首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Taking the anisotropy of velocity and attenuation into account, we investigate the wavefield simulation of viscoacoustic waves in 3D vertical transversely isotropic attenuating media. The viscoacoustic wave equations with the decoupled amplitude attenuation and phase dispersion are derived from the fractional Laplacian operator and using the acoustic approximation. With respect to the spatially variable fractional Laplacian operator in the formulation, we develop an effective algorithm to realize the viscoacoustic wavefield extrapolation by using the arbitrary-order Taylor series expansion. Based on the approximation, the mixed-domain fractional Laplacian operators are decoupled from the wavenumbers and fractional orders. Thus, the viscoacoustic wave propagation can be conveniently implemented by using a generalized pseudospectral method. In addition, we perform the accuracy and efficiency analyses among first-, second- and third-order Taylor series expansion pseudospectral methods with different quality factors. Considering both the accuracy and computational cost, the second-order Taylor series expansion pseudospectral method can generally satisfy the requirements for most attenuating media. Numerical modelling examples not only illustrate that our decoupled viscoacoustic wave equations can effectively describe the attenuating property of the medium, but also demonstrate the accuracy and the high robustness of our proposed schemes.  相似文献   

2.
3.
时间域常Q黏声波方程,由于含分数阶时间导数项,数值求解需要大量内存,计算效率低,不利于地震偏移的实施.通过一系列近似,可将该方程简化为介质频散效应和衰减效应解耦的分数阶拉普拉斯算子黏声波方程,数值求解内存需求少,计算效率高.本文采用交错网格有限差分逼近时间导数,改进的伪谱法计算空间导数,PML吸收边界去除边界反射,对该方程进行数值离散和地震正演模拟,开展地震数据的黏声介质逆时偏移,实现波场逆时延拓过程中同时完成频散校正和衰减补偿.改善深层构造的成像精度,数值结果表明,基于分数阶拉普拉斯算子解耦的黏声介质地震正演模拟与逆时偏移可大幅度提高地震模拟计算效率,偏移剖面明显优于常规声波偏移剖面,极大改善深层构造的成像品质.  相似文献   

4.
由所建立的三维qP波相速度表示式出发,导出并解析求解各向异性介质中的频散方程,得到三维各向异性介质中的相移算子,进而将以相移算子为基础的对称非平稳相移方法推广到各向异性介质,发展了一个三维各向异性介质的深度偏移方法. 文中使用的各向异性介质的速度模型与现行的各向异性构造的速度估计方法一致,将各向同性、弱各向异性及强各向异性统一在一个模型中. 所建立的各向异性介质对称非平稳相移波场延拓算子可以同时适应速度及各向异性参数横向变化;文中给出的算例虽然是针对二维VTI介质的,但所提出的算法同样适用于三维TI介质.  相似文献   

5.
目前在地震勘探频带范围内通常假设品质因子Q与频率无关,且呈衰减各向同性.事实上,相比较速度各向异性,介质的衰减各向异性同样不可忽视.本文将衰减各向异性和速度各向异性二者与常Q模型相结合,建立了黏弹性衰减VTI介质模型,并基于分数阶时间导数理论,给出了对应的本构关系和波动方程.利用均匀平面波分析和Poynting定理,推导出准压缩波qP、准剪切波qSV和纯剪切波SH的复速度、相速度、能量速度以及品质因子的解析表达式.对模型的正确性进行了数值验证,并分析了qP,qSV和SH波在介质中的传播特性.数值试验结果表明:本模型能够实现理想的恒定Q行为,表现了品质因子和速度的各向异性特征,显示出黏弹性增强将导致能量速度和相速度的频散曲线变化剧烈;速度和衰减各向异性参数与传播角度之间的耦合效应对qP,qSV和SH波的速度和能量影响明显;qP,qSV和SH波的频散曲线和波前面随着衰减各向异性强度的改变发生显著变化,其中耦合在一起的qP和qSV波变化趋势相同,而SH波与它们呈现相反的变化规律.本研究为从常Q模型角度分析地震波在衰减各向异性黏弹性介质中的传播特征奠定了理论基础.  相似文献   

6.
基于GSLS模型TI介质衰减拟声波方程   总被引:2,自引:2,他引:0       下载免费PDF全文
随着计算机硬件技术的发展以及高分辨率勘探需求的增加,我们希望能够更准确地模拟地下介质,得到更丰富的地层信息.然而,传统的声学假设并不能描述实际地层所存在各向异性和黏滞性,使得成像分辨率较低.为了实现深部储层的高精度成像,本文同时考虑了介质的各向异性和黏滞性,从TI介质弹性波的基本理论出发,结合各向异性GSLS理论,并通过声学近似方法导出基于GSLS模型的各向异性衰减拟声波方程.数值模拟表明该方程既能准确地描述各向异性介质下的准P波运动学规律,又能体现地层的吸收衰减效应;模型逆时偏移结果表明,在实现成像过程中考虑各向异性和黏滞性的影响,能对高陡构造清晰成像,且剖面振幅相对均衡,分辨率较高.  相似文献   

