in forearc rheology rather than in the stresses acting on subduction zone thrust faults. Estimated apparent macroscopic rheologies range from elastic to perfectly plastic (or viscous). Forearc rheologies inferred from slip vectors do not correlate with age of the subducting lithosphere, but continental forearcs or old arcs appear to deform less than oceanic or young arcs. The inferred absence of forearc deformation at continental arcs from this study is counter to inferences drawn from compiled geologic information on forearc faults. Correlations of the apparent forearc rheology with backarc spreading, convergence rate, slab dip, arc curvature, and downdip length of the thrust contact are poor. However, great subduction zone earthquakes occur where forearcs are apparently more elastic (i.e., less deformed by oblique convergence), which suggests that the mechanical properties of forearcs rather than stress magnitude on thrust faults control both the kinematic behavior of forearcs and where great subduction zone earthquakes occur.  相似文献   

2.
The transport of water in subduction zones   总被引:9,自引:0,他引:9  
The transport of water from subducting crust into the mantle is mainly dictated by the stability of hydrous minerals in subduction zones. The thermal structure of subduction zones is a key to dehydration of the subducting crust at different depths. Oceanic subduction zones show a large variation in the geotherm, but seismicity and arc volcanism are only prominent in cold subduction zones where geothermal gradients are low. In contrast, continental subduction zones have low geothermal gradients, resulting in metamorphism in cold subduction zones and the absence of arc volcanism during subduction. In very cold subduction zone where the geothermal gradient is very low(?5?C/km), lawsonite may carry water into great depths of ?300 km. In the hot subduction zone where the geothermal gradient is high(25?C/km), the subducting crust dehydrates significantly at shallow depths and may partially melt at depths of 80 km to form felsic melts, into which water is highly dissolved. In this case, only a minor amount of water can be transported into great depths. A number of intermediate modes are present between these two end-member dehydration modes, making subduction-zone dehydration various. Low-T/low-P hydrous minerals are not stable in warm subduction zones with increasing subduction depths and thus break down at forearc depths of ?60–80 km to release large amounts of water. In contrast, the low-T/low-P hydrous minerals are replaced by low-T/high-P hydrous minerals in cold subduction zones with increasing subduction depths, allowing the water to be transported to subarc depths of 80–160 km. In either case, dehydration reactions not only trigger seismicity in the subducting crust but also cause hydration of the mantle wedge. Nevertheless, there are still minor amounts of water to be transported by ultrahigh-pressure hydrous minerals and nominally anhydrous minerals into the deeper mantle. The mantle wedge overlying the subducting slab does not partially melt upon water influx for volcanic arc magmatism, but it is hydrated at first with the lowest temperature at the slab-mantle interface, several hundreds of degree lower than the wet solidus of hydrated peridotites. The hydrated peridotites may undergo partial melting upon heating at a later time. Therefore, the water flux from the subducting crust into the overlying mantle wedge does not trigger the volcanic arc magmatism immediately.  相似文献   

3.
大别造山带是全球最大的碰撞造山带之一,三叠纪时期,扬子板块深俯冲至地幔的200km处,经历了超高压变质作用。白垩纪早期,该造山带发生了强烈的伸展和垮塌,以及大规模的后造山地幔源岩浆侵入和火山活动。本研究收集了大别造山带及其邻区(29°~34°N、114°~119°E)的震相资料,采用双差层析成像技术,对大别造山带地壳结构进行反演,研究地壳结构与后造山地幔源岩浆侵入和火山活动之间的关系。结果显示,大别造山带中上地壳存在低速结构,该低速结构可能是熔融的幔源侵入物质,由于俯冲板片断裂,或下地壳/岩石圈发生拆沉,导致软流圈物质上涌至地壳底部、侵入地壳中,形成大别造山带地壳中的低速结构;同时,合肥盆地显示为低速区,可能是受浅部沉积层影响。研究中横切大别山的4条剖面显示,该地区下方存在北向倾斜高速结构,该高速结构可能是襄樊-广济断层,或者是扬子板块向华北板块下方俯冲的遗迹。  相似文献   

