首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 294 毫秒
1.
本文联合使用云南、四川和贵州地震台网的85个地震台站在2008年1月—2017年12月期间记录的49130个地震、317366个初至Pg震相绝对到时数据和2674110条高精度的相对到时数据,采用区域双差地震层析成像方法联合反演了川滇南部地壳三维P波速度结构和39621个地震的震源参数,探究了川滇南部中下地壳流和腾冲火山区岩浆囊的分布特征.研究结果表明:(1)川滇南部上地壳的速度异常特征与地表地形密切相关;(2)小江断裂带的中下地壳存在一条绵延近二百多公里的低速异常结构,最南端受到红河断裂带的阻挡而终止于断裂带南段北侧,这可能是川滇南部的一条中下地壳流,低速异常结构在红河断裂带南段转而向南东流动反映了红河断裂带可能为川滇菱形块体的西南边界;(3)红河断裂带各段速度异常存在明显的差异,重定位后的震源分布显示红河断裂带中段和南段虽然不如北段地震活动强烈,但地震震源深度分布较北段深;(4)腾冲火山区西侧和北侧下方10~20 km深度范围内存在的低速异常体推测为通过怒江断裂带形成的岩浆通道从中地壳涌入上地壳的岩浆囊,可能反映了自更新世延续至今的以橄榄玄武岩和安山岩为主要岩性的壳内岩浆活动,持续的岩浆活动为地表热活动提供了主要动力.  相似文献   

2.
本文论述了闽一粤东南沿海滨岸地区长乐—南澳断裂带两侧的地貌景观,地壳形变,地震活动以及挽近时期区域构造应力场的特征。指出了断裂带经历了早期韧性剪切和晚期脆性破裂的发育历史。 研究本区地震活动的时空分布表明,不同时期,主要地震活动具有南段强,北段弱和自陆向海活动强度增强的趋势。说明现今地震活动格局已经发生了明显变化.作为地震预报的重点监视区,应着重考虑滨海断裂带活动情况,这对地震的长期预报是重要的。  相似文献   

3.
地震活动信息维的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
朱令人  龚宇清 《地震学报》1992,14(4):385-392
对中国大陆唐山、海城、龙陵、乌恰、澜沧等11个地震区14次地震活动序列的信息维进行了研究,用线性回归方法对统计自相似结构成立的无标度范围进行了检验,计算了各自的信息维,得到了大震前后地震时间分布及空间分布信息维的动态曲线.结果表明:(1)如果起算震级为 Ms=2.0,无标度区时间轴上约为1-16天,空间域上约为8-100km,起算震级上升,无标度区的上下限也相应上移:(2)大震发生前都不同程度地出现信息维下降的现象.   相似文献   

4.
南北地震带及邻近区域强震时空分布特征   总被引:1,自引:0,他引:1  
搜集整理南北地震带区域自史料记载(公元前193年)到2012年9月的强震(Ms≥6.0)资料,初步分析南北地震带及附近区域的地震发震构造活动性和时空分布规律.结果表明,地震一般发生在断层带上,具有空间分布的集群性特征和时间群集性质.研究发现,地震带南段发生6.0≤Ms≤7.9地震次数明显高于北段和中段,而发生Ms≥8.0地震的可能性较低,中段与南段较接近,与北段有明显差异;南北地震带存在明显的纬向、经向强震活动迁移现象,纬向尤其明显;1900年以来,南北地震带已经有4次明显的能量释放阶段,并给出Ms≥6.0地震的震级-频度统计关系式.  相似文献   

5.
采用数理统计方法探讨了780 BC至今、100°—110°E、22°—35°N(中国南北地震带)区域的中国大陆5.0级及以上天然地震的分布规律。通过GMT软件绘制了南北地震带上地震震中和断裂分布图像,分析了南北地震带地震时空分布与地震活动性的规律。研究表明,该地区的大震与强震几乎全部发生在断裂带上,地震频次高、震中密集,呈现集群性等特征,地震活动性较高。该地震带中、南段相似,与北段存在显著差异。在南北地震带上,地震的活跃幕与平静幕持续时间,与活跃幕强度有关。研究结果对于了解地震的时空分布特征,认识中国南北地震带的发震规律,地震的孕震发震和地震活动周期有参考意义。   相似文献   

