首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
化学需氧量(COD)、五日生化需氧量(BOD_5)及溶解性有机碳(DOC)是指示湖泊水质的重要指标,然而上述指标测定通常耗费大量时间、试剂及人力物力且排放大量有害废液.有色可溶性有机物(CDOM)是溶解性有机物(DOM)中可以强烈吸收光谱中的紫外光和可见光的部分,数据测定耗时短、方便快捷,且样品处理过程环境友好,能在很大程度上反映湖泊水质.本研究基于2016年2、5和8月在太湖均匀布设的32个采样点进行样品采集,运用光谱吸收与三维荧光-平行因子分析(EEMs-PARAFAC)探究太湖CDOM的光谱吸收和荧光组分,探讨CDOM光谱指标对湖泊BOD_5、COD及DOC浓度等湖泊环境质量指标的可替代性.结果表明:(1)运用EEMs-PARAFAC方法解析出3种荧光组分:类腐殖酸C1、类酪氨酸C2和类色氨酸C3.(2) COD和BOD_5和DOC在空间上呈现出相似的分布趋势,不同水期的最高值均出现在竺山湾和梅梁湾,由西北湖区至中部敞水区、东南湖湾递减.(3)在不同水期,COD、BOD_5、DOC浓度和C1组分均表现为丰水期极显著大于枯水期和平水期,a_(254)在丰、平、枯水期间无显著性差异,最大值出现在丰水期;C2与C3组分均在枯水期和平水期极显著大于丰水期.(4)在不同水文时期,COD、BOD_5和DOC浓度均与a_(254)、类腐殖酸C1呈显著正相关,丰水期太湖COD、BOD_5和DOC浓度与CDOM光谱指标的线性相关性要优于枯水期和平水期.(5) CDOM光谱指标在不同水文时期均能很好地替代COD、BOD_5和DOC等作为反映太湖水体中有机物污染程度及湖泊水质的指标.  相似文献   

2.
Dissolved organic matter (DOM) quality and quantity is not measured routinely in‐situ limiting our ability to quantify DOM process dynamics. This is problematic given legislative obligations to determine event based variability; however, recent advances in field deployable optical sensing technology provide the opportunity to address this problem. In this paper, we outline a new approach for in‐situ quantification of DOM quantity (Dissolved Organic Carbon: DOC) and a component of quality (Biochemical Oxygen Demand: BOD) using a multi‐wavelength, through‐flow fluorescence sensor. The sensor measured tryptophan‐like (Peak T) and humic‐like (Peak C) fluorescence, alongside water temperature and turbidity. Laboratory derived coefficients were developed to compensate for thermal quenching and turbidity interference (i.e., light attenuation and scattering). Field tests were undertaken on an urban river with ageing wastewater and stormwater infrastructure (Bourn Brook; Birmingham, UK). Sensor output was validated against laboratory determinations of DOC and BOD collected by discrete grab sampling during baseflow and stormflow conditions. Data driven regression models were then compared to laboratory correction methods. A combination of temperature and turbidity compensated Peak T and Peak C was found to be a good predictor of DOC concentration (R2 = 0.92). Conversely, using temperature and turbidity correction coefficients provided low predictive power for BOD (R2 = 0.46 and R2 = 0.51, for Peak C and T, respectively). For this study system, turbidity appeared to be a reasonable proxy for BOD, R2 = 0.86. However, a linear mixed effect model with temperature compensated Peak T and turbidity provided a robust BOD prediction (R2 = 0.95). These findings indicate that with careful initial calibration, multi‐wavelength fluorescence, coupled with turbidity, and temperature provides a feasible proxy for continuous, in‐situ measurement of DOC concentration and BOD. This approach represents a cost effective monitoring solution, particularly when compared to UV – absorbance sensors and DOC analysers, and could be readily adopted for research and industrial applications.  相似文献   