4.
Ken-Ichi  Hirauchi 《Island Arc》2006,15(1):156-164
Abstract   Serpentinite bodies in the Kurosegawa Belt are mapped along fault boundaries between the Cretaceous Sanchu Group (forearc basin-fill sediments) and the rocks of the Southern Chichibu Belt (Jurassic to Early Cretaceous accretionary prism) in the northwestern Kanto Mountains, central Japan. The serpentinites were divided into three types based on microtextures and combinations of serpentine minerals: massive, antigorite and chrysotile serpentinites. Massive serpentinite retains initial pseudomorphic textures without any deformation after serpentinization. Antigorite serpentinite exhibits shape-preferred orientation of antigorite replacing the original lizardite and/or chrysotile to form pseudomorphs. It has porphyroclasts of chromian spinel, and is characterized by ductile deformation under relatively high-pressure–temperature conditions. Chrysotile serpentinite shows evidence for overprinting of pre-existing serpentinite features under shallow, low-temperature conditions. It exhibits unidirectional development of chrysotile fibers. Foliations in antigorite and chrysotile serpentinites strike parallel to the elongate direction of the serpentinite bodies, suggesting a continuous deformation during solid-state intrusion along the fault zones after undergoing complete serpentinization at deeper levels (lower crust and upper mantle).  相似文献   

5.
The western Hellenic arc has been commonly considered as a largely aseismic subduction zone, from the comparison of a small rate of shortening derived from the seismic moment release, with a large rate of convergence inferred from geology. Complete seismic coupling would instead be expected from models that consider a control by plate tectonic forces, because of the trenchward velocity of the Hellenic–Aegean upper plate now confirmed with GPS measurements. In the region of the Ionian Islands, a subduction interplate boundary has been recently imaged and its seismogenic downdip width suggested to be moderate, from reflection seismic profiling and local earthquake tomography. In the appropriate model for such an earthquake source region, which considers a single interplate fault and takes into account these features, the moderate seismic moment release is found consistent with complete seismic coupling of this subduction. The shallow downdip limit of the seismogenic zone can be interpreted as due to the interplate boundary being overlain there by the ductile deeper crust of the orogenically thickened Hellenides.  相似文献   

6.
俯冲带的后撤与弧后扩张   总被引:12,自引:1,他引:12       下载免费PDF全文
西太平洋地壳年龄较老,因而岩石层较冷和比重较大,俯冲带的角度也较大,活动和成熟的弧后盆地则较多;条件与之相反的东太平洋弧后盆地则较少.本文探讨这种相关关系的力学成因,计算了俯冲板块诱生的弧后上涌地幔流动.计算表明,俯冲角度大及存在后撤俯冲时,有利于在弧后地区产生明显的上涌地幔流,这种深部热物质的上涌会导致弧后扩张.反之,年龄较轻的海洋地块较热和较轻,俯冲角度一般也较小,不易诱生上涌地幔物质流动和弧后扩张.大陆地壳密度小于地幔物质,大陆碰撞区就更不具备弧后扩张的条件.  相似文献   

7.
Integrative models of crust and mantle structure, age, and growth of the oldest continental nuclei—the Archean cratons—are critical to understanding the processes that stabilize continental lithosphere. For the Kaapvaal craton of southern Africa, conflicting ages of stabilization have been derived from studies of its crust and underlying mantle. New U-Pb zircon geochronological data from the western Kaapvaal craton reveal that two older (3.7 to 3.1 billion year old) continental masses, the Kimberley and Witwatersrand blocks, were juxtaposed by a significantly younger, previously unresolved episode of subduction and terrane collision between 2.93 and 2.88 billion years ago. Geological evidence indicates that convergence was accommodated by subduction beneath the Kimberley block, culminating in collisional suturing in the vicinity of the present-day Colesberg magnetic lineament. The timing of these convergent margin processes is further shown to correlate with the strong peak in Re-Os age distributions of Kimberley block mantle peridotites, eclogites, and eclogite-hosted diamonds. These data thus support the petrogenetic coupling of continental crust and lithospheric mantle through a model of continental arc magmatism, subduction zone mantle wedge processing and terminal collisional advective thickening to form Archean continental tectosphere.  相似文献   

