首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
On the basis of experiments carried out in flume with a wavy bed with vegetation cover, flow velocity, turbulence intensities and Reynolds stress distributions are investigated. The wavy bed was similar to dune in this study. The fixed artificial dunes were constructed over the bed and artificial vegetation put over them in a laboratory flume. An Acoustic Doppler Velocimeter and spatially-averaged method were applied to determine turbulent flow components and shear velocity. Results were compared with a gravel bedform. It was observed that vegetation cover influences considerably the flow structure and displays clearly the flow separation and reattachment point. The law of the wall was not valid within the vegetation cover, but it was fitted well to the zone above the vegetation cover within the inner layer. For a wavy bed having the same dimensions, shear velocity and friction factor over vegetation cover are 1.7 and 2.6 times of those for the gravel bedform, respectively. The results of laboratory study were compared with those of river study.  相似文献   

2.
《国际泥沙研究》2020,35(2):193-202
The current work focuses on locally resolving velocities,turbulence,and shear stresses over a rough bed with locally non-uniform character.A nonporous subsurface layer and fixed interfacial sublayer of gravel and sand were water-worked to a nature-like bed form and additionally sealed in a hydraulic flume.Two-dimensional Particle Image Velocimetry(2 D-PIV) was applied in the vertical plane of the experimental flume axis.Runs with clear water and weak sediment transport were done under slightly supercritical flow to ensure sediment transport conditions without formation of considerable sediment deposits or dunes.The study design included analyzing the double-averaged flow parameters of the entire measurement domain and investigating the flow development at 14 consecutive vertical subsections.Local geometrical variabilities as well the presence of sediment were mainly reflected in the vertical velocity component.Whereas the vertical velocity decreased over the entire depth in presence of sediment transport,the streamwise velocity profile was reduced only within the interfacial sublayer.In the region with decelerating flow conditions,however,the streamwise velocity profile systematically increased along the entire depth extent.The increase in the main velocity(reduction of flow resistance)correlated with a decrease of the turbulent shear and main normal stresses.Therefore,effects of rough bed smoothening and drag force reduction were experimentally documented within the interfacial sublayer due to mobile sediment.Moreover,the current study leads to the conclusion that in nonuniform flows the maximum Reynolds stress values are a better predictor for the bed shear stress than the linearly extrapolated Reynolds stress profile.This is an important finding because,in natural flows,uniform conditions are rare.  相似文献   

3.
In this experimental study,field observations and laboratory experiments have been carried out to assess the impacts of the vegetated channel walls and aspect ratio on flow velocity profiles,shear stress distribution and roughness coefficient of channel.Results show that the presence of vegetation cover on channel wall causes deviation of the Reynolds stress distribution from the linear one under uniform flow condition.It is also noticed that the Reynolds stress distribution is influenced by the aspect rati...  相似文献   

4.
Shear velocity u* is an important parameter in geophysical flows, in particular with respect to sediment transport dynamics. In this study, we investigate the feasibility of applying five standard methods [the logarithmic mean velocity profile, the Reynolds stress profile, the turbulent kinetic energy (TKE) profile, the wall similarity and spectral methods] that were initially developed to estimate shear velocity in smooth bed flow to turbulent flow over a loose bed of coarse gravel (D50 = 1·5 cm) under sub‐threshold conditions. The analysis is based on quasi‐instantaneous three‐dimensional (3D) full depth velocity profiles with high spatial and temporal resolution that were measured with an Acoustic Doppler Velocity Profiler (ADVP) in an open channel. The results of the analysis confirm the importance of detailed velocity profile measurements for the determination of shear velocity in rough‐bed flows. Results from all methods fall into a range of ± 20% variability and no systematic trend between methods was observed. Local and temporal variation in the loose bed roughness may contribute to the variability of the logarithmic profile method results. Estimates obtained from the TKE and Reynolds stress methods reasonably agree. Most results from the wall similarity method are within 10% of those obtained by the TKE and Reynolds stress methods. The spectral method was difficult to use since the spectral energy of the vertical velocity component strongly increased with distance from the bed in the inner layer. This made the choice of the reference level problematic. Mean shear stress for all experiments follows a quadratic relationship with the mean velocity in the flow. The wall similarity method appears to be a promising tool for estimating shear velocity under rough‐bed flow conditions and in field studies where other methods may be difficult to apply. This method allows for the determination of u* from a single point measurement at one level in the intermediate range (0·3 < h < 0·6). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The mechanism of energy balance in an open-channel flow with submerged vegetation was investigated. The energy borrowed from the local flow, energy spending caused by vegetation drag and flow resistance, and energy transition along the water depth were calculated on the basis of the computational results of velocity and Reynolds stress. Further analysis showed that the energy spending in a cross-section was a maximum around the top of the vegetation, and its value decreased progressively until reaching zero at the flume bed or water surface. The energy borrowed from the local flow in the vegetated region could not provide for spending; therefore, surplus borrowed energy in the non-vegetated region was transmitted to the vegetated region. In addition, the total energy transition in the cross-section was zero; therefore, the total energy borrowed from the flow balanced the energy loss in the whole cross-section. At the same time, we found that there were three effects of vegetation on the flow: turbulence restriction due to vegetation, turbulence source due to vegetation and energy transference due to vegetation, where the second effect was the strongest one.  相似文献   