3.
4.
The spatial and diurnal tidal variability of dissolved organic carbon (DOC) concentrations and the composition of dissolved organic matter (DOM), as evaluated by high-temperature catalytic oxidation and excitation–emission matrix combined with parallel factor analysis (EEM–PARAFAC), respectively, were determined in Liverpool Bay. EEM–PARAFAC modeling resulted in six fluorescent components characterized as terrestrial humic-like (two), microbial humic-like (two), and protein-like (two). The spatial distributions of DOC and the four humic-like components were negatively correlated with salinity in the high-salinity waters observed in this study (30.41–33.75), suggesting that terrestrial DOM was conservatively distributed. The spatial patterns of protein-like components were largely different from those of DOC, humic-like components, and chlorophyll a, suggesting that these distributions were the combined result of production and degradation in the bay in addition to river inputs. These findings suggest that the DOM dynamics in Liverpool Bay are strongly controlled by river-dominated allochthonous DOM inputs with some less significant contributions of autochthonous DOM within the bay. In addition, the temporal variations of DOM associated with the diurnal tidal cycles were determined at one inshore (31.34–32.24 salinity) and one offshore (33.64–33.75 salinity) station in the bay. Negative linear relationships between salinity and DOM characteristics, i.e., DOC, humic-like, and protein-like components, were observed at the inshore station. In contrast, no relationship was observed at the offshore station, suggesting that the export of DOM through rivers and possibly tidal flats have a noticeable influence on DOM concentration and composition up to a relatively elevated salinity of around 33 in Liverpool Bay.  相似文献   

5.
The optical properties and spatial distribution of chromophoric dissolved organic matter (CDOM) in Meiliang Bay of Lake Taihu were evaluated and compared to the results in literature. Concentrations of dissolved organic carbon (DOC) ranged from 8.75 to 20.19 mg L?1 with an average of (13.10 ± 3.51) mg L?1. CDOM absorption coefficients a(λ) at 280 nm, 355 nm, and 440 nm were in the range 11.28...33.46 m?1 (average (20.95 ± 5.52) m?1), 2.42...7.90 m?1 (average (4.92 ± 1.29) m?1), and 0.65...2.44 m?1 (average (1.46 ± 0.44) m?1), respectively. In general, CDOM absorption coefficient and DOC concentration were found to decrease away from the river inflow to Meiliang Bay towards the lake center. The values of the DOC‐specific absorption coefficients a*(λ), given as absorption coefficient related to mass concentration of organic carbon (C) ranged from 0.28 to 0.47 L mg?1 m?1 at 355 nm. The determination coefficients between CDOM absorption and DOC concentration decreased with the increase of wavelength from 280 to 550 nm. The linear regression relationship between CDOM absorption at 280 nm and DOC concentration was following: a(280 nm) = 1.507 L mg?1 m?1 · DOC + 1.215 m?1. The spectral slope S values were dependent on the wavelength range used in the regression. The estimated S values decreased with increasing wavelength range used. A significant negative linear relationship was found between CDOM absorption coefficients, DOC‐specific absorption coefficients and estimated S values especially in longer wavelength range. The linear regression relationship between DOC‐specific absorption coefficients at 440 nm and estimated S values during the wavelength range from 280 to 500 nm was following: a*(440 nm) = (–0.021 μm · S + 0.424) L mg?1 m?1.  相似文献   

6.
Continuous monitoring of dissolved organic matter (DOM) character and concentration at hourly resolution is rare, despite the importance of analysing organic matter variability at high‐temporal resolution to evaluate river carbon budgeting, river water health by detecting episodic pollution and to determine short‐term variations in chemical and ecological function. The authors report a 2‐week experiment performed on DOM sampled from Bournbrook, Birmingham, UK, an urban river for which spectrophotometric (fluorescence, absorbance), physiochemical (dissolved organic carbon [DOC], electrical conductivity, pH) and isotopic (D/H) parameters have been measured at hourly frequency. Our results show that the river had sub‐daily variations in both organic matter concentration and characteristics. In particular, after relatively high‐magnitude precipitation events, organic carbon concentration increased, with an associated increase in intensity of both humic‐like and tryptophan‐like fluorescence. D/H isotopic ratio demonstrates different hydrological responses to different rainfall events, and organic matter character reflects this difference. Events with precipitation < 2 mm typically yielded isotopically heavy water with relatively hydrophilic DOM and relatively low specific absorbance. Events with precipitation > 2 mm had isotopically lighter water with higher specific absorbance and a decrease in the proportion of microbially derived to humic‐like fluorescence. In our heavily urbanized catchment, we interpret these signals as one where riverine DOM is dominated by storm sewer‐derived ‘old’ organic matter at low‐rainfall amounts and a mixed signal at high‐precipitation amounts where ‘event’ surface runoff‐derived organic matter dominate during storm sewer and combined sewer overflow routed DOM. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
有色溶解性有机物(CDOM)广泛存在于水体中,占溶解有机碳(DOC)10%~90%,其浓度影响水环境碳循环过程、污染物质迁移以及水生生物群落的结构和功能。为分析东北地区水库DOC碳循环情况,本文于2015—2020年对第二松花江流域典型水库白山水库和丰满水库进行5次现场观测和室内实验,在分析CDOM吸收特性的基础上,基于Landsat系列卫星利用波段比值法建立CDOM浓度反演模型(R2=0.82),根据实测值CDOM与DOC的强相关性(R2=0.78),进而估算水库DOC浓度。结果表明:(1)利用野外实测数据和Landsat系列卫星能够对东北内陆水库CDOM浓度进行良好反演,(2)2000—2020年白山水库和丰满水库年际CDOM和DOC浓度变化不大,在2010年之后表现出轻微上升趋势,CDOM浓度从支流和干流的汇入到主库区呈现逐渐减少趋势,(3)白山水库和丰满水库M值(CDOM在250和365 nm处吸收系数比值)和S275~295(CDOM在275~295 nm波段处的吸收光谱的斜率)较小、SUVA254<...  相似文献   