6.
汶川MS8.0地震余震震源机制时空分布特征   总被引:6,自引:0,他引:6       下载免费PDF全文
本文利用CAP波形反演方法,获取了汶川MS8.0地震序列中312个具有较高信噪比波形资料的4级以上余震的震源机制解和震源深度. 基于震源深度空间分布与震源机制时空分布,分析了主震后余震区断层行为特征与应力场时空变化,并对龙门山断裂带中北段的发震断层面几何形态进行了初步探讨. 获得的主要认识如下:(1)余震震源深度分布存在显著的空间分段差异. 绵竹以西的余震区南段与平武以东的北段余震深度范围大于中段(绵竹-平武段),但深度小于5 km的5级以上超浅源地震主要分布在明显偏离龙门山断裂带走向的理县NW向分支与余震区北端NNE向分支,而中段余震主要分布在7~19 km深度. (2)余震机制类型存在明显的时空差异. 余震区中段逆冲型地震占绝对优势,理县NW向分支余震则以走滑型为主,机制类型随时间变化不显著. 沿龙门山断裂带走向的余震区南段,早期(2008年8月底前)逆冲型地震比例高于走滑型、晚期走滑型地震比例显著升高并超过逆冲型;而余震区北段早期走滑型地震占绝对优势、晚期逆冲型地震比例大幅上升且超过走滑型. 南、北两段余震机制类型比例的显著变化,可能是余震区两端断层调整性运动的表现. (3)节面走向及P轴方位优势方向均存在显著的空间差异. 南段NWW向P轴方位与区域应力场一致,中段及理县NW向分支P轴优势方向NEE,而北段具NWW和NEE两个优势方向,这种差异反映了余震活动除了受区域应力场控制外,还受到主震引发的局部应力场的控制. 节面走向的多方位分布则反映不同走向的构造参与了主震后的余震活动. (4)沿龙门山断裂带走向,余震区南段具深部缓倾角、浅部高倾角的铲形断面特征;中段深部倾角均值较稳定、浅部倾角均值随深度减小而增大;北段倾角均值相对稳定,显示其断面几何形态相对简单. 上述不同区段倾角均值随深度的变化揭示龙门山断裂带中北段断层面几何形态复杂.  相似文献   

7.
营口潍坊断裂带新生代活动的特征   总被引:38,自引:4,他引:34       下载免费PDF全文
徐杰  宋长青  高战武 《地震地质》1999,21(4):289-300
营潍断裂带以北西向北京 蓬莱断裂带与之交汇的部位为界分南北两段,北段由辫状交织的两条断裂组成;南段为并列的东西两支断裂,但被黄北、莱北和潍北等北东东向断裂横切成4节。断裂带北段早第三纪水平拉张和垂直差异活动强烈,控制了断陷盆地的发育,晚第三纪—第四纪右旋走滑活动显著。南段本身活动甚弱,但黄北等横向断裂早第三纪水平拉张和垂直差异活动强烈,相应形成了黄北等几个断陷盆地;晚第三纪—第四纪横向断裂仍有活动。断裂带活动具明显的分段性,南段是受横向断裂强烈分割、改造而被“废弃”的一段。断裂带新生代活动具由南部和北部统一向中部迁移的特点,北段还有向东侧迁移的趋势。断裂带地震活动微弱,渤海中部斜穿断裂带分布的北东向地震带,可能是黄河口聊城新生地震构造带向海区延伸的部分  相似文献   

8.
运用双差精确定位方法对1999—2003年间发生在云南红河断裂带上的中小地震进行了重新定位,并分析了精确定位结果与地质构造的关系,结果显示,红河断裂带上重定位前与重定位后的震中分布变化不大,只是重定位后震中分布略向两端集中,北段地震多于南段。说明当前红河断裂带北段比南段、中段地震活动性强,可能受洱源断裂带~程海断裂带的影响。但重定位前、后震源深的分布差异较大,在以洱源为中心的区域上存在一个10km深的条带,这可能与红河断裂在北段形成的拉张区有关。  相似文献   

