首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Lin  Miao  Li  Xiaopeng 《Surveys in Geophysics》2022,43(5):1497-1538
Surveys in Geophysics - Until now, the prismatic mass approximation of the topography and the constant density assumption have been mostly utilized in topographic reductions, which are rough...  相似文献   

2.
3.
Summary Topographic effects on tidal strains and tilts are studied using a homogeneous elastic spherical model. Expressions for local perturbing strains and tilts are derive das functions of the physical and geometrical parameters of the model. It is demonstrated that tidal tilts are affected more by the topography than tidal strains.
n ¶rt;¶rt; n u ¶rt;u u¶rt;a uu a mmu a nuu ¶rt;auu u a. ¶rt; au, nuau a uau nuu ¶rt;au u a auumu m uuu umuu naam ¶rt;u. aa, m uau nuu a uau nuu ¶rt;au.
  相似文献   

4.
Abstract

The flow of a two-layer flow in a rotating channel on an f-plane over topography with sinusoidal variation of height in a direction parallel to the flow is investigated. When the two layers flow in opposite directions a resonance is found when the topographic scale matches the free mode of the system. We examine the stability of the forced mode in the vicinity of this resonance by means of a perturbation expansion of the topographic height. Both subresonant and super-resonant instabilities are found and their equilibration is examined. For small values of the dissipation multiple equilibria are found. The topographic drag releases potential energy even when the flow is baroclinically stable.  相似文献   

5.
The production of topographic datasets is of increasing interest and application throughout the geomorphic sciences, and river science is no exception. Consequently, a wide range of topographic measurement methods have evolved. Despite the range of available methods, the production of high resolution, high quality digital elevation models (DEMs) requires a significant investment in personnel time, hardware and/or software. However, image‐based methods such as digital photogrammetry have been decreasing in costs. Developed for the purpose of rapid, inexpensive and easy three‐dimensional surveys of buildings or small objects, the ‘structure from motion’ photogrammetric approach (SfM) is an image‐based method which could deliver a methodological leap if transferred to geomorphic applications, requires little training and is extremely inexpensive. Using an online SfM program, we created high‐resolution digital elevation models of a river environment from ordinary photographs produced from a workflow that takes advantage of free and open source software. This process reconstructs real world scenes from SfM algorithms based on the derived positions of the photographs in three‐dimensional space. The basic product of the SfM process is a point cloud of identifiable features present in the input photographs. This point cloud can be georeferenced from a small number of ground control points collected in the field or from measurements of camera positions at the time of image acquisition. The georeferenced point cloud can then be used to create a variety of digital elevation products. We examine the applicability of SfM in the Pedernales River in Texas (USA), where several hundred images taken from a hand‐held helikite are used to produce DEMs of the fluvial topographic environment. This test shows that SfM and low‐altitude platforms can produce point clouds with point densities comparable with airborne LiDAR, with horizontal and vertical precision in the centimeter range, and with very low capital and labor costs and low expertise levels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
以传统地震环境噪声面波成像方法研究地壳速度结构时,在一些极端的地形条件下,结果与真实结构会存在较大偏差.我们以地震波场三维正演模拟为基础,提出了一种地形校正方法.我们保留了传统噪声面波成像简单的两步反演法,在面波层析成像和一维速度结构反演的基础上,通过地震波场三维模拟近似估计地形和散射波场的影响,并据此校正瑞利波频散曲线,最终反演得到校正地形影响的S波速度结构.理论测试与在实际观测数据上的应用都证明了校正方法的有效性,同时也显示了地形校正的必要性.  相似文献   

