首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
监测流域水储量的变化对研究流域水资源变化和水平衡具有重要意义,而GRACE重力卫星为流域尺度水储量变化的研究提供了新的手段.本文利用2003-2012年近十年来洞庭湖流域GRACE RL05时变重力场数据并结合30个气象站点的降水量数据,反演洞庭湖流域水储量时空变化特征及其与降水量之间的联系,并采取趋势分析法,揭示了该流域近10年来水储量变化趋势.结果表明:在空间上,洞庭湖流域水储量变化呈现总体从东北向西南递减格局.在时间上,水储量变化与降水量变化之间存在明显的季节性变化规律,两者变化过程基本一致,但水储量变化峰值出现滞后于降水量峰值一个月左右.近十年来洞庭湖流域水储量整体呈逐年上升趋势,平均每月上升0.5 mm,其中秋季增加幅度最大,为26.07 mm·a-1,全球变暖,降水量增加,导致该流域水储量变化增大.  相似文献   

2.
黑河流域陆地水储量变化对流域下游等周边区域水资源的合理利用以及经济和社会发展等有着重要的意义.本文利用2003年1月至2013年12月的GRACE RL05数据反演了黑河流域陆地水储量长时间序列的变化,并针对重力场模型和数据处理中产生的信号泄漏问题,采用Forward-Modeling方法进行了改正并恢复泄漏信号;将GRACE获得的泄漏信号恢复前后的黑河流域水储量变化结果与全球水文模型GLDAS和CPC进行比较分析,结果表明泄漏信号改正后的结果与水文模型结果的时间序列相关性均有明显提高,从其空间分布结果可以看出Forward-Modeling方法有效地恢复初始信号、增强被湮没的信号,泄漏信号误差减小;通过分析黑河流域水储量变化的长时间序列结果,发现其具有明显的阶段性变化特征,即2003—2006年呈明显下降趋势,约为-0.86cm·a-1,在2007—2010年趋于平衡状态,而2011—2013年则呈现缓慢上升趋势约为0.14cm·a-1;联合GRACE数据和GLDAS数据反演了黑河流域地下水储量变化,并与全球降雨数据GPCC进行了比较分析,两者相关性可达到0.88以上.  相似文献   

3.
在无真实观测值的情况下,本文利用广义三角帽方法评估了五种GRACE时变重力场模型(CSR、GFZ、GRGS、HUST发布的球谐系数解和JPL发布的Mascon解)反演中国大陆地区2003-2013年水储量变化的不确定性.研究结果表明,CSR、GFZ、JPL、HUST和GRGS反演月水储量变化不确定性的区域平均RMS分别为14.4 mm、26.3 mm、25.3 mm、26.6 mm和56.1 mm,其中GRGS的结果未恢复泄漏信号;在季和年尺度上,模型的不确定性均小于月尺度;扣除周期和趋势信号后,各模型反演结果更为一致.除长江流域外,CSR在13个流域的不确定性均小于其他模型,GRGS反演各流域水储量变化的不确定性通常较大,且可能高估了温带大陆性气候地区水储量的波动;CSR和JPL的不确定性受流域周边水文特征、气候类型、流域面积和形状的影响相对较小,不确定性变化范围分别为2.3~17.1 mm和5.6~22.5 mm,GFZ和HUST受影响较大,不确定性变化范围分别为5.5~35.1 mm和4.0~40.6 mm.本文的研究结果为GRACE产品不确定性评估提供了新的途径,为GRACE时变重力场模型的选取提供参考.  相似文献   

4.
河西走廊由疏勒河流域、黑河流域和石羊河流域组成,水资源保护对河西走廊生态平衡和经济发展有着重要意义.本文利用JPL GRACE/GRACE-FO Mascon模型反演该区域陆地水储量的时空变化,结合GLDAS模型、实测地下水位和冰川水模型等数据对陆地水储量进行水平衡分析及时空特征变化分析,结果表明:(1)2002-04—2020-01间由于降水和冰川融水的补充,疏勒河流域南部和黑河大部分区域陆地水储量空间变化呈上升趋势,而蒸散消耗与农业扩张则导致疏勒河流域北部和石羊河流域陆地水储量下降;(2)通过水平衡研究发现人类耗水是疏勒河流域、黑河流域和石羊河流域陆地水储量变化的重要因素,平均贡献率分别为-24.49%、-47.20%和-43.29%;(3)河西走廊水资源治理政策的实施减少了农业灌溉耗水量、控制了耕地面积的扩张、抑制了地下水储量的消耗.  相似文献   