9.
本文着重研究了则木河断裂带的地震垄岗地貌,并命名为构造堤。通过对构造堤的成生机制、组合形式、分布规律及其与地震关系的研究,提出构造堤是断裂粘滑运动、大震震中区的特征性产物。它不仅可以作为判定断层活动性质、活动方式和古地震极震区的标志,还可以利用它定性地估算大震复发周期。通过初步研究,作者认为,则木河断裂以粘滑破裂为主,大震复发周期北段较短,而南段较长。  相似文献   

10.
2011年日本MW9.0地震(简称日本地震)后沂沭断裂带及其两侧地区地震活动显著增强,研究日本地震对该地区地壳运动及地震潜势的影响十分必要.为此,本文通过112个连续GPS观测站获取了研究区高空间分辨率的日本地震同震形变场并得到如下认识:(1)8个定点地球物理观测的同震响应验证了本文同震形变场的可靠性;日本地震的东向拉张使研究区整体上处于张性同震应变状态,但存在局部挤压区域,其中莱州湾至海州湾的挤压条带穿过沂沭断裂带并对断裂带南北两段产生了不同的同震作用,对南段具有拉张作用,对北段产生挤压作用;(2)同震形变场在鲁东隆起和鲁西断块产生了显著的剪应变,地震b值显示上述区域的构造应力在日本地震后增强,因此同震形变场可能改变了这些区域的应力特征;(3)地震矩张量叠加分析显示,同震形变场短期内对鲁西断块、鲁东隆起区和沂沭断裂带南段累积了地震矩,可能有助于上述区域在日本地震以后的地震活动增强;日本地震对沂沭断裂带北段的地震矩具有释放作用,或许是该区域地震活动减弱的原因.  相似文献   

11.
The research of the information dimension (D 1) in an active fault zone considers the contribution of each seismic event to information and reflects the characteristics of the temporal and spatial distributions of earthquakes from a new point of view, avoiding some short-comings of the research about the capacity dimension (D 0). The results of calculation show that the information dimension of the temporal distribution in Xianshuihe active fault zone before Luhuo large earthquake isD 1=0.1051. It is a consult creterion of large earthquakes in future in the fault zone. The information dimensions of the temporal distribution of the earthquakes in Anninghe active fault zone are respectivelyD 1(t N)=0.1363 (for the north section) andD 1(t S)=0.06710 (for the south section). The information dimensions of the spatial distribution are respectivelyD 1(K N)=1.053 (for the north section) andD 1(K S)=0.7758 (for the south section). The north section and the south section belong to two self-similar systems with different information dimensions respectively. The extent of the self-organization of seismic activity in the south section is higher than that in the north section. This is helpful for us to judge the major dangerous section in the key region of the seismic monitoring. The research about the information dimension of the temporal and the spatial distributions of earthquakes is significant for the exploration of active fault zones and seismic prediction.  相似文献   

12.
The research of the information dimension (D 1) in an active fault zone considers the contribution of each seismic event to information and reflects the characteristics of the temporal and spatial distributions of earthquakes from a new point of view, avoiding some short-comings of the research about the capacity dimension (D 0). The results of calculation show that the information dimension of the temporal distribution in Xianshuihe active fault zone before Luhuo large earthquake isD 1=0.1051. It is a consult creterion of large earthquakes in future in the fault zone. The information dimensions of the temporal distribution of the earthquakes in Anninghe active fault zone are respectivelyD 1(t N)=0.1363 (for the north section) andD 1(t S)=0.06710 (for the south section). The information dimensions of the spatial distribution are respectivelyD 1(K N)=1.053 (for the north section) andD 1(K S)=0.7758 (for the south section). The north section and the south section belong to two self-similar systems with different information dimensions respectively. The extent of the self-organization of seismic activity in the south section is higher than that in the north section. This is helpful for us to judge the major dangerous section in the key region of the seismic monitoring. The research about the information dimension of the temporal and the spatial distributions of earthquakes is significant for the exploration of active fault zones and seismic prediction. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 372–379, 1991. This paper is sponsored by the Chinese Joint Seismological Science Foundation. The English version is improved by Zhenwen An.  相似文献   