6.
In this experimental study,the turbulent flow in a channel with vegetation by using sprouts of wheat on channel bed was investigated.Two different aspect ratios of channel were used.An Acoustic Doppler Velocimetry was used to measure parameters of turbulent flow over submerged sprouts of wheat,such as velocity profiles.The log law and the Reynolds shear stress distribution were applied. Results indicate that the position of the maximum turbulence intensity superposes on the inflection point situated over the top of submerged vegetation cover.Quadrant analysis shows that near the vegetation bed,the sweeps and ejections appear to be the most dominant phenomenon,while far from the vegetated bed,the outward is dominant event.Results also show that the aspect ratio plays an important role on the contribution of the different bursting events for Reynolds stress determination.  相似文献   

7.
Northern rivers experience freeze‐up over the winter, creating asymmetric under‐ice flows. Field and laboratory measurements of under‐ice flows typically exhibit flow asymmetry and its characteristics depend on the presence of roughness elements on the ice cover underside. In this study, flume experiments of flows under a simulated ice cover are presented. Open water conditions and simulated rough ice‐covered flows are discussed. Mean flow and turbulent flow statistics were obtained from an Acoustic Doppler Velocimeter (ADV) above a gravel‐bed surface. A central region of faster flow develops in the middle portion of the flow with the addition of a rough cover. The turbulent flow characteristics are unambiguously different when simulated ice covered conditions are used. Two distinct boundary layers (near the bed and in the vicinity of the ice cover, near the water surface) are clearly identified, each being characterized by high turbulent intensity levels. Detailed profile measurements of Reynolds stresses and turbulent kinetic energy indicate that the turbulence structure is strongly influenced by the presence of an ice cover and its roughness characteristics. In general, for y/d > 0·4 (where y is height above bed and d is local flow depth), the addition of cover and its roughening tends to generate higher turbulent kinetic energy values in comparison to open water flows and Reynolds stresses become increasingly negative due to increased turbulence levels in the vicinity of the rough ice cover. The high negative Reynolds stresses not only indicate high turbulence levels created by the rough ice cover but also coherent flow structures where quadrants one and three dominate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Non‐uniform flows encompassing both accelerating and decelerating flows over a cobble‐bed flume have been experimentally investigated in a flume at a scale of intermediate relative submergence. Measurements of mean longitudinal flow velocity u, and determinations of turbulence intensities u′, v′, w′, and Reynolds shear stress ?ufwf have been made. The longitudinal velocity distribution was divided into the inner zone close to the bed and the outer zone far from the bed. In the inner zone of the boundary layer (near the bed) the velocity profile closely followed the ‘Log Law’; however, in the outer zone the velocity distribution deviated from the Log Law consistently for both accelerating and decelerating flows and the changes in bed slopes ranging from ?2% to + 2% had no considerable effect on the outer zone. For a constant bed slope (S = ±0·015), the larger the flow rate, the smaller the turbulence intensities. However, no detectable pattern has been observed for u′, v′ and w′ distributions near the bed. Likewise, for a constant flow rate (Q = 0·040 m3/s), with variation in bed slope the longitudinal turbulent intensity profile in the longitudinal direction remained concave for both accelerating and decelerating flows; whereas vertical turbulent intensity (w′) profile presented no specific form. The results reveal that the positions of maximum values of turbulence intensities and the Reynolds shear stress depend not only on the flow structure (accelerating or decelerating) but also on the intermediate relative submergence scale. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Vegetation on river banks and bed roughness are important factors affecting flow structure, sediment transport, erosion and geomorphology in rivers. In this experimental study, the impacts of vegetation on flume walls, grain size of bed gravels and aspect ratio on characteristics of shear stress distribution, Coles' wake parameter, the kinematic energy correction factor (α) and the momentum correction factor (β) have been assessed. Reynolds stress distribution illustrates a three-layer pattern when the aspect ratio is smaller than 2. In addition, the aspect ratio and changes of vegetation affect α, β as well as the Coles' wake parameter Π.  相似文献   