8.
Boreal watersheds contain a vast quantity of terrestrially derived dissolved organic matter (DOM) originating from wetland and forest soils, yet variation in the potential for photochemical transformation of boreal aquatic DOM sources remains poorly understood. Laboratory solar radiation exposure experiments were conducted on DOM samples collected in three seasons, across nine sites, representing contrasting catchment composition and watershed position to assess variation in the photochemical lability of boreal DOM source and stable carbon isotopic signature (δ13C) of photomineralized DOM. Dissolved organic carbon (DOC) loss rates during laboratory exposure were lowest in summer, suggesting that DOM may have been more photo-degraded during summer. DOM from upstream portions of forested stream sites and wetland-influenced sites was more photolabile relative to downstream portions and the river DOM, suggesting potential losses in photolabile DOM downstream and in the lower reaches of the watershed. Increased a254:a350 and spectral slope following sample exposure suggest photoproduction of low molecular weight (LMW) CDOM and/or a higher photoreactivity of high molecular weight versus LMW compounds. Photomineralization of nitrogen was regulated by organic nitrogen concentration and resulted in NH4 +-photoproduction rates between 0.01 and 0.3?μM N?h?1 and ecologically significant increases in NH4 + for these waters. The δ13C of the photomineralized DOM was positively correlated to initial DOC concentration and generally lower when initial DOC concentrations were lower, suggesting variation in photomineralized DOM δ13C may be a result of kinetic isotope fractionation. Results from this study demonstrate significant variation in the photochemical lability of boreal watershed sources of DOM. Such variation suggests landscape and environmental change has the potential to alter the biogeochemical role photochemical transformations play in downstream portions of boreal watersheds.  相似文献   

9.
Dissolved organic matter (DOM) is outwelled from highly productive salt marshes, but its sources and fates are unclear. To examine common salt marsh plants as sources of coastal DOM, two dominant salt marsh vascular plants Spartina alterniflora and Juncus roemarianus, and two major coastal seagrasses Syringodium filiforme and Halodule wrightii, were collected from a Florida salt marsh and studied using laboratory incubation experiments. We investigated the leaching dynamics of dissolved organic carbon (DOC), total dissolved nitrogen (TDN), and chromophoric dissolved organic matter (CDOM) from these plants, in conjunction with our field investigations of the sources and outwelling of DOM from Florida salt marshes. The leaching of DOM and CDOM from the plants was a rapid process, and leaching rates were 65–288 µM/g dry weight/day for DOC and 3.8–16 µM/g dry weight/day for TDN from different plants in the bacteria-inhibited incubations. DOC was proportional to TDN in the leachates, but the quantity of C and N leached was dependent on the species and growth stage of the plants. At the end of the 25-day experiments, 5.4–23 % and 10–45 % of solid phase C and N were released into DOC and TDN pools, respectively. Bacteria played an important role during the leaching process. The majority of DOC and TDN leached from marsh plants and seagrasses was labile and highly biodegradable with 56–90 % of the leached DOC and 44–72 % of the leached TDN being decomposed at the end of the experiments. The fluorescence measurements of CDOM indicate that organic matter leached from marsh plants and seagrasses contained mainly protein-like DOM which was degraded rapidly by bacteria. Our study suggests that leaching of DOM from salt marsh plants and seagrasses provide not only major sources of DOC, TDN, and CDOM that affect many biogeochemical processes, but also as important food sources to microbial communities in the marsh and adjacent coastal waters.  相似文献   