8.
The results of a controlled source seismic reflection–refraction experiment carried out in 1992 reveal the following characteristics of the northern Izu–Bonin (Ogasawara) oceanic island arc–trench system. (1) The crust rapidly thickens from the Shikoku back-arc basin to the arc, is thickest beneath the active rifts, and then gradually thins to the forearc. The thickness of the crust beneath the arc rift zone and the back-arc basin are ∼ 20 km and 8 km, respectively. (2) The Moho vanishes beneath the forearc. Velocities rapidly decrease eastwards beneath the inner trench wall. (3) The velocity of the lower crust of the arc and the back-arc basin is 7.1–7.3 km/s. This velocity is higher than the typical oceanic lower crust whose velocity is ∼ 6.7 km/s. (4) The velocity of the middle crust of the arc is ∼ 6 km/s. This layer does not exist beneath the back-arc basin. (5) A slight difference in the velocity gradient of the middle crust exists between the arc rift zone and the forearc. Based on these findings and previous studies, it is inferred that: (i) the middle crust is probably granitic rock and formed in more than two episodes; (ii) the lower crust formed by igneous underplating which may also have affected part of the back-arc basin; and (iii) the root of the serpentinite diapir on the inner trench wall is a low-velocity mantle wedge that was probably caused by large amounts of water released from the subducting Pacific plate at depths shallower than 30 km.  相似文献   

9.
Light continents and islands characterized by a crustal thickness of more than 30 km float over a convective mantle, while the thin basaltic oceanic crust sinks completely in subduction zones. The normal oceanic crust is 7 km thick. However, anomalously thick basaltic plateaus forming as a result of emplacement of mantle plumes into moving oceanic lithospheric plates are also pulled into the mantle. One of the largest basaltic plateaus is the Ontong Java plateau on the Pacific plate, which arose during the intrusion of a giant superplume into the plate ~100 Myr ago. Notwithstanding its large thickness (averaging ~30 km), the Ontong Java plateau is still experiencing slow subduction. On the basis of numerical modeling, the paper analyzes the oceanic crust subduction process as a function of the mantle convection vigorousness and the density, thickness, viscosity, and shape of the crust. Even a simplified model of thermocompositional convection in the upper mantle is capable of explaining the observed facts indicating that the oceanic crust and sediments are pulled into the mantle and the continental crust is floating on the mantle.  相似文献   

10.
To better image deformation structures within the inner accretionary wedge of the Nankai Trough, Japan, we apply common reflection angle migration to a legacy two-dimensional seismic data set acquired with a 6 km streamer cable. In this region, many seismic surveys have been conducted to study the seismogenic zone related to plate subduction. However, the details of the accreted sediments beneath the Kumano forearc basin are still unclear due to the poor quality of seismic images caused by multiple reflections, highly attenuated signals, and possibly complex geological structures. Generating common image gathers in the subsurface local angle domain rather than the surface offset domain is more advantageous for imaging geological structures that involve complex wave paths and poor illumination. By applying this method, previously unseen structures are revealed in the thick accreted sediments. The newly imaged geometric features of reflectors, such as the folds in the shallow part of the section and the deep reflectors with stepwise discontinuities, imply deformation structures with multiple thrust faults. The reflections within the deep accreted sediments (approximately 5 km) are mainly mapped to far angles (30°–50°) in the common reflection angles, which correspond to the recorded offset distances greater than 4.5 km. This result indicates that the far offset/angle information is critical to image the deformation structures at depth. The new depth image from the common reflection angle migration provides seismic evidence of multiple thrust faults and their relationship with the megathrust fault that is essential for understanding the structure and evolution of the Nankai Trough seismogenic zone.  相似文献   