7.
Anisotropic reverse-time migration for tilted TI media   总被引:1,自引:0,他引:1  
Seismic anisotropy in dipping shales results in imaging and positioning problems for underlying structures. We develop an anisotropic reverse‐time depth migration approach for P‐wave and SV‐wave seismic data in transversely isotropic (TI) media with a tilted axis of symmetry normal to bedding. Based on an accurate phase velocity formula and dispersion relationships for weak anisotropy, we derive the wave equation for P‐wave and SV‐wave propagation in tilted transversely isotropic (TTI) media. The accuracy of the P‐wave equation and the SV‐wave equation is analyzed and compared with other acoustic wave equations for TTI media. Using this analysis and the pseudo‐spectral method, we apply reverse‐time migration to numerical and physical‐model data. According to the comparison between the isotropic and anisotropic migration results, the anisotropic reverse‐time depth migration offers significant improvements in positioning and reflector continuity over those obtained using isotropic algorithms.  相似文献   

8.
When a seismic signal propagates through a finely layered medium, there is anisotropy if the wavelengths are long enough compared to the layer thicknesses. It is well known that in this situation, the medium is equivalent to a transversely isotropic material. In addition to anisotropy, the layers may show intrinsic anelastic behaviour. Under these circumstances, the layered medium exhibits Q anisotropy and anisotropic velocity dispersion. The present work investigates the anelastic effect in the long-wavelength approximation. Backus's theory and the standard linear solid rheology are used as models to obtain the directional properties of anelasticity corresponding to the quasi-compressional mode qP, the quasi-shear mode qSV, and the pure shear mode SH, respectively. The medium is described by a complex and frequency-dependent stiffness matrix. The complex and phase velocities for homogeneous viscoelastic waves are calculated from the Christoffel equation, while the wave-fronts (energy velocities) and quality factor surfaces are obtained from energy considerations by invoking Poynting's theorem. We consider two-constituent stationary layered media, and study the wave characteristics for different material compositions and proportions. Analyses on sequences of sandstone-limestone and shale-limestone with different degrees of anisotropy indicate that the quality factors of the shear modes are more anisotropic than the corresponding phase velocities, cusps of the qSV mode are more pronounced for low frequencies and midrange proportions, and in general, attenuation is higher in the direction perpendicular to layering or close to it, provided that the material with lower velocity is the more dissipative. A numerical simulation experiment verifies the attenuation properties of finely layered media through comparison of elastic and anelastic snapshots.  相似文献   

9.
The analysis of Stoneley wave propagation in a fracture is essential for the identification and evaluation of fracture parameters from the borehole Stoneley wave. Also, it is important for many geophysics considerations, e.g. for tremor and long-period events observed in volcanoes and geothermal areas. In this paper, we investigate the guided waves propagation in a fluid layer lying between two viscoelastic vertically transversely isotropic media. The viscoelastic mechanism models the attenuation due to the presence of fluid saturation in the rock. A model based on the superposition of three inhomogeneous partial plane waves: one in the fluid and two heterogeneous waves in the solid is developed. The dispersion equation is obtained for this case. A numerical solution is carried out to obtain the guided wave velocity and attenuation coefficient. The results of this investigation show that there is a strong correlation between the velocity dispersion and attenuation of Stoneley wave and the anisotropic parameters of the medium especially in a sandstone (fast) medium.  相似文献   

10.
Characterizing the expressions of seismic waves in elastic anisotropic media depends on multiparameters. To reduce the complexity, decomposing the P-mode wave from elastic seismic data is an effective way to describe the considerably accurate kinematics with fewer parameters. The acoustic approximation for transversely isotropic media is widely used to obtain P-mode wave by setting the axial S-wave phase velocity to zero. However, the separated pure P-wave of this approach is coupled with undesired S-wave in anisotropic media called S-wave artefacts. To eliminate the S-wave artefacts in acoustic waves for anisotropic media, we set the vertical S-wave phase velocity as a function related to propagation directions. Then, we derive a pure P-wave equation in transversely isotropic media with a horizontal symmetry axis by introducing the expression of vertical S-wave phase velocity. The differential form of new expression for pure P-wave is reduced to second-order by inserting the expression of S-wave phase velocity as an auxiliary operator. The results of numerical simulation examples by finite difference illustrate the stability and accuracy of the derived pure P-wave equation.  相似文献   