10.
The present experimental investigation focuses on the characteristics of near bed turbulence in a fully rough, uniform open-channel flow over a gravel-type bed. Due to bed topography small scale heterogeneity, the flow is not uniform locally in the near bed region and a double averaging methodology is applied over a length scale much larger than the gravel size. The double-averaged Turbulent Kinetic Energy (TKE) budget derived in the context of the present flow over a gravel bed differs from the TKE budget written for flow over a vegetation canopy. The non-constant shape of the roughness function measured in our gravel bed leads to an additional bed-induced production term which is null for vertical roughness elements, such as simplified vegetation elements. The experimental estimation of the terms of the TKE budget reveals that the maximum turbulent activity takes place away from the reference plane, near the roughness crests. However, within the interface sublayer the work of the bed induced velocity fluctuations against the Reynolds stress is of the same magnitude as the main turbulence production term. Consequently, the characteristics of the TKE budget have similarities with uniform flows over canopies and strongly differ from uniform flows over smooth and transitionally rough flows over sedimentlike beds.  相似文献   

11.
A series of flume experiments were conducted with varying the flow discharges at the Fluvial Mechanics Laboratory of Indian Statistical Institute (Kolkata) to understand the co-evolution patterns of generating bed forms and the corresponding flow turbulence. Instantaneous bed elevations and velocity components were recorded continuously for sufficient time using high resolution instruments, such as, Ultrasonic Ranging System and acoustic Doppler velocimeter, at some spatial location over the deformed bed for each flow discharge. Increase in mean bed elevations and bed-slopes was found to be increased in discharge. Heavy-tailed nature of the probability density functions of magnitude of bed elevation increments, magnitude of single continuous bed elevation increments and instantaneous Reynolds shear stresses along three planes were analyzed using Pareto and truncated Pareto distributions. The spectral analysis of bed elevations revealed that the slope of log–log linearity increased with increase in flow discharge. Wavelet cross-correlations depicted strong dependence of bed form evolution on the corresponding instantaneous Reynolds shear stress along xz-plane. A Gram–Charlier type of distribution was used to estimate the probability density function of fluctuating velocity components, instantaneous Reynolds shear stresses along three planes and the joint probability density functions of the fluctuating velocity components, which showed good fit with the experimental data.  相似文献   

12.
The effect of fully submerged boulders on the flow structure in channels has been studied by some researchers. However, many natural streams have bed material with boulders that are not fully submerged under water. In many natural streams, boulders cover between 1% and 10% of the area of the stream reach. The effect of non-submerged boulders on the velocity profile and flow characteristics is very important for assessing riverbed deformation. The objectives of this paper are to find the pattern of velocity distribution around a non-submerged boulder and to compare it with the classical studies on flow resistance and Reynolds stress distribution in open channels. Also, by considering the variation in the Reynolds stress distribution at different locations around a non-submerged boulder, the effect of a non-submerged boulder on the estimation of shear velocity and resistance to flow has been investigated. Results indicates that inside the scour hole caused by a non-submerged boulder in a river velocity distributions are irregular. However, velocity distributions are regular outside the scour hole. The presence of the boulder causes a considerable deviation of the Reynolds shear stress from the classic distribution, showing a non-specific distribution with negative values. The classical methods for calculating shear velocity are not suitable because these methods do not give detailed velocity and Reynolds stress distributions in natural rivers with a lot of boulders. Thus, the effect of a non-submerged boulder on the estimation of the resistance to flow by considering the variations in velocity and Reynolds stress distributions at different locations around a non-submerged boulder is important and needs to be studied in a natural river instead of just in laboratory flumes. The negative values in Reynolds stress distribution around a boulder indicate that the classical methods are unable to predict resistance to flow, and also show strong turbulence inside the scour hole where the complex flow conditions present ambiguous Reynolds stress distributions. In the current study, to obtain a reasonable estimation of parameters in natural rivers, the classical method has been modified by considering velocity and Reynolds stress distributions through the boundary layer method.  相似文献   

