首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative study of performances of different base isolators for shear beam type structures is carried out. Several leading base isolation systems, including the laminated rubber bearing with and without lead plug, the resilient-friction base isolator with and without sliding upper plate, and the EDF system are considered. Displacement and acceleration response spectra for a shear beam structure subject to the accelerograms of the N00W component of El Centro 1940 and the N90W component of Mexico City 1985 earthquakes and their magnified forms are evaluated. A series of parametric studies is carried out and advantages and disadvantages of various base isolation systems are identified. Comparisons of the results with the response spectra of a fixed-base structure show that the base isolation systems are, in general, highly effective in reducing the peak acceleration transmitted to the superstructure. Thus, the deflections and stresses generated in a base-isolated structure are significantly lower than those of a fixed-base one. Furthermore, the results of the study also show that the friction-type base isolators are less sensitive to severe variations in frequency content and amplitude of the ground acceleration.  相似文献   

2.
This paper studies the stochastic responses of secondary systems in base-isolated shear beam structures. A number of base isolation systems such as the laminated rubber bearing (LRB), the resilient-friction base isolator (R-FBI) with or without sliding upper plate, and the EDF system are considered. The stochastic models for the El Centro 1940 and the Mexico City 1985 earthquakes which preserve the non-stationary evolutions of amplitude and frequency content of ground accelerations are used as earthquake excitations. The technique of equivalent linearization is utilized and the mean-square response statistics of secondary systems and primary structure are evaluated. The accuracy of the linearization scheme is verified by comparison with the Monte Carlo simulation results. Statistically estimated peak responses of the secondary system are evaluated and the results are compared with the response spectra for actual earthquake accelerograms. It is shown that the use of base isolation systems, generally, provides considerable protection for structural contents. In particular, the LRB system is remarkably effective in reducing responses of secondary systems. Results for the Mexico City earthquake show that the base-isolated structures are sensitive to long period ground excitations.  相似文献   

3.
A series of numerical experiments on the performance of different base isolation systems for a non-uniform shear beam structure is carried out. Several base isolation systems are considered and the peak relative displacements and the maximum absolute accelerations of the base-isolated structure and its base raft under a variety of conditions are evaluated. Several sensitivity analyses for variations in properties of the base isolator and the structure are carried out. A number of different earthquake excitations are also used in the study. The results show that performances of the base isolation systems are not sensitive to small variations in their natural period, damping or friction coefficient. The presence of a frictional element in the isolators reduces their sensitivity to severe variations in frequency content and amplitude of the ground acceleration. In particular, the resilient-friction base isolators with or without sliding upper plate perform reasonably well under a variety of loading conditions. The rubber bearing type, however, leads to the lowest peak transmitted accelerations for moderate intensity earthquakes.  相似文献   

4.
The effects of damping in various laminated rubber bearings (LRB) on the seismic response of a ?‐scale isolated test structure are investigated by shaking table tests and seismic response analyses. A series of shaking table tests of the structure were performed for a fixed base design and for a base isolation design. Two different types of LRB were used: natural rubber bearings (NRB) and lead rubber bearings (LLRB). Three different designs for the LLRB were tested; each design had a different diameter of lead plug, and thus, different damping values. Artificial time histories of peak ground acceleration 0.4g were used in both the tests and the analyses. In both shaking table tests and analyses, as expected, the acceleration responses of the seismically isolated test structure were considerably reduced. However, the shear displacement at the isolators was increased. To reduce the shear displacement in the isolators, the diameter of the lead plug in the LLRB had to be enlarged to increase isolator damping by more than 24%. This caused the isolator stiffness to increase, and resulted in amplifying the floor acceleration response spectra of the isolated test structure in the higher frequency ranges with a monotonic reduction of isolator shear displacement. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
The seismic response of a critical rotating machine either rigidly attached to a floor or independently isolated housed within an initially aseismically designed or uncontrolled structure are investigated. A particular isolation system, the Resilient‐Friction Base Isolator (RFBI), is employed. Finite element formulations of a rotor‐disk‐bearing model on a rigid base are developed. The equations of motion for the combined rotating machine–structure–RFBI systems are presented. Parametric studies are performed to investigate the effects of variations in system physical properties including friction coefficient, mass ratio, shaft flexibility, bearing rigidity, bearing damping and speed of rotation on the response of rotating machines for the combined rotating machine–structure–isolator systems. Comparative studies in the peak response of the rotating machine supported on various isolation systems and the corresponding fixed base system are carried out. The study indicates that the Resilient‐Friction Base Isolator can significantly reduce the seismic response of rotating components to potentially damaging ground excitations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
为研究AP1000核电厂基底隔震性能,设计了缩尺比为1/40的AP1000核电厂模型结构,进行了AP1000核电厂模型基底隔震振动台试验。试验中采用铅芯橡胶隔震支座进行隔震,并选取RG1.60人工波、El Centro波和Kobe波作为地震动输入。本文从加速度响应、楼层加速度反应谱、加速度峰值放大系数、减震率等方面对隔震与非隔震核电厂结构的地震响应特性进行了研究。试验结果表明:隔震能明显减小上部结构水平向加速度响应和加速度反应谱峰值,而在隔震频率处隔震模型加速度反应谱有所增加;隔震模型由于摇摆效应在隔震频率处的水平向楼层加速度反应谱随楼层高度的升高先减小后增大;在三向输入地震动作用下,隔震和非隔震AP1000模型各楼层在竖向基频附近的竖向加速度反应谱较竖向输入的地震动放大较为明显。  相似文献   

