首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Masonry buildings are primarily constructed out of bricks and mortar which become discrete pieces and cannot sustain horizontal forces created by a strong earthquake.The collapse of masonry walls may cause significant human casualties and economic losses.To maintain their integrity,several methods have been developed to retrofit existing masonry buildings,such as the constructional RC frame which has been extensively used in China.In this study,a new method using precast steel reinforced concrete(PSRC)panels is developed.To demonstrate its effectiveness,numerical studies are conducted to investigate and compare the collapse behavior of a structure without retrofitting,retrofitted with a constructional RC frame,and retrofitted with external PSRC walls(PSRCW).Sophisticated finite element models(FEM)were developed and nonlinear time history analyses were carried out.The results show that the existing masonry building is severely damaged under occasional earthquakes,and totally collapsed under rare earthquakes.Both retrofitting techniques improve the seismic performance of existing masonry buildings.However,it is found that several occasional earthquakes caused collapse or partial collapse of the building retrofitted with the constructional RC frame,while the one retrofitted by the proposed PSRC wall system survives even under rare earthquakes.The effectiveness of the proposed retrofitting method on existing masonry buildings is thus fully demonstrated.  相似文献   

2.
This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace,termed glass-fiber-reinforced-polymer(GFRP)-tube-confined-concrete composite brace,is comprised of concrete confined by a GFRP tube and an inner steel core for energy dissipation.Together with a contribution from the GFRP-tube confined concrete,the composite brace shows a substantially increased stiffness to control story drift, which is often a preferred feature in seismic retrofitting.An analysis model is established and implemented in a general finite element analysis program-OpenSees,for simulating the load-displacement behavior of the composite brace.Using this model,a parametric study of the hysteretic behavior(energy dissipation,stiffness,ductility and strength)of the composite brace was conducted under static cyclic loading and it was found that the area ratio of steel core to concrete has the greatest influence among all the parameters considered.To demonstrate the application of the composite brace in seismic retrofitting, a three-story nonductile reinforced concrete(RC)frame structure was retrofitted with the composite braces.Pushover analysis and nonlinear time-history analyses of the retrofitted RC frame structure was performed by employing a suite of 20 strong ground motion earthquake records.The analysis results show that the composite braces can effectively reduce the peak seismic responses of the RC frame structure without significantly increasing the base shear demand.  相似文献   

3.
Existing buildings can be at a greater seismic risk due to non-conformance to current design codes and may require structural retrofitting to improve building performance. The performance of buildings is measured in terms of immediate consequences due to direct damage, but the continuing impacts related to recovery are not considered in seismic retrofit assessment. This paper introduces a framework of retrofit selection based on the seismic resilience of deficient buildings retrofitted with the conventional mitigation approaches. The assembly-based methodology is considered for the seismic resilience assessment by compiling a nonlinear numerical model and a building performance model. The collapse fragility is developed from the capacity curve, and the resulting social, economic, and environmental consequences are determined. The seismic resilience of a building is assessed by developing a downtime assessment methodology incorporating sequence of repairs, impeding factors, and utility availability. Five functionality states are developed for the building functionality given investigated time interval, and a functionality curve for each retrofit is determined. It is concluded that seismic resilience can be used as a performance indicator to assess the continuing impacts of a hazard for the retrofit selection.  相似文献   

4.
This paper presents a new concept for enhancing the seismic ductility and damping capacity of diagrid structural frames by using shear-link fuse devices and its seismic performance is assessed through nonlinear static and dynamic analysis.The architectural elegancy of the diagrid structure attributed to its triangular leaning member configuration and high structural redundancy make this system a desirable choice for tall building design.However,forming a stable energy dissipation mechanism in diagrid framing remains to be investigated to expand its use in regions with high seismicity.To address this issue,a diagrid framing design is proposed here which provides a competitive design option in highly seismic regions through its increased ductility and improved energy dissipation capacity provided by replaceable shear links interconnecting the diagonal members at their ends.The structural characteristics and seismic behavior(capacity,stiffness,energy dissipation,ductility) of the diagrid structural frame are demonstrated with a 21-story building diagrid frame subjected to nonlinear static and dynamic analysis.The findings from the nonlinear time history analysis verify that satisfactory seismic performance can be achieved by the proposed diagrid frame subjected to design basis earthquakes in California.In particular,one appealing feature of the proposed diagrid building is its reduced residual displacement after strong earthquakes.  相似文献   