5.
全球水储量变化的GRACE卫星检测   总被引:13,自引:6,他引:13       下载免费PDF全文
利用GRACE月尺度变化的地球重力场反演了全球水储量变化,并与陆地水文资料、卫星测高资料及海洋模式得到的结果进行了比对.通过对SOURE台站重力变化的陆地水储量变化计算结果和GRACE重力场系数截断为15阶得到的结果比较,发现两者比较接近,且年周期变化特征明显.对于亚马逊流域,当重力场系数截断为15阶且平滑半径使用106 m时,GRACE反演的区域平均水储量厚度的周年变化振幅为15.6×10-2m,小于使用平滑半径为4×105m的23.7×10-2m.在研究长江流域时,本文对水文资料做球谐系数展开,并与GRACE数据做同样的截断和平滑处理,结果发现GRACE反演的水厚度变化与水文资料结果基本上符合.对于纬度±66°之间的海洋区域,GRACE反演的海水质量变化接近于结合卫星测高和海洋模式得到的结果,但对于2°×2°网格,则在一些区域差异明显,最大超过了0.2 m,中误差为3.8×10-2m.可见,当前GRACE卫星时变重力场只能确定出上千公里及以上尺度区域的水储量变化.  相似文献   

6.
GRACE估算陆地水储量季节和年际变化   总被引:8,自引:2,他引:6       下载免费PDF全文
利用最新公布的GRACE GFZ RL04数据,分析了2003年1月~2007年12月全球27条流域和陆地水储量的季节性和年际变化.结果表明,相近流域季节性变化相位接近.2003年1月~2007年12月陆地水储量季节性变化为1572.4 km3,其中变化最大流域为亚马逊河,其次分别为鄂毕河、尼罗河和尼日尔河等流域.5年来 GRACE陆地水储量的年际变化为-75.4±40.3 km3/a,其中亚马逊河、勒拿河和马更些河等流域的年际变化呈现正增长,而刚果河、密西西比河、恒河、育空河和雅鲁藏布江等流域则相反.GRACE与GLDAS数据均表明2006年后陆地水储量年际变化存在明显增加.  相似文献   

7.
2002年重力卫星GRACE的成功发射极大地促进了地球科学多个领域,包括全球海平面变化、极地冰盖与高山冰川消融、水文以及固体地球等多个领域的发展.然而,GRACE观测数据主要是以球谐系数的形式给出,需要应用者进行一系列预处理才可以得到对应的物理量.为了克服此困难,也为了提高GRACE恢复重力场地空间分辨率,相关机构在近些年推出了新一代GRACE观测数据产品,即Mascon产品.该产品的初衷是便于非大地测量和地球物理专业的人使用,比如水文学家、海洋学家,它无需进行任何后处理过程,使用上更加方便.然而,尽管Mascon产品以较高的空间分辨率(如1°)给出,但是,该产品的应用范围以及其实际的分辨率等都是科学家们非常关注的问题.目前科学家们已经对该产品在不同流域尺度以及不同应用领域上的适用性问题进行了系统性地评估.本文综合介绍了Mascon产品的基本原理和方法、三家Mascon产品的差异,并梳理了该产品和球谐系数产品之间在一些具体物理问题的应用中的适用性以及应该注意的问题,为广大科研工作者提供科学依据和使用参考.  相似文献   

8.
青藏高原大部分湖泊近年来持续扩张,湖泊水位和水量明显增加.冰川消融是流域水量平衡和水循环的重要影响因素,直接导致湖泊水量变化.由于缺乏大范围的冰川质量平衡观测结果,青藏高原冰川消融对湖泊水量变化的影响仍存在较大争议.本文选择青藏高原内流区的色林错流域区(水系编号5Z2)作为研究对象,利用SRTM DEM和TanDEM-X双站InSAR数据,精确估算该流域三个主要冰川区(普若岗日、格拉丹东和西念青唐古拉)2000—2012年的冰川质量平衡,依次为:-0.020±0.030、-0.128±0.049、-0.143±0.032m·w.e.·a~(-1).并据此采用面积加权法准确推估出5Z2流域的冰川质量变化为:-0.166±0.021Gt·a~(-1).综合ICESat和Cryosat-2卫星测高数据,计算该流域2003—2012年湖泊水量变化速率(3.006±0.202Gt·a~(-1)),并定量评估冰川质量变化对5Z2流域湖泊水量增加的贡献为:5.52%±1.07%,因此在青藏高原色林错流域区,冰川消融不是导致21世纪初期湖泊水位上升的主要因素.  相似文献   