11.
康玮  程玖兵 《地球物理学报》2012,55(3):1033-1045
地下岩石的速度各向异性影响地震波的传播与成像.横向各向同性(TI)介质为最普遍的等效各向异性模型.引入TI介质拟声波方程可以避免复杂的弹性波方程求解以及各向异性介质波场分离,以满足对纵波成像的实际需要.本文从垂直横向各向同性(VTI)介质弹性波方程出发,推导出正应力表达的拟声波方程以及相应的纵波分量的表达式,进而分析从频散关系得到的拟声波方程的物理意义,而后将拟声波方程扩展到更一般的倾斜横向各向同性(TTI)介质中.波前快照与群速度平面的对比验证了拟声波方程可以很好地近似描述qP波的运动学特征.在此基础上,将拟声波方程应用在逆时偏移中并与其特例声波近似方程进行对比,讨论了计算效率、稳定性等实际问题.数值试验表明VTI介质情况下采用声波近似方程可以提高计算效率,而TTI介质qP-qSV波方程则在效率相当的情况下可以保证稳定性.SEG/HESS模型和逆冲模型逆时偏移试验验证了本文TI介质拟声波方程的实用性.  相似文献   

12.
Pure-mode wave propagation is important for applications ranging from imaging to avoiding parameter tradeoff in waveform inversion. Although seismic anisotropy is an elastic phenomenon, pseudo-acoustic approximations are routinely used to avoid the high computational cost and difficulty in decoupling wave modes to obtain interpretable seismic images. However, such approximations may result in inaccuracies in characterizing anisotropic wave propagation. We propose new pure-mode equations for P- and S-waves resulting in an artefact-free solution in transversely isotropic medium with a vertical symmetry axis. Our approximations are more accurate than other known approximations as they are not based on weak anisotropy assumptions. Therefore, the S-wave approximation can reproduce the group velocity triplications in strongly anisotropic media. The proposed approximations can be used for accurate modelling and imaging of pure P- and S-waves in transversely isotropic media.  相似文献   

13.
Anisotropy is often observed due to the thin layering or aligned micro‐structures, like small fractures. At the scale of cross‐well tomography, the anisotropic effects cannot be neglected. In this paper, we propose a method of full‐wave inversion for transversely isotropic media and we test its robustness against structured noisy data. Optimization inversion techniques based on a least‐square formalism are used. In this framework, analytical expressions of the misfit function gradient, based on the adjoint technique in the time domain, allow one to solve the inverse problem with a high number of parameters and for a completely heterogeneous medium. The wave propagation equation for transversely isotropic media with vertical symmetry axis is solved using the finite difference method on the cylindrical system of coordinates. This system allows one to model the 3D propagation in a 2D medium with a revolution symmetry. In case of approximately horizontal layering, this approximation is sufficient. The full‐wave inversion method is applied to a crosswell synthetic 2‐component (radial and vertical) dataset generated using a 2D model with three different anisotropic regions. Complex noise has been added to these synthetic observed data. This noise is Gaussian and has the same amplitude f?k spectrum as the data. Part of the noise is localized as a coda of arrivals, the other part is not localized. Five parameter fields are estimated, (vertical) P‐wave velocity, (vertical) S‐wave velocity, volumetric mass and the Thomsen anisotropic parameters epsilon and delta. Horizontal exponential correlations have been used. The results show that the full‐wave inversion of cross‐well data is relatively robust for high‐level noise even for second‐order parameters such as Thomsen epsilon and delta anisotropic parameters.  相似文献   

14.
何兵红  吴国忱 《地震学报》2015,37(4):661-677
常规τ值法假设应力松弛时间与应变延迟时间近似相等, 造成了常Q模型拟合精度低. 本文利用精确的广义流变体模型Q值计算公式, 研究改进的τ值法求解常Q模型参数. 根据地震波散射理论, 推导了基于广义流变体模型的黏滞性介质一阶波恩近似方程, 结合位移-速度关系得到了含卷积完全匹配层边界条件的黏滞性介质应力-速度方程的一阶波恩近似表达式. 通过数值实验验证并对比了黏滞性介质中全波波动方程、 一阶波恩近似方程以及单程波波动方程的波场特征, 讨论了基于流变体模型的黏滞性介质一阶波恩近似方程对速度扰动和Q扰动的适应性, 以及对旅行时和振幅精度的影响.   相似文献   