5.
A displacement-based design (DBD) procedure aiming to proportion hysteretic damped braces (HYDBs) in order to attain, for a specific level of seismic intensity, a designated performance level of a structure is proposed for the retrofitting of framed buildings. A key step for the reliability of the DBD procedure is the selection of the equivalent viscous damping in order to account for the energy dissipated by the damped braced frame. In this paper, expressions of the equivalent damping are obtained considering the energy dissipated by the HYDBs and the framed structure. To this end, dynamic analyses of an equivalent single degree of freedom system, whose response is idealized by a trilinear model, are carried out considering real accelerograms matching, on the average, Eurocode 8 (EC8) response spectrum for a medium subsoil class. Then, a three-storey reinforced concrete (r.c.) framed structure of a school building, designed in a medium-risk seismic region according to the Italian code in force in 1975, is supposed as retrofitted as if in a high-risk seismic region of the current seismic code (NTC08) by the insertion of HYDBs. Nonlinear static analyses are carried out to evaluate the vulnerability of the primary structure, characterized by the lack of interior girders along the floor slab direction, and to select optimal properties of the HYDBs. The effectiveness of the retrofitting solutions is checked referring to nonlinear dynamic analyses, considering artificially generated accelerograms whose response spectra match those adopted by NTC08 for the earthquake design levels corresponding to the serviceability and ultimate limit states.  相似文献   

6.
针对既有的C类框架学校建筑提高一度抗震设防的加固目标,从地震作用计算、结构抗震验算和抗震构造措施等方面详细分析了其中的加固难点,指出了应用传统抗震加固方法的一些不足之处,探讨了应用消能减震技术进行结构提高一度抗震设防加固的可行性;并以某C类框架学校建筑加固工程为实例,从减震控制效果分析、弹塑性变形验算、消能部件影响评价、抗震构造措施核查4个方面论证了消能减震加固方法的有效性和可操作性。结果表明,消能减震技术在C类框架学校建筑抗震加固中具有一定的应用优势,不但能有效控制结构的地震响应,而且依据减震效果可以适当降低结构的抗震构造要求。因此,只要通过合理的消能减震加固设计,再辅以额外的局部加强处理,完全可以实现C类框架学校建筑提高一度抗震设防的加固目标需求。  相似文献   

7.
The paper presents a comparative study of an existing retrofit for a mid-rise steel building using additional stiff steel braced-frames against an alternate retrofit using ADAS (Added Damping and Stiffness) passive energy dissipation devices. The subject building, located near Alameda Park in downtown Mexico City, is a ten-storey office building that was built in the 1950s. The structure was damaged during the 1985 Michoacán Earthquake because of resonant response with the site. The building was later retrofitted using additional braced frames according to the seismic provisions of Mexico's 1987 Federal District Code. The retrofit scheme was planned to take the structure away from resonant responses and to inhibit structural damage. A proposed upgrade using ADAS energy dissipation devices was studied to compare energy dissipation against traditional stiffening using steel braces as retrofit options for mid-rise buildings in Mexico City's lake-bed zone. Different sets of analyses were carried out to compare both alternatives: (a) three-dimensional elastic analyses; (b) limit analyses and; (c) nonlinear dynamic analyses for postulated site ground motions for a Ms=8.1 earthquake. Initial costs of the retrofit schemes were also studied. The comparative studies suggest that a retrofit using ADAS devices would have a better dynamic performance than the one using steel braces. However, the steel bracing retrofit provides more strength and its initial cost of retrofit is less than that of the ADAS retrofit. © 1997 John Wiley & Sons, Ltd.  相似文献   