7.
Topographic controls upon soil macropore flow   总被引:1,自引:0,他引:1  
Macropores are important components of soil hydrology. The spatial distribution of macropore flow as a proportion of saturated hydraulic conductivity was tested on six humid–temperate slopes using transects of tension infiltrometer measurements. Automated water table and overland flow monitoring allowed the timing of, and differentiation between, saturation‐excess overland flow and infiltration‐excess overland flow occurrence on the slopes to be determined and related to tension‐infiltrometer measurements. Two slopes were covered with blanket peat, two with stagnohumic gleys and two with brown earth soils. None of the slopes had been disturbed by agricultural activity within the last 20 years. This controlled the potential for tillage impacts on macropores. The proportion of near‐surface macropore flow to saturated hydraulic conductivity was found to vary according to slope position. The spatial patterns were not the same for all hillslopes. On the four non‐peat slopes there was a relationship between locations of overland flow occurrence and reduced macroporosity. This relationship did not exist for the peat slopes investigated because they experienced overland flow across their whole slope surfaces. Nevertheless, they still had a distinctive spatial pattern of macropore flow according to slope position. For the other soils tested, parts of slopes that were susceptible to saturation‐excess overland flow (e.g. hilltoes or flat hilltops) tended to have least macropore flow. To a lesser extent, for the parts of slopes susceptible to infiltration‐excess overland flow, the proportion of macropore flow as a component of infiltration was also smaller compared with the rest of the slope. The roles of macropore creation and macropore infilling by sheet wash are discussed, and it is noted that the combination of these may result in distinctive topographically controlled spatial patterns of macropore flow. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

Edge waves are known to give rise to beach cusps. This paper investigates the topographic feed-back upon the waves. For edge waves generated by subharmonic resonance with incident waves, the topography acts to decrease the edge wave response. As well as causing frequency detuning (Guza and Bowen, 1981) the topography can cause the scattering of edge wave energy. For synchronous waves the topographic irregularities have the opposite effect, and there can be a feed of energy into the edge waves by scattering from the incident waves.  相似文献   

9.
Using the Schwartz-Christofel transformation and numerical integration, the effect of a sloping topographic irregularity on the telluric field measurements in a sedimentary basin is estimated. Results show that in the vicinity of the topographic feature, the distortion introduced would increase with the angle of inclination of the sloping feature. It is noticed that, for moderate inclinations (20°–50°), the telluric field measured near the topographic feature is within 10% of its undisturbed value for distance greater than 0.1H–0.3H from the topographic feature, whereH is the thickness of the sedimentary column overlying the resistive basement. Suitable charts are prepared to aid as means to arrive at the estimates of errors for various angles of inclinations of such topographic feature and also to help in formulating approximate rules of thumb for selection of station sites in a field survey to minimize such topographic effects.  相似文献   

10.
During recent gravity surveys in Patagonia, we were unable to acquire data on the North Patagonian Icecap, which is completely inaccessible for land surveying. The Icecap is clearly of tectonic significance, but, because of its tectonic history, it is uplifted and rugged, and consequently inaccessible. Therefore the distribution of geophysical observations which can be acquired in a rugged field area is dependent on the tectonic history. This suggests that a tectonic history which is reconstructed from geophysical data may be systematically biased. We use models of local and flexural isostasy to estimate the gravity errors associated with interpolation across inaccessible topography. The gravity error is largest for Pratt isostasy, where the mass deficit which supports the topography is at relatively shallow depths. The gravity error is least for flexural isostasy, because in this case the inaccessible topography is supported regionally by a mass deficit which extends beyond the inaccessible region. An analytical flexural interpolation scheme is proposed for interpolation across data gaps associated with inaccessible topography. Flexural theory and Gauss’s theorem are used to predict the gravity anomaly due to the mass excess of the inaccessible topography. We apply this scheme to the North Patagonian Icecap, to demonstrate that flexural interpolation predicts a relative gravity low at the site of the Icecap, which would not be predicted by purely geometrical interpolation schemes.  相似文献   