13.
台湾地区地震的空间关联维特征与构造环境研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用关联维方法对台湾地区地震活动的空间特征进行了研究。先利用 10 0a来台湾的地震目录计算各个地震区、带的关联维数 ,将地震空间分布的分形特征定量表达出来 ,然后综合分析地震空间分布的关联维数和孕震构造环境之间的关系 ,得出了以下结论 :1)台湾东、西部地震区由于地震属于不同的大地构造单元 ,因此关联维数有较大的差异 ;2 )在各地震区内部的各个地震带由于板块构造、地壳结构、活断层分布上的差异 ,而具有与其构造特征相对应的关联维数 ;3)各地震带内部的各个不同的部位又由于不同的构造应力场 ,而导致地震分布上出现不同的丛集性 ,表现为不同的关联维数。这些结论充分说明通过关联维分析所得到的地震活动的空间图像与地震活动所代表的不同地质构造背景有着良好的对应关系  相似文献   

14.
韩渭宾  蒋国芳 《地震》2005,25(1):51-57
通过与更早地震资料的对比, 研究了鲜水河断裂带, 川滇地壳块体东带、 西带, 松潘、 龙门山断裂带以及整个川滇地区较长时间尺度的地震活动盛衰交替性。 结果表明, 川滇东带北段(鲜水河断裂带)、 松潘、 龙门山地震带及川滇西带中段和南段(主要是红河断裂带)的地震活动具有明显的几十到百年尺度的盛衰交替性。 而川滇东带中南段(安宁河-则木河-小江断裂带)与川滇西带北段(金沙江断裂带)在上述地震带的平静期里, 中强以上地震频次明显减少, 但有个别7级以上强震发生。 这样, 整个川滇地区地震活动的盛衰交替性呈现一种比较复杂的阶段性特征: 伴随频繁中强震的强震活跃期与突发强震活动期交替出现。 值得注意的是, 川滇地区从19世纪末开始的伴随频繁中强震的强震活跃期已超过百年, 目前出现长期平静, 应注意进入突发强震活动期的可能性。 根据川滇地区上一个突发强震活动期突发强震的空间分布, 推测未来的突发强震可能发生在南北向断裂带, 或其他方向断裂带与南北向断裂带的交汇部。 文中还对上述统计现象的机理作了简要讨论。  相似文献   