11.
Recent seismic and magnetotelluric experiments, aimed at better characterizing the shape and state of the subducting slab and continental crust beneath Central Mexico, exposed significant differences with conclusions of previous studies. A new slab geometry is revealed in which the subducting Cocos slab is perfectly flat between 120 to 290?km from the trench, after which it plunges into the asthenosphere at a dip angle of ~65°, in sharp contrast with the previously proposed ~20° dip angle. Seismic tomography studies show negative P-wave velocity anomalies (?2 to ?4%) in the mantle wedge beneath the Mexican Volcanic Belt, and positive anomalies (+2 to +3%) for the subducted Cocos slab. Magnetotelluric experiments exposed a very low-resistivity area (1?C10? ??m) located within the continental crust just below the Mexican Volcanic Arc. Finally, several spots of non-volcanic tremors (NVTs) have been recorded inside the continental crust above the flat-slab segment. While all these experiments provide a better picture of the subduction system beneath Central Mexico, several key processes need further investigation. In this study, we take advantage of these new observations to better constrain the thermal structure beneath Central Mexico. Two different thermal models are computed for a mantle potential temperature (T p) of 1,350 and 1,450°C, respectively. The new thermal structures are then converted into P-wave velocity anomalies and compared with the observed V p anomalies. We found that a T p of 1,450°C produced larger V p anomalies that do not fit the observations. However, using a T p of only 1,350°C, our predicted V p anomalies are positive (+2 to +3%) for the cold slab and negative (?2 to ?4%) in the mantle wedge. These V p estimates are consistent with the observed seismic tomography from P-wave arrivals, and therefore we conclude that a T p of 1,350°C is a better estimate for the mantle potential temperature beneath Central Mexico. The new thermal model, in conjunction with phase diagrams for sediments, hydrated basalt and lithospheric mantle, have been used to estimate the amount and location of fluids released from the subducting Cocos slab. Several dehydration pulses have been identified along the slab interface where most of the fluids stored in sediments and oceanic crust are released into the overlying continental crust above the flat-slab. We found a good correlation between the pattern of these dehydration pulses and the location of NVTs, suggesting that slab dehydration is responsible for triggering the tremors. We suggest that NVT bursts localized above the flat slab segment represent the manifestation of ongoing continental crust hydration and weakening, a process that has been going on since 15?Ma ago when the Cocos slab entered into a flat-slab regime. Such continuous weakening would have reduced the suction forces that kept the slab in a flat regime in the last 15?Ma, allowing the slab to easily roll back. The continuous low-resistivity region recorded beneath the volcanic front in Central Mexico might represent the evidence of slab dehydration and crust weakening over time.  相似文献   

12.
Super-scale Failure of the Southern Oregon Cascadia Margin   总被引:1,自引:0,他引:1  
—Using SeaBeam bathymetry and multichannel seismic reflection records we have identified three large submarine landslides on the southern Oregon Cascadia margin. The area enclosed by the three arcuate slide scarps is approximately 8000 km2, and involves an estimated 12,000–16,000 km3 of the accretionary wedge. The three arcuate slump escarpments are nearly coincident with the continental shelf edge on their landward margins, spanning the full width of the accretionary wedge. Debris from the slides is buried or partially buried beneath the abyssal plain, covering a subsurface area of at least 8000 km2. The three major slides, called the Heceta, Coos Basin and Blanco slides, display morphologic and structural features typical of submarine landslides. Bathymetry, sidescan sonar, and seismic reflection profiles reveal that regions of the continental slope enclosed by the scarps are chaotic, with poor penetration of seismic energy and numerous diffractions. These regions show little structural coherence, in strong contrast to the fold thrust belt tectonics of the adjacent northern Oregon margin. The bathymetric scarps correlate with listric detachment faults identified on reflection profiles that show large vertical separation and bathymetric relief. Reflection profiles on the adjacent abyssal plain image buried debris packages extending 20–35 km seaward of the base of the continental slope. In the case of the youngest slide, an intersection of slide debris and abyssal plain sediments, rather than a thrust fault, mark the base of slope. The age of the three major slides decreases from south to north, indicated by the progressive northward shallowing of buried debris packages, increasing sharpness of morphologic expression, and southward increase in post-slide reformation of the accretionary wedge. The ages of the events, derived from calculated sedimentation rates in overlying Pleistocene sediments, are approximately 110 ka, 450 ka, and 1210 ka. This series of slides traveled 25–70 km onto the abyssal plain in at least three probably catastrophic events, which may have been triggered by subduction earthquakes. The lack of internal structure in the slide packages, and the considerable distance traveled suggest catastrophic rather than incremental slip, although there could have been multiple events. The slides would have generated large tsunami in the Pacific basin, possibly larger than that generated by an earthquake alone. We have identified a potential future slide off southern Oregon that may be released in a subduction earthquake. The occurrence of the slides and subsequent subduction of the slide debris, along with evidence for margin subsidence implies that basal subduction erosion has occurred over at least the last 1 Ma. The massive failure of the southern Oregon slope may have been the result of the collision of a seamount province or aseismic ridge with the margin, suggested by the age progression of the slides and evidence for subducted basement highs. The lack of latitudinal offset between the oldest slide debris and the corresponding scarp on the continental slope implies that the forearc is translating northward at a substantial fraction of the margin-parallel convergence rate.  相似文献   