13.
ABSTRACT

In this study, the effect of single and double row piles for reducing scouring in a mild-curved river meander was studied experimentally. The experimental study focused on the effect of vegetation on bed topography in a mild-curved meander bend. The experimental tests were conducted in a laboratory flume under clear water flow conditions. A series of experimental tests were carried out with a fixed bed and non-vegetated and vegetated moveable beds with different vegetation patterns. Analysis of the flow characteristics indicated that when the bed was mobile with vegetation on the inner bank, the core of maximum streamwise velocity shifted towards the centreline of the bend. Additionally, the cross-sectional kinetic energy increased from 0.05% for the fixed-bed test to 4.30% for the test with a double row of vegetation. Furthermore, the presence of vegetation was found to increase the uniformity of the distribution of turbulence intensity and to reduce the Reynolds shear stress along the test section. Also, the mass fluxes increased from the outer bank to the inner bank and from the upstream towards the downstream of the bend. Finally, comparison of bed topography in vegetated and non-vegetated channels showed that the maximum scour depth at the bend apex was reduced by 77% and 62% for the cases with one row and two rows of vegetation, respectively. The results of this study were compared with previously proposed models for predicting the vertical distribution of the streamwise velocity at the bend apex. It was found that Johannesson and Parker’s model (JPM) gave the lowest value of standard error. The above findings are useful in river training works and, in particular, for restoration of meandering rivers.
Editor D. M.C. Acreman; Associate editor C. Cudennec  相似文献   

14.
Studies on emergent flow over vegetative channel bed with downward seepage   总被引:2,自引:2,他引:0  
Experimental observations in a tilting flume having a bed covered with rice plants (Oryza sativa) are used to analyse the flow characteristics of flexible emergent vegetation with downward seepage. The flow velocity for no-seepage and with seepage is reduced by, on average, 52% and 33%, respectively, as the flow reaches the downstream end with vegetation. Higher Reynolds stress occurs at the start of the vegetation zone; hence, bed material transport occurs in this region. The results indicate that the bed is no longer the primary source of turbulence generation in vegetated flow; rather it is dominated by turbulence generated by the vegetation stems. The local effect of the presence of vegetation causes variations in the hydrodynamic characteristics along the vegetated portion of the channel, which leads to erosion and deposition in the vegetation zone. The experiments show that vegetation can provide considerable stability to channels by reducing channel erosion even with downward seepage.  相似文献   

15.
Saltmarsh vegetation significantly influences tidal currents and sediment deposition by decelerating the water velocity in the canopy. In order to complement previous field results, detailed profiles of velocity and turbulence were measured in a laboratory flume. Natural Spartina anglica plants were installed in a 3 m length test section in a straight, recirculating flume. Different vegetation densities, water depths and surface velocities were investigated. The logarithmic velocity profile, which existed in front of the vegetation, was altered gradually to a skimming-flow profile, typical for submerged saltmarsh vegetation. The flow reduction in the denser part of the canopy also induced an upward flow (the current was partially deflected by the canopy). The skimming flow was accompanied by a zone of high turbulence co-located with the strongest velocity gradient. This gradient moved upward and the turbulence increased with distance from the edge of the vegetation. Below the skimming flow, the velocity and the turbulence were low. The structure of the flow in the canopy was relatively stable 2 m into the vegetation. The roughness length (z0) of the vegetation depends only on the vegetation characteristics, and is not sensitive to the current velocity or the water depth. Both the reduced turbulence in the dense canopy and the high turbulence at the top of the canopy should increase sediment deposition. On the other hand, the high turbulence zone just beyond the vegetation edge and the oblique upward flow may produce reduced sedimentation; a phenomenon that was observed near the vegetation edge in the field.  相似文献   