15.
Tanlu fault zone is the largest strike-slip fault system in eastern China. Since it was discovered by aeromagnetics in 1960s, it has been widely concerned by scholars at home and abroad, and a lot of research has been done on its formation and evolution. At the same time, the Tanlu fault zone is also the main seismic structural zone in China, with an obvious characteristic of segmentation of seismicity. Major earthquakes are mostly concentrated in the Bohai section and Weifang-Jiashan section. For example, the largest earthquake occurring in the Bohai section is M7.4 earthquake, and the largest earthquake occurring in the Weifang-Jiashan section is M8.5 earthquake. Therefore, the research on the active structure of the Tanlu fault zone is mainly concentrated in these two sections. With the deepening of research, some scholars carried out a lot of research on the middle section of Tanlu fault zone, which is distributed in Shandong and northern Jiangsu Province, including five nearly parallel fault systems, i.e. Changyi-Dadian Fault(F1), Baifenzi-Fulaishan Fault(F2), Yishui-Tangtou Fault(F3), Tangwu-Gegou Fault(F4) and Anqiu-Juxian Fault(F5). They find that the faults F3 and F5 are still active since the late Quaternary. In recent years, we have got a further understanding of the geometric distribution, active age and active nature of Fault F5, and found that it is still active in Holocene. At the same time, the latest research on the extension of F5 into Anhui suggests that there is a late Pleistocene-Holocene fault existing near the Huaihe River in Anhui Province. The Tanlu fault zone extends into Anhui Province and the extension section is completely buried, especially in the Hefei Basin south of Dingyuan. At present, there is little research on the activity of this fault segment, and it is very difficult to study its geometric structure and active nature, and even whether the fault exists has not been clear. Precisely determining the distribution, active properties and the latest active time of the hidden faults under urban areas is of great significance not only for studying the rupture behavior and segmentation characteristics of the southern section of the Tanlu fault zone, but also for providing important basis for urban seismic fortification. By using the method of shallow seismic prospecting and the combined drilling geological section, this paper carries out a detailed exploration and research on the Wuyunshan-Hefei Fault, the west branch fault of Tanlu fault zone buried in Hefei Basin. Four shallow seismic prospecting lines and two rows of joint borehole profiles are laid across the fault in Hefei urban area from north to south. Using 14C, OSL and ESR dating methods, ages of 34 samples of borehole stratigraphic profiles are obtained. The results show that the youngest stratum dislocated by the Wuyunshan-Hefei Fault is the Mesopleistocene blue-gray clay layer, and its activity is characterized by reverse faulting, with a maximum vertical offset of 2.4m. The latest active age is late Mesopleistocene, and the depth of the shallowest upper breaking point is 17m. This study confirms that the west branch of Tanlu fault zone cuts through Hefei Basin and is still active since Quaternary. Its latest activity age in Hefei Basin is late of Middle Pleistocene, and the latest activity is characterized by thrusting. The research results enrich the understanding of the overall activity of Tanlu fault zone in the buried section of Hefei Basin and provide reliable basic data for earthquake monitoring, prediction and earthquake damage prevention in Anhui Province.  相似文献   

16.
In this paper we present results of spectral structure of crustal velocity inhomogeneity beneath the southeastern margin of Tibetan plateau and its adjacent region based on the S wave envelope broadening algorithm. The spectral structure of 8~16Hz band is selected to analyze the special character of crustal inhomogeneity and discuss the correlation between strong earthquakes and inhomogeneities. The result shows that strong and complex inhomogeneities of crustal medium are found in the southeastern margin of Tibetan plateau and its adjacent region. In the upper part of upper crust, the strong and small scale inhomogeneities are imaged in the Longmengshan fault zone and the north of the Anninghe fault zone, the weak and large scale inhomogeneites are imaged in the section from Huolu to Daofu of Xianshuihe fault zone and the south of the Anninghe fault zone. In the lower part of upper crust, strong inhomogeneites are found in the Longmengshan fault zone, Lianfeng fault zone, the north of the Anninghe fault zone and the sections from Huolu to Daofu of the Xianshuihe fault zone, weak inhomogeneites are found in the section from Daofu to Kangding of Xianshuihe fault zone. In the middle crust, strong inhomogeneities are observed in the section of the Baoxing to Dujiangyan, the Baoxing to Kangding, and Kangding to Shimian, and weak inhomogeneities are observed in the northwestern section from Huolu to Kangding, and the Lianfeng fault zone. Comparing the medium inhomogeneities with the location of the strong earthquakes, our results suggest existence of high correlation between them. Strong earthquakes are often located in the transitionary zone between the strong and the weak inhomogeneities. The spatial distribution of the strong and the weak medium inhomogeneities may be related to the broken medium from the strong movement of geological tectonic and the heat flow upwelling along active faults induced by frequent tectonic and volcanic activity.  相似文献   