13.
Abstract   The Oka Belt, composed of clastic rocks and greenschists, extends for approximately 600 km in the South-Siberian Sayan region and adjacent northern Mongolia. For a long time the Oka Belt's age and tectonic setting were the most controversial problem in the region. We argue that the belt was formed in Late Neoproterozoic as an accretionary prism. The Oka Belt shows imbricated thrust structure, which had originally seaward vergence and reflected the Neoproterozoic accretion process. The Early Paleozoic orogeny had minor effect on its structural style. The belt contains tectonic slivers of mid-ocean ridge basalts, some oceanic-island basalts and possible pelagic sediments. In several localities they are associated with gabbro and serpentinite. All these rocks represent the oceanic lithosphere subducting beneath the Oka prism and trapped within it. In the inner zone of the Oka Belt are the blueschists exhumed from the deeper prism level. The northern Oka Belt includes mafic intrusions geochemically similar to normal mid-oceanic ridge basalt and felsic volcaniclastic rocks. This segment of the belt is very similar to the Tertiary portion of northern Shimanto Belt, in Japan, and has also experienced the subduction of orthogonal oceanic ridge beneath the prism. This event dates back to 753 ± 16 Ma (the U-Pb zircon discordia). The Oka prism started accreting in Mid-Neoproterozoic after the subduction had initiated under the Japan-like South-Siberian continental terrain. The prism existed through the second half of Neoproterozoic and accumulated a huge volume of sialic material to enlarge the nearby continent. Currently, the Oka Belt remains poorly studied and is very promising for further investigation and discoveries.  相似文献   

14.
Plate subduction is the most magnificent process in the Earth. Subduction zones are important sites for proceeding matter- and energy- transports between the Earth's surface and the interior, continental crust growth, and crust-mantle interactions. Besides, a number of geological processes in subduction zones are closely related to human beings' daily life, such as volcanic eruptions and earthquakes, formation of mineral deposits. Subduction process thus has long been the centric topic of Earth sciences. The finding in 1980 s that continental crust could be subducted to mantle depths is a revolutionary progress in plate tectonic theory. Compared to oceanic crust, continental crust is colder, drier, lighter, and much more geochemically/isotopically heterogeneous. Hence, continental subduction process would affect the structure, compositions and evolutions of the overlying mantle wedge even more. During continental subduction and subsequent exhumation, fluids and melts can be generated in the(de)hydration process and partial melting process, respectively. These melts/fluids play important roles in crust-mantle interactions, elemental migrations, isotopic fractionations, and mantle metasomatism. By summarizing recent research works on subduction zones in this paper, we present a review on the types, physicochemical conditions and compositions of fluids/melts, as well as the migration behaviors of fluid-related characteristic elements(Nb-Ta-V) and the fractionation behaviors of non-traditional stable isotopes(Li-Mg) in subduction zones. The aim of this paper is to provide the readers an update comprehensive overview of the melt/fluid activities in subduction zones and of Li-Mg isotope systematics in subduction-related rocks and minerals.  相似文献   