7.
Comparative study of the inelastic response of base isolated buildings   总被引:1,自引:0,他引:1  
This article presents a numeric comparative study of the inelastic structural response of base isolated buildings. The comparative study includes the following isolation systems: laminated rubber bearings, New Zealand one, pure friction and the frictional pendulum ones. The study is based on obtaining non‐linear response spectra for various design parameters using six earthquake records. Usually the base isolation of a new building seeks to maintain the structure in the linear elastic range. The response of old weak buildings or the response of new ones subjected to extreme earthquakes may not be, necessarily, in the aforementioned ideal elastic range. Consequently, it is important to characterize the response of isolated buildings responding inelastically. A conclusion from this research is that the isolators affect significantly the structural response of weak systems. Rubber isolators seem slightly less sensitive to plastification that may occur in the structure compared to friction isolators. Ductility demands in the structure are affected significantly by friction and neoprene protected systems, in particular sliding ones where larger demands are obtained. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
隔震结构"小震不坏"的动力可靠度分析   总被引:7,自引:2,他引:5  
本文探讨叠层橡胶隔震体系在“小震不坏”条件下的动力可靠度分析。基于等效线性化的隔震工程设计参数,建立非比例阻尼隔震结构模型。采用双过滤白噪声功率谱模型描述地震动,并用林家浩虚拟激励法进行随机响应分析。以各层的最大层间位移响应作为控制指标,取结构的弹性位移限值作为位移极限值,建立功能状态方程。根据一次二阶矩方法,用串联模式计算体系的总体可靠度。文末选用了一个7层隔震框架作为数值算例,探讨了隔震阻尼、寒冷环境、节点构造误差所引起的隔震层刚度上升,以及场地土类别等对体系动力可靠性的影响。  相似文献   

9.
本文提出了一种基于叠层橡胶支座的大高宽比高层建筑分段隔震结构形式,并对同一高层建筑结构分别采用基础隔震、层间隔震和分段隔震三种不同形式时进行了数值模拟对比分析。结果表明,采用分段隔震形式可明显减小高层建筑结构的顶层侧向位移、中间隔震层的相对位移和下支柱端应力,使结构的侧向位移集中于两个隔震层上,耗散了大部分地震输入能量,保障了与隔震层相连的构件的安全性,防止了由于支座受拉或剪压破坏导致上部结构倾覆倒塌现象的发生。  相似文献   