17.
On the basis of summarizing the circulation characteristics and mechanism of earthquakes with magnitude 7 or above in continental China, the spatial-temporal migration characteristics, mechanism and future development trend of earthquakes with magnitude above 7 in Tibetan block area are analyzed comprehensively. The results show that there are temporal clustering and spatial zoning of regional strong earthquakes and large earthquakes in continental China, and they show the characteristics of migration and circulation in time and space. In the past 100a, there are four major earthquake cluster areas that have migrated from west to east and from south to north, i.e. 1)Himalayan seismic belt and Tianshan-Baikal seismic belt; 2)Mid-north to north-south seismic belt in Tibetan block area; 3)North-south seismic belt-periphery of Assam cape; and 4)North China and Sichuan-Yunnan area. The cluster time of each area is about 20a, and a complete cycle time is about 80a. The temporal and spatial images of the migration and circulation of strong earthquakes are consistent with the motion velocity field images obtained through GPS observations in continental China. The mechanism is related to the latest tectonic activity in continental China, which is mainly affected by the continuous compression of the Indian plate to the north on the Eurasian plate, the rotation of the Tibetan plateau around the eastern Himalayan syntaxis, and the additional stress field caused by the change of the earth's rotation speed.
Since 1900AD, the Tibetan block area has experienced three periods of high tides of earthquake activity clusters(also known as earthquake series), among which the Haiyuan-Gulang earthquake series from 1920 to 1937 mainly occurred around the active block boundary structural belt on the periphery of the Tibetan block region, with the largest earthquake occurring on the large active fault zone in the northeastern boundary belt. The Chayu-Dangxiong earthquake series from 1947 to 1976 mainly occurred around the large-scale boundary active faults of Qiangtang block, Bayankala block and eastern Himalayan syntaxis within the Tibetan block area. In the 1995-present Kunlun-Wenchuan earthquake series, 8 earthquakes with MS7.0 or above have occurred on the boundary fault zones of the Bayankala block. Therefore, the Bayankala block has become the main area of large earthquake activity on the Tibetan plateau in the past 20a. The clustering characteristic of this kind of seismic activity shows that in a certain period of time, strong earthquake activity can occur on the boundary fault zone of the same block or closely related blocks driven by a unified dynamic mechanism, reflecting the overall movement characteristics of the block. The migration images of the main active areas of the three earthquake series reflect the current tectonic deformation process of the Tibetan block region, where the tectonic activity is gradually converging inward from the boundary tectonic belt around the block, and the compression uplift and extrusion to the south and east occurs in the plateau. This mechanism of gradual migration and repeated activities from the periphery to the middle can be explained by coupled block movement and continuous deformation model, which conforms to the dynamic model of the active tectonic block hypothesis.
A comprehensive analysis shows that the Kunlun-Wenchuan earthquake series, which has lasted for more than 20a, is likely to come to an end. In the next 20a, the main active area of the major earthquakes with magnitude 7 on the continental China may migrate to the peripheral boundary zone of the Tibetan block. The focus is on the eastern boundary structural zone, i.e. the generalized north-south seismic belt. At the same time, attention should be paid to the earthquake-prone favorable regions such as the seismic empty sections of the major active faults in the northern Qaidam block boundary zone and other regions. For the northern region of the Tibetan block, the areas where the earthquakes of magnitude 7 or above are most likely to occur in the future will be the boundary structural zones of Qaidam active tectonic block, including Qilian-Haiyuan fault zone, the northern margin fault zone of western Qinling, the eastern Kunlun fault zone and the Altyn Tagh fault zone, etc., as well as the empty zones or empty fault segments with long elapse time of paleo-earthquake or no large historical earthquake rupture in their structural transformation zones. In future work, in-depth research on the seismogenic tectonic environment in the above areas should be strengthened, including fracture geometry, physical properties of media, fracture activity behavior, earthquake recurrence rule, strain accumulation degree, etc., and then targeted strengthening tracking monitoring and earthquake disaster prevention should be carried out.  相似文献   

18.
张军龙 《地震》2014,34(4):20-29
本文通过整理和分析青藏高原西北于田地区强震后,地震迁移的空间分布,迁移特征,同时整理和分析与迁移地震相关的青藏高原主要活动构造的结构和地震活动,分析两者之间的关系。得到以下结论:①迁移地震空间分布具有不均匀性,主要分布在活动地块边界,受大型活动构造带控制;②迁移路径主要有三条,第二条路径更为重要,主要沿着昆仑山脉向唐古拉山、巴颜喀拉山及阿尼玛卿山,在若尔盖盆地东北侧折向东南,向岷山、龙门山迁移;③未来5年内在青藏高原西北于田地区可能发生1~2次6.5级左右地震,在龙门山南段等地震空区内可能发生迁移强地震;④1900年以来发生的地震沿先前存在的地震空区分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号