8.
This paper assesses the seismic performance of typical reinforced concrete (RC) existing framed structures designed for gravity loads only. The sample two-storey structural system exhibits high vulnerability, i.e. low lateral resistance and limited translation ductility; hence an effective strategy scheme for seismic retrofitting was deemed necessary. Such a scheme comprises buckling restrained braces (BRBs) placed along the perimeter frames of the multi-storey building. The adopted design approach assumes that the global response of the inelastic framed structure is the sum of the elastic frame (primary system) and the system comprising perimeter diagonal braces (secondary system); the latter braces absorb and dissipate a large amount of hysteretic energy under earthquake ground motions. Comprehensive nonlinear static (pushover) and dynamic (response history) analyses were carried out for both the as-built and retrofitted structures to investigate the efficiency of the adopted intervention strategy. A set of seven code-compliant natural earthquake records was selected and employed to perform inelastic response history analyses at serviceability (operational and damageability limit states, OLS and DLS) and ultimate limit states (life safety and collapse prevention limit states, LSLS and CPLS). Both global and local lateral displacements are notably reduced after the seismic retrofit of the existing system. In the as-built structure, the damage is primarily concentrated at the second floor (storey mechanism); the computed interstorey drifts are 2.43% at CPLS and 1.92% at LSLS for modal distribution of lateral forces. Conversely, for the retrofitted system, the estimated values of interstorey drifts (d/h) are halved; the maximum d/h are 0.84% at CPLS (along the Y-direction) and 0.65% at LSLS (yet along the Y-direction). The values of the global overstrength Ω vary between 2.14 and 2.54 for the retrofitted structure; similarly, the translation ductility μΔ-values range between 2.07 and 2.36. The response factor (R- or q-factor) is on average equal to 5.0. It is also found that, for the braced frame, under moderate-to-high magnitude earthquakes, the average period elongation is about 30%, while for the existing building the elongation is negligible (lower than 5%). The inelastic response of the existing structure is extremely limited. Conversely, BRBs are effective to enhance the ductility and energy dissipation of the sample as-built structural system. Extensive nonlinear dynamic analyses showed that more than 60% of input seismic energy is dissipated by the BRBs at ultimate limit states. The estimated maximum axial ductility of the braces is about 10; the latter value of translation ductility is compliant with BRBs available on the market. At DLS, the latter devices exhibit an elastic behaviour. It can thus be concluded that, under moderate and high magnitude earthquakes, the damage is concentrated in the added dampers and the response of the existing RC framed structure (bare frame) is chiefly elastic.  相似文献   

9.
Large number of vulnerable reinforced concrete (RC) buildings exists in earthquake prone areas. These low cost residential and/or commercial buildings, which are three to seven-stories high, usually do not receive essential engineering services during the construction phase. Finding cheap, easily applicable and occupant friendly retrofitting techniques are extremely important to reduce the seismic risk of these buildings. As an attempt to this, a particular type of high strength clay brick is studied to evaluate its potential for the structural retrofitting. A set of experiment was conducted to assess the important mechanical characteristics of the infill walls made from these bricks. Also the performance of two RC frames retrofitted with these walls, having different connection details between the wall and RC members was examined experimentally. The analytical nonlinear static analyses of these specimens have been performed using SeismoStruct to achieve some model parameters for representing the “infill wall model” in the program. Adaptive pushover and nonlinear time history analyses were conducted to investigate the performance of a six storey representative RC frame retrofitted with these walls. Evaluation of the results obtained in these analyses prove that this retrofitting technique introduces important strength and stiffness increments to the structure, regarding its seismic demands, which are similar to the results obtained from the experiments.  相似文献   