16.
The depth‐integrated momentum and kinetic energy equations contain velocity correlation terms that involve products of local deviations in velocity components about depth‐averaged values. Based on velocity data obtained from North Boulder Creek, Colorado, a simple scaling analysis suggests that certain of these terms, which normally can be neglected in the case of smooth channels, can be significant parts of the momentum and energy balances in steep, rough channels owing to the occurrence of non‐logarithmic velocity profiles. A linearized version of the kinetic energy equation suggests that, for flow accelerations over small‐amplitude bed forms, the energy of the mean motion is spatially partitioned between a form involving the depth‐averaged velocity and a form involving the deviatoric part of the velocity profile; this partitioning is associated with spatial variations in the uniformity of the vertical profile of the streamwise velocity. These points are consistent with published flume measurements involving flow over sand‐roughened dunes, and with published field measurements of flow over a gravel bar. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
ABSTRACT

The presence of aquatic vegetation in riverine and lacustrine environments alters the mean and turbulent flow structure and thus impacts the fate and transport of sediment and contaminants. Turbulent flows through Vallisneria natans (V. natans) and Potamogeton malaianus (P. malaianus) were investigated in a laboratory flume. The impact of plant morphology on mean velocity profile and turbulence distribution was analysed and discrepancies in flow alteration caused by different types of macrophyte were highlighted. Results show that a dense canopy of submerged macrophyte leads to a velocity profile featuring a counter velocity gradient in the lower part of the canopy. Negative Reynolds stress and its local maximum were observed there. Discrepancies in flow structure caused by different morphologies of both tested plants were further identified. With smaller frontal area in the lower part of the canopy, P. malaianus causes a much bigger gradient and local maximum in the velocity profile, and thus a larger local stress maximum than V. natans. The mean velocity gradient around the top of canopy, the Reynolds stress and the turbulence kinetic energy at the canopy interface are smaller than for the flow through the V. natans canopy. Larger reduction of the mean velocity within the V. natans canopy makes the suspended sediment of fine particles more easily deposited than in the P. malaianus canopy.  相似文献   

18.
This paper presents an approach to modeling the depth-averaged velocity and bed shear stress in compound channels with emergent and submerged vegetation. The depth-averaged equation of vegetated compound channel flow is given by considering the drag force and the blockage effect of vegetation, based on the Shiono and Knight method (1991) [40]. The analytical solution to the transverse variation of depth-averaged velocity is presented, including the effects of bed friction, lateral momentum transfer, secondary flows and drag force due to vegetation. The model is then applied to compound channels with completely vegetated floodplains and with one-line vegetation along the floodplain edge. The modeled results agree well with the available experimental data, indicating that the proposed model is capable of accurately predicting the lateral distributions of depth-averaged velocity and bed shear stress in vegetated compound channels with secondary flows. The secondary flow parameter and dimensionless eddy viscosity are also discussed and analyzed. The study shows that the sign of the secondary flow parameter is determined by the rotational direction of secondary current cells and its value is dependent on the flow depth. In the application of the model, ignoring the secondary flow leads to a large computational error, especially in the non-vegetated main channel.  相似文献   

19.
Spatially averaged profiles of time averaged velocity, using integrals over thin horizontal slabs (Cartesian double average), are employed in characterizing the flow over fixed dune shapes. For comparison the spatial averaging method of Smith and McLean (1977) that averages along lines at constant distance from the local bed elevation is also investigated. The Cartesian double averaged profiles of the inverse of the velocity shear are nearly constant below the crest elevation, but increase rapidly above the crest level. This results in velocity profiles that increase linearly with distance from the bed below the crest. Above the crest it can be argued that the velocity increases logarithmically, but a power law profile can also be argued. Spatially averaged eddy viscosity profiles are calculated by multiplying the average Reynolds stress by the inverse shear. The resulting profile is more complex than the uniform flow counterpart.  相似文献   

20.
FLOW FIELD IN SCOURED ZONE OF CHANNEL CONTRACTIONS   总被引:1,自引:0,他引:1  
Experiments were conducted in a laboratory flume to measure the two-dimensional turbulent flow field in the scoured zone of channel contractions under a clear-water scour condition. The Acoustic Doppler Velocimeter (ADV) was used to detect the flow field at different vertical lines along the centerline of uncontracted (main channel) and contracted zones of the channel. The distributions of time-averaged velocity components, turbulent intensity, turbulent kinetic energy, and Reynolds stresses are presented in nondimensional graphical form. The bed shear stresses are computed from the measured Reynolds stresses being in threshold condition within the zone of contraction where bed was scoured. The data presented in this paper would be useful to the investigators for the development of kinematic flow model and morphological model of scour at a channel or river contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号