15.
Abstract The Molucca Sea is a narrow basin located south of Mindanao (Philippines) and underlined by a north-south ophiolitic ridge. This ridge represents the outer ridge of the Sangihe subduction zone and emerges by uplift in the central part of the basin, in the Talaud Islands. Field studies indicate that forearc sediments rest uncomformably on (i) a dismembered ophiolitic series and (ii) thick melanges. Structural analysis indicates two deformation events, one of which is oriented east-west coaxial with the present state of strain. We interpret the earlier (N20°E) direction as a thrusting event that affected an ophiolitic basement associated with the edge of the Celebes Sea. Thrusting within the oceanic crust and sediments also generated olistostromes (melanges). The style of deformation is characterized by flattened rhombs of peridotites which exists in situ in the upper section of the crustal sequence and were also found inside the melange. Incipient Sangihe subduction around 15 Ma uplifted the deformed crust and buried the melanges beneath the forearc sediments. Recent east-west shortening during subduction of the Snellius Plateau reactivated the melanges within thrusts cutting the forearc series.  相似文献   

16.
The study of mantle lithosphere plays a key role to reveal predominant tectonic setting process of a region. The current geological and tectonic setting of Iran is due to the ongoing continental–continental collision of the Arabian and Eurasian plates. We applied a combined P and S receiver function analysis to the teleseismic data of nine permanent broadband seismic stations of the International Institute of Earthquake Engineering and Seismology located in different tectonic zones of Iranian plateau. More than 4 years of data were used to estimate the thickness of the crust and mantle lithosphere. According to our results, the crust is 50 km thick beneath the Zagros fold and thrust belt (ZFTB). We found the maximum Moho depth of approximately 70 km under the Sanandaj-Sirjan zone (SSZ) indicating the overthrusting of the crust of Central Iran onto the Zagros crust along the main Zagros thrust (MZT). Below the northeasternmost part of the Urumieh–Dokhtar Magmatic Arc (UDMA) and Central Iran, the Moho becomes shallower and lies at 40 km depth. Towards northeast, beneath the Alborz zone, the crust is 55 km thick. Based on S receiver functions, we provided new insights into the thickness of the Arabian and Eurasian lithospheres. The location of the boundary between these plates was estimated to be beneath the SSZ, which is slightly shifted northeastward relative to the surficial expression of the MZT. Furthermore, the Arabian plate is characterized by the relatively thick lithosphere of about 130 km beneath the ZFTB reaching 150 km beneath the SSZ, where the thickest crust was also observed. This may imply that the shortening across the Zagros is accommodated by lithospheric thickening. In contrast, UDMA and Central Iran are recognized by the thin lithosphere of about 80–85 km. This thin lithosphere may be associated with the asthenospheric upwelling caused by either lithospheric delamination or Neo-Tethys slab detachment beneath the Zagros collision zone.  相似文献   

17.
为研究日喀则市活动断裂深浅部构造关系及深部孕震机制,跨雅鲁藏布江谢通门—日喀则段部署了48个宽频大地电磁测深点,剖面长度为108 km。在二维反演的基础上对壳幔200 km深度范围内的电性结构进行了探测研究。剖面自南向北依次经过喜马拉雅地块、雅鲁藏布江缝合带和拉萨—冈底斯地块。喜马拉雅地块地壳表现为高阻特性,其北侧的仲巴—郎杰学陆缘移置混杂地体发育了深达上地幔盖层的巨厚的北倾低阻体;雅鲁藏布江主缝合带表现为喇叭状低阻通道,宽约10 km,存在深浅部两处低阻体,浅部南倾深部北倾,低阻通道南部发育近似直立或南倾的高阻日喀则蛇绿岩,北部发育近直立的高阻冈底斯花岗岩体,整体表现为两个高阻异常体中间夹一个连通壳幔的带状低阻通道;拉萨—冈底斯地块以高阻为主,中下地壳普遍发育低阻体。缝合带附近因板块俯冲作用导致壳幔局部增厚或减薄,表现为电性的梯度变化,表现为低阻特性的部分则是壳幔物质的运移通道。   相似文献   