10.
The results of experimental tests carried out on reinforced concrete (RC) full‐scale 2‐storey 2‐bays framed buildings are presented. The unretrofitted frame was designed for gravity loads only and without seismic details; such frame was assumed as a benchmark system in this study. A similar RC frame was retrofitted with buckling‐restrained braces (BRBs). The earthquake structural performance of both prototypes was investigated experimentally using displacement‐controlled pushover static and cyclic lateral loads. Modal response properties of the prototypes were also determined before and after the occurrence of structural damage. The results of the dynamic response analyses were utilized to assess the existing design rules for the estimation of the elastic and inelastic period of vibrations. Similarly, the values of equivalent damping were compared with code‐base relationships. It was found that the existing formulations need major revisions when they are used to predict the structural response of as‐built RC framed buildings. The equivalent damping ratio ξeq was augmented by more than 50% when the BRBs was employed as bracing system. For the retrofitted frame, the overstrength Ω and the ductility µ are 1.6 and 4.1, respectively; the estimated R‐factor is 6.5. The use of BRBs is thus a viable means to enhance efficiently the lateral stiffness and strength, the energy absorption and dissipation capacity of the existing RC substandard frame buildings. The foundation systems and the existing members of the superstructure are generally not overstressed as the seismic demand imposed on them can be controlled by the axial stiffness and the yielding force of the BRBs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
An effective strategy of seismic retrofitting consists of installing nonlinear viscous dampers between the existing building, with insufficient lateral resistance, and some auxiliary towers, specially designed and erected as reaction structures. This allows improving the seismic performance of the existing building without any major alteration to its structural and nonstructural elements, which makes this approach particularly appealing for buildings with heritage value. In this paper, the nonlinear governing equations of the coupled lateral‐torsional seismic motion are derived from first principles for the general case of a multistory building connected at various locations in plan and in elevation to an arbitrary number of multistory towers. This formulation is then used to assess the performance of the proposed retrofitting strategy for a real case study, namely, a 5‐story student hall of residence in the city of Messina, Italy. The results of extensive time‐history analyses highlight the key design considerations associated with the stiffness of the reaction towers and the mechanical parameters of the nonlinear viscous dampers, confirming the validity of this approach.  相似文献   

12.
Yang  Cantian  Xie  Linlin  Li  Aiqun  Zeng  Demin  Jia  Junbo  Chen  Xi  Chen  Min 《地震工程与工程振动(英文版)》2020,19(4):839-853

The improvement of the seismic resilience of existing reinforced-concrete (RC) frame buildings, which is essential for the seismic resilience of a city, has become a critical issue. Although seismic isolation is an effective method for improving the resilient performance of such buildings, target-oriented quantitative improvements of the resilient performance of these buildings have been reported rarely. To address this gap, the seismic resilience of two existing RC frame buildings located in a high seismic intensity region of China were assessed based on the Chinese Standard for Seismic Resilience Assessment of Buildings. The critical engineering demand parameters (EDPs) affecting the seismic resilience of such buildings were identified. Subsequently, the seismic resilience of buildings retrofitted with different isolation schemes (i.e., yield ratios) were evaluated and compared, with emphasis on the relationships among yield ratios, EDPs, and levels of seismic resilience. Accordingly, to achieve the highest level of seismic resilience with respect to the Chinese standard, a yield ratio of 3% was recommended and successfully applied to the target-oriented design for the seismic-resilience improvement of an existing RC frame building. The research outcome can provide an important reference for the resilience-based retrofitting of existing RC frame buildings using seismic isolation in urban cities.