9.
本文基于CSR最新公布的GRACE RL06版本数据,采用Slepian空域反演法估算了南极冰盖27个流域的质量变化.Slepian空域反演法结合了Slepian空间谱集中法和空域反演法的技术优势,能够有效降低GRACE在小区域反演时信号出现的严重泄漏和衰减,进而精确获得南极冰盖在每个流域的质量变化.相对于GRACE RL05版本数据,RL06在条带误差的控制上要更加优化,获得的南极冰盖质量变化时间序列也更加平滑,但在趋势估算上差别并不明显(小于10Gt/a).本文的估算结果显示:在2002年4月至2016年8月期间,整个南极冰盖质量变化速率为-118.6±16.3Gt/a,其中西南极为-142.4±10.5Gt/a,南极半岛为-29.2±2.1Gt/a,东南极则为52.9±8.6Gt/a.南极冰盖损失最大的区域集中在西南极Amundsen Sea Embayment(流域20-23),该地区质量变化速率为-203.5±4.1Gt/a,其次为南极半岛(流域24-27)以及东南极Victoria-Wilkes Land(流域13-15),质量变化速率分别为-29.2±2.1Gt/a和-19.0±4.7Gt/a,其中Amundsen Sea Embayment和南极半岛南部两个地区的冰排放呈现加速状态.南极冰盖质量显著增加的区域主要有西南极的Ellsworth Land(流域1)和Siple Coast(流域18和19)以及东南极的Coats-Queen Maud-Enderby Land(流域3-8),三个地区质量变化速率分别为17.2±2.4Gt/a、43.9±1.9Gt/a和62.7±3.8Gt/a,质量增加大多来自降雪累积,比如:Coats-Queen Maud-Enderby Land在2009年和2011年发生的大规模降雪事件,但也有来自冰川的增厚,如:Siple Coast地区Kamb冰流的持续加厚.此外,对GRACE估算的南极冰盖质量变化年际信号进行初步分析发现,GRACE年际信号与气候模型估算的冰盖表面质量平衡年际信号存在显著的线性相关关系,但与主要影响南极气候年际变化的气候事件之间却不存在线性相关关系,这说明南极冰盖质量变化的年际信号主要受冰盖表面质量平衡的支配,而气候事件对冰盖表面质量平衡的影响可能是复杂的非线性耦合过程.  相似文献   

10.
GRACE重力卫星自2002年3月发射至今,已进行了十多年的连续观测,由此获得的重力场变化数据被广泛地应用于研究地表河流及地下水储量变化、南极和格林兰岛冰盖厚度以及全球海平面变化等.本文从GRACE重力卫星数据的处理方法入手,对其数据特点、限制条件和水文模型计算方法等问题进行了系统总结,并针对近年来利用GRACE卫星数据开展的相关研究,从估算全球水储量的变化、区域水储量变化、地下水变化以及陆地河流流域的水储量变化等方面对相关研究和应用进行了简要评述.最后,对使用GRACE卫星数据反演陆地水储量的验证方法和存在的问题进行讨论.本文对于全面了解近年来应用GRACE卫星数据研究陆地水储量变化方面的相关进展具有参考意义.  相似文献   

11.
本文利用GRACE (Gravity Recovery and Climate Experiment) 卫星重力资料研究了亚马逊流域2002-2010年的陆地水变化,并与水文模式和降雨资料进行了比较分析.在年际尺度上,GRACE结果表明:2002-2003年和2005年,亚马逊流域发生明显的干旱现象;2007年至2009年,陆地水呈逐年增加的趋势,并在2009年6月变化值达到最大,为772±181 km3;自2009年6月至2010年12月,陆地水总量又急剧减少了1139±262 km3,这相当于全球海平面上升3.2±0.7 mm所需的水量.水文模式得到的亚马逊流域陆地水在2010年也表现出明显的减少.降雨资料与GRACE观测资料有很好的一致性.在2005年和2010年的干旱期,亚马逊流域的降雨显著减少,说明降雨是亚马逊流域陆地水变化的重要因素.此外,本文采用的尺度因子的方法有效地降低了GRACE后处理误差的影响.  相似文献   