11.
We use 2D numerical analyses at ground motion stations from the NGA-West2 dataset to develop parameters to predict the effect of surface topography on response spectra. The simplistic numerical analyses use sinusoidal input motions, uniform soil profiles, elastic soil properties, and absorbing boundary conditions. We define several topographic parameters for stations using the natural logarithm of 2D amplifications in peak ground acceleration of a sinusoidal input motion in different orientations. The natural log of 2D amplifications when averaged over multiple orientations is found to have the most predictive power among the studied parameters. We also explore the relationship between the topographic parameters developed in this study, and the topographic parameters developed at the same sites in an earlier study (Rai et al. in Earthq Spectra, 2016b).  相似文献   

12.
The Pleistocene glaciations left a distinct topographic footprint in mountain ranges worldwide. The geometric signature of glacial topography has been quantified in various ways, but the temporal development of landscape metrics has not been traced in a landscape evolution model so far. However, such information is needed to interpret the degree of glacial imprint in terms of the integrated signal of temporal and spatial variations in erosion as a function of glacial occupation time. We apply a surface process model for cold-climate conditions to an initially fluvial mountain range. By exploring evolving topographic patterns in model time series, we determine locations where topographic changes reach a maximum and where the initial landscape persists. The signal of glacial erosion, expressed by the overdeepening of valleys and the steepening of valley flanks, develops first at the glacier front and migrates upstream with ongoing glacial erosion. This leads to an increase of mean channel slope and its variance. Above steep flanks and head-walls, however, the observed mean channel slope remains similar to the mean channel slope of the initial fluvial topography. This leads to a characteristic turning point in the channel slope–elevation distribution above the equilibrium line altitude, where a transition from increasing to decreasing channel slope with elevation occurs. We identify this turning point and a high channel slope variance as diagnostic features to quantify glacial imprint. Such features are abundant in glacially imprinted mid-latitude mountain ranges such as the Eastern Alps. By analysing differently glaciated parts of the mountain range, we observe a decreasing clarity of this diagnostic morphometric property with decreasing glacial occupation. However, catchments of the unglaciated eastern fringe of the Alps also feature turning points in their channel slope–elevation distributions, but in contrast to the glaciated domain, the variance of channel slope is small at all elevation levels.  相似文献   

13.
Abstract

In this paper we examine the behaviour of oceanic unsteady flow impinging on isolated topography by means of numerical simulation. The ocean model is quasigeostrophic and forced by an oscillatory mean flow. The fluid domain is of the channel type and open-boundary numerical conditions are used to represent downstream and upstream flow.

In certain cases, vortex shedding, either cyclonic or anticyclonic, is observed in the lee of obstacles. Such shedding can be explained as the consequence of both an enhanced process of vorticity dissipation over the topography which locally affects the balance of potential vorticity on the advective timescale, and a periodic dominance of advective effects which sweep the fluid particles trapped on the seamount. For refined resolution and smallest viscosity the model will predict flows in which the shed eddies are coherent structures with closed streamlines.

The model suggests a mechanism by which topographically generated eddies may be swept away from a seamount in the ocean.  相似文献   

14.
The topography of laboratory induced shear fracture surfaces of Westerly granite was studied. Three types of fracture surfaces were examined: (1) a fresh fracture from the shear failure of an intact sample under polyaxial loading (2 = 40 MPa > 3 = 15 MPa); (2) a shear fracture subjected to frictional sliding of 100 m under polyaxial loading; (3) a shear fracture subjected to frictional sliding of 800 m under conventional triaxial loading (1 > 2 = 3 = 40 MPa). Both sliding distances are within the range of the grain size of Westerly granite. The results are represented by a power spectral method.Similar to the power spectra from natural rock surfaces, the power spectra of the induced shear fracture surfaces fall off about 2 orders of magnitude per decade increase in spatial frequency. No corner frequency exists in the power spectra over a spatial frequency range from that corresponding to the profile length to the Nyquist frequency. A slope break in the power spectrum was identified, however. It separates a steeper low frequency segment from a less steep high frequency segment. The spatial frequency at the slope break corresponds to a wavelength of several hundred microns which is on the scale of the microcracking and contact breaking on the fractures. Upon re-examining power spectra of natural fault traces and fault surfaces obtained in previous studies, we noted similar slope breaks. We suggest that this slope break may have significant implications in the scaling problem. Both the induced fracture surfaces and natural faults exhibit topographic characteristics different from those of sawcut surfaces, which have been widely used in laboratory rock friction experiments. In the present study, we observed that even a small amount of sliding (less than a grain size) already results in significant mismatches between the paired sliding surfaces in the direction normal to sliding.  相似文献   