  相似文献   

13.
Upgrading noncode conforming buildings to mitigate seismic induced damages is important in moderate to high seismic hazard regions. The damage, can be mitigated by using conventional (e.g. FRP wrapping) and emerging (e.g. smart structures) retrofit techniques. A model for the structure to be retrofitted should include relevant performance indicators. This paper proposes a variable stiffness smart structure device known as the Smart Spring to be integrated on building structures to mitigate seismic induced damage. The variable stiffness capability is of importance to structures that exhibit vertical (e.g. soft storey) irregularities and to meet different performance levels under seismic excitation. To demonstrate the utility of the proposed retrofitting technique, a four‐storey steel building is modelled in MATLAB and appropriate performance indicators are chosen. Various return period seismic hazards are generated from past earthquake event records to predict the structure's performance. The performance improvement because of the retrofitting of building structures using the variable stiffness device is presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Building structures damaged by a seismic event may be exposed to the risk of aftershocks or another event within a certain period. In this paper, the seismic assessment of damaged piloti‐type RC buildings was carried out to evaluate probabilistic retrofitting effects under successive earthquakes. First, a framework to evaluate the effectiveness of retrofitting was proposed, and then the proposed methodology was demonstrated with a structure retrofitted with buckling‐restrained braces (BRBs). For consideration of realistic successive earthquakes, past records measured at the same station were combined. Within the framework, a series of nonlinear time history analyses were performed for an as‐is model subjected to single earthquake, a damaged model subjected to successive earthquakes, and a damaged model retrofitted with BRBs subjected to successive earthquakes. In addition, fragility analysis was systematically applied in the framework for evaluation of effectiveness of the retrofitting strategy. The proposed framework was capable of quantifying the influence of successive earthquakes and evaluating the effectiveness of BRB retrofitting by considering the severity of the first earthquake damage and the hysteresis behavior of the retrofit element. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
基于OpenSees的CFRP加固RC短柱抗震性能数值模拟   总被引:3,自引:1,他引:2  
采用地震工程开源模拟软件OpenSees对CFRP加固RC短柱进行了静力Push over分析和低周往复加载分析,并与通用有限元软件ANSYS模拟结果进行对比研究.研究结果表明:利用CFRP进行加固,不仅阻止了RC短柱的脆性剪切破坏,而且使破坏模式转化为延性弯曲破坏,增强了结构延性,进而有效地提高其抗震性能;同ANSYS相比,OpenSees可以宏观的反映CFRP与混凝土共同作用的非线性力学特征,有效地对构件和结构进行加固后的承载力及抗震性能分析.  相似文献   

16.
The frame-core tube-outrigger structural system is widely used in tall buildings, in which outriggers coordinate the deformation between the core tube and the moment frame, leading to a larger structural lateral stiffness. Existing studies indicate that outriggers can be designed as “fuses” of tall buildings through dissipating seismic energy after yielding, to protect the main structure. To date, both conventional and buckling-restrained brace (BRB) outriggers have been applied in practice. Subjected to the maximum considered earthquake (MCE), the hardening effect of BRB outriggers increases the damage of other structural components. Meanwhile, conventional outriggers are difficult to repair, owing to the local buckling-induced severe deterioration and damage. To overcome these problems, this study proposes a novel sacrificial-energy dissipation outrigger (SEDO) to improve the seismic resilience of tall buildings. The chords of SEDO are made of high-strength steel and remain elastic. The inclined braces of the SEDO are composed of a sacrificial part and an energy-dissipating part. Therefore, the SEDO remains elastic under design-based earthquakes (DBEs) and dissipates inelastic energy under MCEs. Moreover, the detailing of this novel SEDO is proposed on the basis of experimental studies. The optimal strength ratio between the sacrificial part and the energy-dissipating part is determined in the range of 6:4 to 4:6 on the basis of nonlinear time history analyses (THAs) and parametric studies. Afterwards, the SEDOs are used in an actual tall building to verify their seismic performances through nonlinear THAs. The results indicate the proposed SEDO is able to protect other structural components and effectively improve the seismic resilience of tall buildings.  相似文献   