15.
Seismic wave propagation in transversely isotropic (TI) media is commonly described by a set of coupled partial differential equations, derived from the acoustic approximation. These equations produce pure P‐wave responses in elliptically anisotropic media but generate undesired shear‐wave components for more general TI anisotropy. Furthermore, these equations suffer from instabilities when the anisotropy parameter ε is less than δ. One solution to both problems is to use pure acoustic anisotropic wave equations, which can produce pure P‐waves without any shear‐wave contaminations in both elliptical and anelliptical TI media. In this paper, we propose a new pure acoustic transversely isotropic wave equation, which can be conveniently solved using the pseudospectral method. Like most other pure acoustic anisotropic wave equations, our equation involves complicated pseudo‐differential operators in space which are difficult to handle using the finite difference method. The advantage of our equation is that all of its model parameters are separable from the spatial differential and pseudo‐differential operators; therefore, the pseudospectral method can be directly applied. We use phase velocity analysis to show that our equation, expressed in a summation form, can be properly truncated to achieve the desired accuracy according to anisotropy strength. This flexibility allows us to save computational time by choosing the right number of summation terms for a given model. We use numerical examples to demonstrate that this new pure acoustic wave equation can produce highly accurate results, completely free from shear‐wave artefacts. This equation can be straightforwardly generalized to tilted TI media.  相似文献   

16.
TTI介质的交错网格伪P波正演方法   总被引:2,自引:2,他引:0       下载免费PDF全文
研究了三维弱各向异性近似下,利用伪P波(伪纵波)模拟弹性波场P分量在倾斜对称轴的横向各向同性(TTI)介质中的传播过程,并对比了分别基于弹性Hooke定律、弹性波投影和运动学色散方程所建立的三种二阶差分伪P波方程的正演特点.目前这些伪P波方程数值计算主要采用规则网格差分,但是规则网格在TTI模拟中有低效率、低精度以及不稳定的缺点.为了提高计算的精度,本文构建出相应方程的交错网格有限差分格式.通过对比伪P波方程在三维TTI介质中不同的数值模拟的表达形式,本文认为基于色散方程所建立的伪P波方程在模拟弹性波中P波传播的过程中具有最小的噪声.本文分析不同的各向同性对称轴空间角度的频散特征,并引入适当的横波速度维持计算的稳定.二维模型算例表明,本文提出的交错网格正演算法可以得到稳定光滑的伪P波正演波场.使用本文交错网格算法对二维BP TTI模型的逆时偏移也具有较稳定的偏移结果.  相似文献   

17.
When treating the forward full waveform case, a fast and accurate algorithm for modelling seismic wave propagation in anisotropic inhomogeneous media is of considerable value in current exploration seismology. Synthetic seismograms were computed for P-SV wave propagation in transversely isotropic media. Among the various techniques available for seismic modelling, the finite-difference method possesses both the power and flexibility to model wave propagation accurately in anisotropic inhomogeneous media bounded by irregular interfaces. We have developed a fast high-order vectorized finite-difference algorithm adapted for the vector supercomputer. The algorithm is based on the fourth-order accurate MacCormack-type splitting scheme. Solving the equivalent first-order hyperbolic system of equations, instead of the second-order wave equation, avoids computation of the spatial derivatives of the medium's anisotropic elastic parameters. Examples indicate that anisotropy plays an important role in modelling the kinematic and the dynamic properties of the wave propagation and should be taken into account when necessary.  相似文献   

18.
Subsurface rocks (e.g. shale) may induce seismic anisotropy, such as transverse isotropy. Traveltime computation is an essential component of depth imaging and tomography in transversely isotropic media. It is natural to compute the traveltime using the wavefront marching method. However, tracking the 3D wavefront is expensive, especially in anisotropic media. Besides, the wavefront marching method usually computes the traveltime using the eikonal equation. However, the anisotropic eikonal equation is highly non‐linear and it is challenging to solve. To address these issues, we present a layer‐by‐layer wavefront marching method to compute the P‐wave traveltime in 3D transversely isotropic media. To simplify the wavefront tracking, it uses the traveltime of the previous depth as the boundary condition to compute that of the next depth based on the wavefront marching. A strategy of traveltime computation is designed to guarantee the causality of wave propagation. To avoid solving the non‐linear eikonal equation, it updates traveltime along the expanding wavefront by Fermat's principle. To compute the traveltime using Fermat's principle, an approximate group velocity with high accuracy in transversely isotropic media is adopted to describe the ray propagation. Numerical examples on 3D vertical transverse isotropy and tilted transverse isotropy models show that the proposed method computes the traveltime with high accuracy. It can find applications in modelling and depth migration.  相似文献   

19.
20.
Eikonal solvers often have stability problems if the velocity model is mildly heterogeneous. We derive a stable and compact form of the eikonal equation for P‐wave propagation in vertical transverse isotropic media. The obtained formulation is more compact than other formulations and therefore computationally attractive. We implemented ray shooting for this new equation through a Hamiltonian formalism. Ray tracing based on this new equation is tested on both simple as well as more realistic mildly heterogeneous velocity models. We show through examples that the new equation gives travel times that coincide with the travel time picks from wave equation modelling for anisotropic wave propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号