15.
16.
17.
The deviatoric stress field are computed from the inversion of Gravitational Potential Energy (GPE) for the Indo-Eurasian plate collision region including the Himalaya and the Tibet Plateau. The resulting stress pattern in combination with stress and strain rates obtained by inverting, respectively, the focal mechanism solution of large earthquakes and GPS derived plate motions are used to study the nature of the present-day deformations. A narrow belt bordering the Himalayan collision zone from the south is characterized by strong compressive stresses. The variations in stress pattern along this belt coincide with arc-normal ridges extending into the Himalaya and are able to explain arc-parallel segmentation of seismicity. Gravitational collapse seems to play an important role in the southeastern Tibet Plateau. Depth sensitivity of the seismic derived stresses and GPS derived surface strain rates coupled with evidence of arcuate shaped high electrical conductivity favour strong ductile flow around the Eastern Himalaya Syntaxis (EHS) at mid-crustal depth. The deflection of crustal flow indicted by the viscous resistance offered by the rigid Sichuan basin adds to the traction stresses to cause clockwise rotation of the block around EHS.  相似文献   

18.
地形对长偏移距瞬变电磁测深的影响研究(英文)   总被引:3,自引:1,他引:2  
用基于张量格林函数的体积分方程法对三维异常体进行瞬变电磁响应的正演模拟,首先在频率域内计算电磁场分量的频率域响应,然后利用快速数字滤波技术将计算结果转换到时间域。设计和计算了水平电偶极子源激发下层状水平地层模型背景下的常见地形如山谷、山峰地形的模型,并考察分别把源和接收器放于这些地形中的瞬变电磁场响应,详细分析了这些地形对长偏移距瞬变电磁测深(LOTEM)的影响。结果表明,山谷和山峰地形对LOTEM的结果均有不同程度的影响。当电偶极子源放在山谷谷底时,地形对观测异常场的畸变非常严重;当接收器放在山谷中时,接收器处地形的影响强烈但该影响在空间和时间上只是局部的。总体来讲,不论山峰地形位于何处,其对LOTEM的影响相对较小。当地形处于发射源与接收器之间时,地形对LOTEM的影响非常小,表明在进行LOTEM勘探时,选择发射源的放置比接收器的位置更加重要,野外勘探是尽量把发射源选择在开阔的平坦位置。  相似文献   

19.
Topographic Influence of Longwall Mining on Ground-Water Supplies   总被引:1,自引:0,他引:1  
D. Elsworth  J. Liu 《Ground water》1995,33(5):786-793
  相似文献   

20.

Form-preserving, uniformly translating, horizontally localized solutions (modons) are considered within the framework of nondissipative quasi-geostrophic dynamics for a two-layer model with meridionally sloping bottom. A general classification of the beta-plane baroclinic topographic modons ( g -BTMs) is given, and three distinct domains are shown to exist in the plane of the parameters. The first domain corresponds to the regular modons with the translation speed outside the range of the phase speeds of linear waves. In the second domain, modons cannot exist: only non-localized solutions are permissible here. The third domain contains both linear periodic waves and the so-called anomalous modons traveling without resonant radiation. Exact modon solutions with piecewise linear relation between the potential vorticity and streamfunction are found and analyzed. Special attention is given to the smooth regular dipole-plus-rider solutions (anomalous modons cannot carry a smooth axisymmetric rider). As distinct from their flat-bottom analogs, g -BTMs may have nonzero total angular momentum. This feature combined with the ability of g -BTMs to bear smooth riders of arbitrary amplitude provides the existence of almost monopolar (in both layers) stationary vortices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号