10.
To establish the influence of the cyanobacterial bloom collapse on the characteristics of dissolved organic carbon (DOC) in Lake Taihu, high-molecular-weight dissolved organic matter (HMW-DOM), with sizes between 1 kDa and 0.5 μm, were collected using cross-flow ultrafiltration, from three different eutrophic regions. Isolated HMW-DOM was further characterized by atomic carbon to nitrogen ratio and neutral sugars composition by gas chromatography and mass spectrometry. The results indicated that the cyanobacterial cell lysis induced by nitrate depletion is the likely mechanism for DOC release. The relatively high DOC level was associated with the high chlorophyll a concentration in Meiliang Bay, one of the most eutrophic bays in the northern part of the lake. However, no significant correlations were observed between chlorophyll a concentration and HMW-DOC concentration during the demise of the cyanobacterial bloom in Lake Taihu. No significant differences were found in the HMW-DOC concentration among the three sampling sites, which were selected to represent different eutrophic status. However, a significant difference in the HMW-DOC concentration was found between October 2009 and January 2010 in all three sampling sites (p = 0.02). The HMW-DOC release may be attributed to the cyanobacterial cell lysis after the peak of summer bloom. The similarity in neutral sugar composition between the HMW-DOM and cyanobacterial exopolysaccharides suggests that the cyanobacterial bloom is the source of HMW-DOM. However, the significant correlation between the carbon to nitrogen ratio in HMW-DOM and chlorophyll a concentration was only observed in Meiliang Bay, which implies that apart from the cyanobacteria-derived DOC, a fraction of DOC was from riverine input. The decline of the cyanobacterial bloom also changed the overall DOM pool, leading to a shift in the component of HMW-DOM from a C-enriched material to an N-enriched material, as revealed by the variation in the carbon to nitrogen ratios. Overall, these results demonstrate that the quantitative and qualitative DOM is affected by the post-cyanobacterial bloom in Lake Taihu.  相似文献   

11.
Amount and composition of dissolved organic matter (DOM) were evaluated for multiple, nested stream locations in a forested watershed to investigate the role of hydrologic flow paths, wetlands and drainage scale. Sampling was performed over a 4‐year period (2008–2011) for five locations with drainage areas of 0.62, 3.5, 4.5, 12 and 79 ha. Hydrologic flow paths were characterized using an end‐member mixing model. DOM composition was determined using a suite of spectrofluorometric indices and a site‐specific parallel factor analysis model. Dissolved organic carbon (DOC), humic‐like DOM and fluorescence index were most sensitive to changes with drainage scale, whereas dissolved organic nitrogen, specific UV absorbance, Sr and protein‐like DOM were least sensitive. DOM concentrations and humic‐like DOM constituents were highest during both baseflow and stormflow for a 3.5‐ha catchment with a wetland near the catchment outlet. Whereas storm‐event concentrations of DOC and humic DOM constituents declined, the mass exports of DOC increased with increasing catchment scale. A pronounced dilution in storm‐event DOC concentration was observed at peak stream discharge for the 12‐ha drainage location, which was not as apparent at the 79‐ha scale, suggesting key differences in supply and transport of DOM. Our observations indicate that hydrologic flow paths, especially during storms, and the location and extent of wetlands in the catchment are key determinants of DOM concentration and composition. This study furthers our understanding of changes in DOM with drainage scale and the controls on DOM in headwater, forested catchments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
高邮湖、南四湖和东平湖作为南水北调东线枢纽湖泊,其水质状况对保障调水安全起到关键性作用本文运用三维荧光光谱平行因子分析法(EEMs-PARAFAC)分析了3个湖泊在不同水文情景下有色可溶性有机物(CDOM)吸收、荧光光谱特征以及荧光组分与主要水质参数的相关性,以探究3个湖泊CDOM来源组成特征结果表明,平行因子分析法解析CDOM三维荧光图谱,得到陆源类腐殖质C1、类色氨酸C2和类酪氨酸C3不同水文情景对高邮湖CDOM来源与结构组成影响较明显,丰水期其类腐殖质荧光强度显著大于枯水期(t-test,P0.01),并且与a(254)呈正相关(R~2=0.85,P0.01),表明类腐殖质是CDOM主要部分,该荧光组分贡献率可达50%[F_(max)C1/(F_(max)C1+F_(max)C2+F_(max)C3)×100%],高邮湖受到入湖河流来水的影响较大,丰水期入湖口附近荧光强度明显高于其他水域东平湖和南四湖CDOM来源组成特征相似,丰水期东平湖和南四湖组分C2和C3显著低于枯水期(t-test,P0.01),两湖泊枯水期工农业等人为污染源影响较大相关性分析表明高邮湖中类腐殖质荧光特征在一定程度是能反演DOC浓度,并且类腐殖质的输入会增加湖泊总磷、总氮和叶绿素a浓度而东平湖和南四湖CDOM荧光特征与主要水质参数的相关性较差,这与高邮湖水体存在较大差异.  相似文献   