10.
11.
A new base isolation system using scrap tire rubber pads (STRP) has been introduced for seismic mitigation of ordinary residential buildings. The rubber and the steel reinforcing cords used in manufacturing the tire are the alternative materials of the proposed base isolation system. The steel reinforcing cords represent the steel plates used in conventional laminated rubber bearings. These steel reinforcing cords shall prevent the lateral bulging of the rubber bearing. The proposed base isolation system has no bonding between the superstructure and the foundation beam which allows for rollover deformation. In the first part of the study, the STRP layers were just stacked one on top of another without applying the adhesive. This paper presents loading test as well as finite element analysis (FE analysis) of strip STRP isolators that are subjected to any given combination of static vertical and lateral loads. The results of the static vertical and horizontal loading test conducted on STRP isolators were used to calculate the mechanical properties of the isolators, including stiffness and damping values. The load–displacement relationship of STRP isolators were compared between experimental and FE analysis results and the results were found to be in close agreement. The stress state within the STRP isolators was also analyzed in order to estimate the maximum stress demand in the rubber and steel reinforcing cords. These STRP isolators have several advantages over conventional laminated rubber bearings including superior damping properties, lower incurred cost, light weight and easily available material. This study suggests that using the STRP as low cost base isolation device for ordinary residential buildings is feasible.  相似文献   

12.
层间隔震技术评述   总被引:37,自引:5,他引:32  
层间隔震结构是隔震技术的新发展,它将隔震层设置在建筑物某层柱子和楼板之间进行结构的地震反应控制。层间隔震结构在减震机理、振动特性以及设计方法等诸多方面有别于基础隔震结构和屋盖隔震结构。本文对层间隔震结构的适用范围、优点以及其在实际工程中的应用情况进行了综述,最后,指出了层问隔震结构需要进一步研究的问题。现有的研究成果和工程应用情况表明,层间隔震结构具有明确的减震效果,施工方便,是一种具有发展前途的减震体系。  相似文献   

13.
This paper investigates numerically the seismic response of six seismically base‐isolated (BI) 20‐story reinforced concrete buildings and compares their response to that of a fixed‐base (FB) building with a similar structural system above ground. Located in Berkeley, California, 2 km from the Hayward fault, the buildings are designed with a core wall that provides most of the lateral force resistance above ground. For the BI buildings, the following are investigated: two isolation systems (both implemented below a three‐story basement), isolation periods equal to 4, 5, and 6 s, and two levels of flexural strength of the wall. The first isolation system combines tension‐resistant friction pendulum bearings and nonlinear fluid viscous dampers (NFVDs); the second combines low‐friction tension‐resistant crosslinear bearings, lead‐rubber bearings, and NFVDs. The designs of all buildings satisfy ASCE 7‐10 requirements, except that one component of horizontal excitation, is used in the 2D nonlinear response history analysis. Analysis is performed for a set of ground motions scaled to the design earthquake and to the maximum considered earthquake (MCE). At both the design earthquake and the MCE, the FB building develops large inelastic deformations and shear forces in the wall and large floor accelerations. At the MCE, four of the BI buildings experience nominally elastic response of the wall, with floor accelerations and shear forces being 0.25 to 0.55 times those experienced by the FB building. The response of the FB and four of the BI buildings to four unscaled historical pulse‐like near‐fault ground motions is also studied. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
针对昆明市某99.7 m高层剪力墙隔震建筑,使用90组非脉冲与速度脉冲型地震时程,按震中距及有效持时分别分为7类与6类后,对其结构进行中震及大震作用下的快速非线性分析。结果表明:(1)中震时,该结构非脉冲层间剪力与倾覆力矩均小于脉冲数值,且其比例随楼层增加而增大;(2)大震时,速度脉冲对支座应力及位移的平均放大效应可达1.23~2.44倍,同时时程震中距为(50 km,70km],或有效持时为(40 s,50 s]时支座受脉冲作用放大效应影响最大;(3)结构边缘的橡胶隔震支座拉应力、压应力、天然橡胶支座水平剪切力等受脉冲作用的影响更为明显。  相似文献   