12.
Previous studies indicate that water storage over a large part of the Middle East has been decreased over the last decade. Variability in the total (hydrological) water flux (TWF, i.e., precipitation minus evapotranspiration minus runoff) and water storage changes of the Tigris–Euphrates river basin and Iran’s six major basins (Khazar, Persian, Urmia, Markazi, Hamun, and Sarakhs) over 2003–2013 is assessed in this study. Our investigation is performed based on the TWF that are estimated as temporal derivatives of terrestrial water storage (TWS) changes from the Gravity Recovery and Climate Experiment (GRACE) products and those from the reanalysis products of ERA-Interim and MERRA-Land. An inversion approach is applied to consistently estimate the spatio-temporal changes of soil moisture and groundwater storage compartments of the seven basins during the study period from GRACE TWS, altimetry, and land surface model products. The influence of TWF trends on separated water storage compartments is then explored. Our results, estimated as basin averages, indicate negative trends in the maximums of TWF peaks that reach up to ?5.2 and ?2.6 (mm/month/year) over 2003–2013, respectively, for the Urmia and Tigris–Euphrates basins, which are most likely due to the reported meteorological drought. Maximum amplitudes of the soil moisture compartment exhibit negative trends of ?11.1, ?6.6, ?6.1, ?4.8, ?4.7, ?3.8, and ?1.2 (mm/year) for Urmia, Tigris–Euphrates, Khazar, Persian, Markazi, Sarakhs, and Hamun basins, respectively. Strong groundwater storage decrease is found, respectively, within the Khazar ?8.6 (mm/year) and Sarakhs ?7.0 (mm/year) basins. The magnitude of water storage decline in the Urmia and Tigris–Euphrates basins is found to be bigger than the decrease in the monthly accumulated TWF indicating a contribution of human water use, as well as surface and groundwater flow to the storage decline over the study area.  相似文献   

13.
Better quantification of continental water storage variations is expected to improve our understanding of water flows, including evapotranspiration, runoff and river discharge as well as human water abstractions. For the first time, total water storage (TWS) on the land area of the globe as computed by the global water model WaterGAP (Water Global Assessment and Prognosis) was compared to both gravity recovery and climate experiment (GRACE) and global positioning system (GPS) observations. The GRACE satellites sense the effect of TWS on the dynamic gravity field of the Earth. GPS reference points are displaced due to crustal deformation caused by time-varying TWS. Unfortunately, the worldwide coverage of the GPS tracking network is irregular, while GRACE provides global coverage albeit with low spatial resolution. Detrended TWS time series were analyzed by determining scaling factors for mean annual amplitude (f GRACE) and time series of monthly TWS (f GPS). Both GRACE and GPS indicate that WaterGAP underestimates seasonal variations of TWS on most of the land area of the globe. In addition, seasonal maximum TWS occurs 1 month earlier according to WaterGAP than according to GRACE on most land areas. While WaterGAP TWS is sensitive to the applied climate input data, none of the two data sets result in a clearly better fit to the observations. Due to the low number of GPS sites, GPS observations are less useful for validating global hydrological models than GRACE observations, but they serve to support the validity of GRACE TWS as observational target for hydrological modeling. For unknown reasons, WaterGAP appears to fit better to GPS than to GRACE. Both GPS and GRACE data, however, are rather uncertain due to a number of reasons, in particular in dry regions. It is not possible to benefit from either GPS or GRACE observations to monitor and quantify human water abstractions if only detrended (seasonal) TWS variations are considered. Regarding GRACE, this is mainly caused by the attenuation of the TWS differences between water abstraction variants due to the filtering required for GRACE TWS. Regarding GPS, station density is too low. Only if water abstractions lead to long-term changes in TWS by depletion or restoration of water storage in groundwater or large surface water bodies, GRACE may be used to support the quantification of human water abstractions.  相似文献   

14.
Global Terrestrial Water Storage Changes and Connections to ENSO Events   总被引:1,自引:0,他引:1  
Improved data quality of extended record of the Gravity Recovery and Climate Experiment (GRACE) satellite gravity solutions enables better understanding of terrestrial water storage (TWS) variations. Connections of TWS and climate change are critical to investigate regional and global water cycles. In this study, we provide a comprehensive analysis of global connections between interannual TWS changes and El Niño Southern Oscillation (ENSO) events, using multiple sources of data, including GRACE measurements, land surface model (LSM) predictions and precipitation observations. We use cross-correlation and coherence spectrum analysis to examine global connections between interannual TWS changes and the Niño 3.4 index, and select four river basins (Amazon, Orinoco, Colorado, and Lena) for more detailed analysis. The results indicate that interannual TWS changes are strongly correlated with ENSO over much of the globe, with maximum cross-correlation coefficients up to ~0.70, well above the 95% significance level (~0.29) derived by the Monte Carlo experiments. The strongest correlations are found in tropical and subtropical regions, especially in the Amazon, Orinoco, and La Plata basins. While both GRACE and LSM TWS estimates show reasonably good correlations with ENSO and generally consistent spatial correlation patterns, notably higher correlations are found between GRACE TWS and ENSO. The existence of significant correlations in middle–high latitudes shows the large-scale impact of ENSO on the global water cycle.  相似文献   