17.
The opportunities provided by the use of fiber‐reinforced polymer (FRP) for the seismic retrofit of existing reinforced concrete (RC) structures were assessed on a full‐scale three‐story framed structure. The structure, designed only for gravity loads, was subjected to a bi‐directional pseudo‐dynamic (PsD) test at peak ground acceleration (PGA) equal to 0.20g at the ELSA Laboratory of the Joint Research Centre. The seismic deficiencies exhibited by the structure after the test were confirmed by post‐test assessment of structural seismic capacity performed by nonlinear static pushover analysis implemented on the lumped plasticity model of the structure. In order to allow the structure to withstand 0.30g PGA seismic actions, a retrofit using glass fiber‐reinforced polymer (GFRP) laminates was designed. The retrofit design was targeted to achieve a more ductile and energy dissipating global performance of the structure by increasing the ductility of columns and preventing brittle failure modes. Design assumptions and criteria along with nonlinear static pushover analysis to assess the overall capacity of the FRP‐retrofitted structure are presented and discussed. After the retrofit execution, a new series of PsD tests at both 0.20g and 0.30g PGA level were carried out. Theoretical predictions are compared with the main experimental outcomes to assess the effectiveness of the proposed retrofit technique and validate the adopted design procedures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
This study presents a nonlinear modelling technique for reinforced concrete (RC) frames retrofitted with metallic yielding devices to predict the seismic response using a computer software OpenSees. The numerical model considers the axial–flexure interaction, shear force–displacement response and the bond-slip characteristics of the frame members. The predicted hysteretic response has been compared with the results of slow-cyclic testing. The validated numerical model is then used to predict the seismic response of a five-story RC frame with soft-story. Nonlinear cyclic pushover and dynamic analyses are conducted to investigate the effectiveness of the proposed retrofitting scheme in enhancing the lateral strength and energy dissipation potential and in controlling the premature failure of the study frame. Analysis results showed significant improvement in the seismic response of RC frames with soft-story using the proposed retrofitting technique.  相似文献   

19.
A retrofitting technology using precast steel reinforced concrete (PSRC) panels is developed to improve the seismic performance of old masonry buildings. The PSRC panels are built up as an external PSRC wall system surrounding the existing masonry building. The PSRC walls are well connected to the existing masonry building, which provides enough confinement to effectively improve the ductility, strength, and stiffenss of old masonry structures. The PSRC panels are prefabricated in a factory, significantly reducing the situ work and associated construction time. To demonstrate the feasibility and mechanical effectivenss of the proposed retrofitting system, a full-scale five-story specimen was constructed. The retrofitting process was completed within five weeks with very limited indoor operation. The specimen was then tested in the lateral direction, which could potentially suffer sigifnicant damage in a large earthquake. The technical feasibility, construction workability, and seismic performance were thoroughly demonstrated by a full-scale specimen construction and pseudo-dynamic tests.  相似文献   

20.
Historic adobe structures pose a high seismic risk mainly because of the poor out-of-plane bending response of their walls that may produce fatalities and significant economic, cultural, and heritage losses. In this paper, we propose a retrofitting technique that increases the wall strength for both in-plane and out-of-plane directions. This technique consists of vertical and horizontal timber elements symmetrically installed on each face of the wall to form a confining wood frame, supplemented with vertical tensors that pre-compress the wall. This study evaluates the performance of this retrofitting technique with a two-set experimental program on full-scale historic adobe walls. On the first set, four specimens were subjected to a static overturning test with boundary conditions representing the confinement effect at both ends by orthogonal walls. On the second set, three full-scale specimens, one unretrofitted and two retrofitted, were subjected to four ground motion records on a shaking table to assess the out-of-plane dynamic behavior of typical corner walls. The unretrofitted specimen collapsed during the second motion (peak ground acceleration [PGA] = 0.39 g), while both retrofitted walls survived all four motions (maximum PGA of 0.75 g) proving the high effectiveness of the proposed retrofitting. The addition of base anchors as a variation of the retrofitting technique significantly reduced the rocking effects and the residual drifts of the system, thus improving its overall seismic performance. Further research is needed to develop guidelines for seismic retrofit of heritage buildings including multistory full-scale tests of specimens with various types of openings and retrofitting strategies that minimize their architectural impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号