15.
Three analytical studies of base‐isolated structures are carried out. First, six pairs of near‐fault motions oriented in directions parallel and normal to the fault were considered, and the average of the response spectra of these earthquake records was obtained. This study shows that in addition to pulse‐type displacements, these motions contain significant energy at high frequencies and that the real and pseudo‐velocity spectra are quite different. The second analysis modelled the response of a model of an isolated structure with a flexible superstructure to study the effect of isolation damping on the performance of different isolation systems under near‐fault motion. The results show that there exists a value of isolation system damping for which the superstructure acceleration for a given structural system attains a minimum value under near‐fault motion. Therefore, although increasing the bearing damping beyond a certain value may decrease the bearing displacement, it may transmit higher accelerations into the superstructure. Finally, the behaviour of four isolation systems subjected to the normal component of each of the near‐fault motions were studied, showing that EDF type isolation systems may be the optimum choice for the design of isolated structures in near‐fault locations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
针对隔震改造后叠层橡胶隔震支座与地下室下支柱组成的串联隔震体系的地震稳定性问题,采用理论推导与数值模拟方法开展系统研究。将叠层橡胶支座简化为一种具有水平刚度和抗弯刚度的特殊铰支座,RC柱简化为弯曲型竖杆,建立橡胶支座和RC柱串联隔震体系的理论模型,推导地下室下支柱的临界承载力方程;通过实际案例求解出该串联隔震体系的临界承载力具体表达式,并对典型参数的影响进行分析;采用数值模拟方法建立下支柱截面尺寸不同的6种柱顶隔震模型,对下支柱柱顶、隔震支座、下支柱与隔震支座串联后整体位移响应以及上部结构层间位移角响应进行对比分析。结果表明:所推导的临界承载力表达式变化规律与柱顶隔震设计模型数值模拟相一致;下支柱截面增大对上部结构和隔震支座的动力响应影响并不明显,但是可以明显减小下支柱的位移;在既有建筑隔震改造实际工程中,增加下支柱的截面尺寸是保证下部结构的抗震能力高于上部结构既简单且行之有效的方法,但实际工程中截面增量普遍较大且偏于保守,造成了一定的浪费。  相似文献   

17.
This paper is a study of the effectiveness of a wide range of bilinear hysteretic isolation systems in shielding multistorey 2-D shear structures from earthquake excitations. Important parameters of the isolation system are identified and their effect on structure response noted. It is shown that isolation systems can be constructed which allow the structure proper to remain purely elastic even during very strong ground motions. It is further shown that the shear responses and base displacements of structures on these isolation systems can be accurately estimated from elastic response spectra of the forcing earthquakes. The philosophy of structure isolation is discussed and an introduction given to the physical devices currently available to provide it.  相似文献   

18.
Shake table tests on a mass eccentric model with base isolation   总被引:1,自引:0,他引:1  
A mass eccentric structure is usually more seismically vulnerable than its concentric counterpart because of the coupled torsional–translational response of such structures. In this work, dynamic characteristics and response of a five‐storey benchmark model with moderate mass eccentricity were investigated using a shake table, simulating four different ground motions. The effectiveness of laminated rubber bearings (LRB) and lead‐core rubber bearings (LCRB) in protecting eccentric structures was examined and evaluated in relation to translational and torsional responses of the benchmark model. It was observed that both translational and torsional responses were significantly reduced with the addition of either a LRB or LCRB isolated system regardless of the nature of ground motion input. The LRB were identified to be more effective than LCRB in reducing model relative displacements, the relative torsional angle as well as accelerations, and therefore provided a better protection of the superstructure and its contents. On the other hand, LCRB rendered a smaller torsional angle and absolute displacement of the base isolation system, hence a more stable structural system. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
组合橡胶支座及橡胶支座与柱串联系统的水平刚度计算方法   总被引:11,自引:0,他引:11  
目前基础隔震建筑中应用的叠层橡胶支座都是等截面的,其水平刚度是以遭遇强烈地震为依据设计的,当遭遇中小地震时水平刚度将偏大,致使上部结构的减震效果比遭遇设计地震时明显减小,而由两个不同截面橡胶支座组成的组合橡胶支座在不同强度地震时均能发挥较好设计的隔震效果。  相似文献   

20.
建立设备-结构耦合隔震体系模型,选取近断层脉冲型和非脉冲型地震波各50条,计算耦合隔震体系的动力响应。分析表明,近断层脉冲型地震动对耦合隔震体系的影响大于非脉冲型地震动,且对主体结构的影响大于对设备的影响;近断层脉冲型地震作用下的隔震层位移、层间位移、楼层加速度、设备加速度和设备位移的平均响应分别达到非脉冲型地震作用的2.25倍、2.17倍、2.24倍、1.17倍和1.20倍。进行设备-结构耦合隔震体系设计时,需考虑近断层地震动脉冲作用的影响,同时需注意引起主体结构和设备最大响应的地震动不一定相同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号