15.
In recent years, the Gravity Recovery and Climate Experiment (GRACE) has provided a new tool to study terrestrial water storage variations (TWS) at medium and large spatial scales, providing quantitative measures of TWS change. Linear trends in TWS variations in Turkey were estimated using GRACE observations for the period March 2003 to March 2009. GRACE showed a significant decrease in TWS in the southern part of the central Anatolian region up to a rate of 4 cm/year. The Global Land Data Assimilation System (GLDAS) model also captured this TWS decrease event but with underestimated trend values. The GLDAS model represents only a part of the total TWS variations, the sum of soil moisture (2 m column depth) and snow water equivalent, ignoring groundwater variations. Therefore, GLDAS model derived TWS variations were subtracted from GRACE derived TWS variations to estimate groundwater storage variations. Results revealed that decreasing trends of TWS observed by GRACE in the southern part of central Anatolia were largely explained by the decreasing trends of groundwater variations which were confirmed by the limited available well groundwater level data in the region.  相似文献   

16.
Freshwater resources in the arid Arabian Peninsula, especially transboundary aquifers shared by Saudi Arabia, Jordan, and Iraq, are of critical environmental and geopolitical significance. Monthly Gravity Recovery and Climate Experiment (GRACE) satellite‐derived gravity field solutions acquired over the expansive Saq transboundary aquifer system were analysed and spatiotemporally correlated with relevant land surface model outputs, remote sensing observations, and field data to quantify temporal variations in regional water resources and to identify the controlling factors affecting these resources. Our results show substantial GRACE‐derived terrestrial water storage (TWS) and groundwater storage (GWS) depletion rates of ?9.05 ± 0.25 mm/year (?4.84 ± 0.13 km3/year) and ?6.52 ± 0.29 mm/year (?3.49 ± 0.15 km3/year), respectively. The rapid decline is attributed to both climatic and anthropogenic factors; observed TWS depletion is partially related to a decline in regional rainfall, while GWS depletions are highly correlated with increasing groundwater extraction for irrigation and observed water level declines in regional supply wells.  相似文献   

17.
Time-variable gravity data of the GRACE (Gravity Recovery And Climate Experiment) satellite mission provide global information on temporal variations of continental water storage. In this study, we incorporate GRACE data for the first time directly into the tuning process of a global hydrological model to improve simulations of the continental water cycle. For the WaterGAP Global Hydrology Model (WGHM), we adopt a multi-objective calibration framework to constrain model predictions by both measured river discharge and water storage variations from GRACE and illustrate it on the example of three large river basins: Amazon, Mississippi and Congo. The approach leads to improved simulation results with regard to both objectives. In case of monthly total water storage variations we obtained a RMSE reduction of about 25 mm for the Amazon, 6 mm for the Mississippi and 1 mm for the Congo river basin. The results highlight the valuable nature of GRACE data when merged into large-scale hydrological modeling. Furthermore, they reveal the utility of the multi-objective calibration framework for the integration of remote sensing data into hydrological models.  相似文献   

18.
The regional-scale consistency between four precipitation products from the GPCC, TRMM, WM, and CMORPH datasets over the Arabian Peninsula was assessed. Their macroscale relationships were inter-compared with soil moisture and total water storage (TWS) estimates from AMSR-E and GRACE. The consistency analysis was studied with multivariate statistical hypothesis testing and Pearson correlation metrics for the period from January 2000 to December 2010. The products and GRACE estimates were assessed over a representative sub-domain (United Arab Emirates) with available in situ well observations. Next, geographically temporally weighted regression (GTWR) was employed to examine the interdependencies among the peninsula’s hydrological components. The results showed GPCC-TRMM recording the highest correlation (0.85) with insignificant mean differences over more than 90% of the peninsula. The highest GTWR predictive performance of TWS (R2 = 0.84) was achieved with TRMM forcing, which indicates its potential to monitor changes in TWS over the arid peninsular region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号