18.
A survey of Sr isotopic ratios and other compositional features of subduction-related magma suites reveals significant correlations between these averaged parameters and characteristics of the underlying crust (i.e., thickness, composition, and age). These observations lead to the conclusion that crust and(or) mantle rocks in the hanging walls of subduction zones are involved in modification of primary mafic magmas (typically basalt or basaltic andesite). It is proposed that mafic magmas will stagnate within the crust or uppermost mantle where they may differentiate and react with wall rocks. The extent to which such processes manifest themselves will depend upon details of the local crustal structure. In particular, the composition and age of the crust will strongly influence such parameters as Sr, Nd and Pb isotopic compositions. Such data strongly indicate the involvement of crustal rocks in locales underlain by old sialic crust (e.g., central Andes). Depending upon the level of magma stagnation and evolution within the crust, different trends in isotopic composition may result. These isotopic trends may be enhanced by partial melting of the wall rocks to produce relatively silicic anatectic magmas, and locally they may reflect subduction of continental sediments. Interpretation of the isotopic data may be more ambiguous in locales underlain by younger and more mafic continental crust (Cascades, E Eleutians) and those underlain by oceanic crust owing to the similarity in isotopic composition of primary magmas and the latter crustal materials. Yet some degree of crustal involvement in magmatic evolution seems highly probable even in these more primitive terranes. Consequently, most island arc magmas, and especially those more evolved than basalt, are probably not primary in the sense that they do not represent direct melts of the upper mantle. Studies of arc volcanic rocks may yield misleading conclusions concerning processes of magma generation related to subduction unless evolutionary processes are defined and their effects considered. It appears that modern volcanic arcs provide a poor analog for models of early crustal development because the modern mantle-derived magmatic components are more mafic in composition than average continental crust.  相似文献   

19.
Li  Wei  Chen  Yun  Tan  Ping  Yuan  Xiaohui 《中国科学:地球科学(英文版)》2020,63(5):649-661
The Pamir plateau, located north of the western syntaxis of the India-Eurasia collision system, is regarded as one of the most possible places of the ongoing continental deep subduction. Based on a N-S trending linear seismic array across the Pamir plateau, we use the methods of the harmonic analysis of receiver functions and the cubic spline interpolation of surface wave dispersions to coordinate their resolutions, and perform a joint inversion of these datasets to construct a 2-D S-wave velocity model of the crust and uppermost mantle there. A spatial configuration among the intermediate-depth seismicity, Moho topography, and low-velocity anomalies within the crust and upper mantle is revealed, which provides new seismological constraints on the geodynamic processes of the continental subduction. These results not only further confirm the deep subduction of the Asian continental lower crust beneath the Pamir plateau, but also indicate the importance of the metamorphic dehydration of the subducting continental crustal material in the genesis of the intermediate-depth seismicity and the crustal deformation.  相似文献   

20.
The development of near-vertical reflection methods for investigating the continental crust is strongly related to progress that has been made in seismic prospecting and in wide-angle observation in crustal refraction studies. Owing to the good structural resolution of near-vertical reflection methods, many details concerning first-order interfaces in the upper and lower crust have been established. While reflectors in the upper crust often appear to resemble thrust faults or diffractions from dome-like structures, increased reflectivity of the lower crust often provides indications of strong interactions with the underlying mantle. Differences in reflection density in U.S. and W. German surveys may be attributed mainly to the different tectonic styles, rather than to the use of different techniques. The occurrence of some reflectors with negative polarity within the band of reflections in the lower crust supports the concept of a laminated crust-mantle transition. A negative reflection polarity has also been detected at a low-velocity, gouge-containing thrust fault in the upper crust. The velocity resolution of near-vertical techniques can be improved over that of wide-angle methods by using spread lengths greater than 15 km. Regarding the accretion of the crust, both autochthonous creation from the underlying mantle, and horizontal, allochthonous accretion along thrust faults play a major role. The detection of sediments below such thrust planes and of magma bodies along other fault zones provides an interesting new view for prospecting surveys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号