13.
为探究引黄水源水库——门楼水库平水期和丰水期有色可溶性有机物(CDOM)的组成特征、来源及差异,运用紫外—可见光谱技术(UV-vis)和三维荧光光谱(EEMs)技术,结合平行因子分析法(PARAFAC)分析2022年5月(平水期)和2022年7月(丰水期)有色可溶性有机物含量及组分变化。研究结果表明:PARAFAC识别出2类荧光组分,分别是C1(Ex=355 nm,Em=476 nm,类腐殖质组分)和组分C2(Ex=225 nm,Em=320 nm,类蛋白组分);丰水期CDOM组分荧光强度显著高于平水期。CDOM光谱参数表明,门楼水库水体处于中营养状态,水体CDOM受新生内源和外源输入共同影响,以自生源为主;水库CDOM具有相对分子量小、腐殖化程度较弱的特点。丰水期水库富营养化水平和CDOM相对浓度低于平水期;丰水期CDOM疏水性组分比例和芳香化程度高于平水期。水质理化指标、CDOM组分和光谱参数相关性分析结果表明SUVA260和SUVA280与DOC呈显著负相关,说明紫外—可见光谱参数在一定程度上可以用来估算DOC的浓度;Chl.a浓度作为...  相似文献   

14.
The fluorescent properties of dissolved organic matter (DOM) enable comparisons of humic‐like (H‐L) and fulvic‐like (F‐L) fluorescence intensities with dissolved organic carbon (DOC) in aquatic systems. The fluorescence‐DOC relationship differed in gradient, i.e. the fluorescence per gram of carbon, and in the strength of the correlation coefficient. We compare the fluorescence intensity of the F‐L and H‐L fractions and DOC of freshwater DOM in north Shropshire, England, featuring a river, wetland, spring, pond and sewage DOM sources. Correlations between fluorescence and DOC varied between sample sites. Wetland water samples for the F‐L peak gave the best correlation, r = 0·756; the lowest correlation was from final treated sewage effluent, r = 0·167. The relationship between fluorescence and DOC of commercially available International Humic Substances Society standards were also examined and they generally showed a lower fluorescence per gram of carbon for the F‐L peak than the natural samples, whereas peat wetland DOM gave a greater fluorescence per gram of carbon than river DOM. Here, we propose the strength of the fluorescence–DOC correlation to be a useful tool when discriminating sources of DOM in fresh water. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
基于2015年8月采集的24个淮河流域以周村水源水库为代表的表层水样的有色溶解性有机物(CDOM)吸收系数数据,研究了CDOM吸收光谱的空间分布特征,考察了CDOM的吸收系数与水质参数的相关关系,同时探讨了周村水库夏季CDOM的潜在来源.结果显示:依据CDOM的吸收光谱空间分布特性及采样点分布特征,周村水库分为入库口、过渡区和主库区3个特征水域;CDOM的吸收系数沿入库口到主库区依次递减,S值呈现相反的趋势;分析发现S240~500与a(355)和a*(355)呈极显著负相关(R~2=0.98、0.88);CDOM吸收系数a(355)与溶解性有机碳(DOC)浓度具有良好的线性相关,有利于建立DOC遥感反演模型;同时,CDOM吸收系数a(355)与a_(ph)(440)存在极显著正线性相关,表明浮游植物的新陈代谢及其降解产物是夏季周村水库CDOM的潜在来源.综上,通过对夏季周村水库水体CDOM的研究,丰富了关于水源水体CDOM的调查资料,可为日后水库的管理提供技术支撑.  相似文献   

16.
In this study, samples were taken from three contrasting freshwater sources and amended with salt in order to determine the influence of salinity and dissolved organic matter (DOM) composition on DOM recovery via ultrafiltration and solid phase extraction (SPE) with C18 disks. Salt addition caused variable recovery of DOM when using C18 SPE, and ultraviolet–visible spectroscopic characterization of the extracted material showed spectral responses that varied among sample sources. In contrast, increasing sample salinity from 0 to 30 ppt consistently caused a 15–25% reduction in the amount of high molecular weight DOM isolated by ultrafiltration for both dissolved organic carbon (DOC) and chromophoric DOM (CDOM), regardless of DOM composition. We hypothesize that a change in conformation (such as coiling or disaggregation) of DOM molecules occurs in the presence of salt, allowing them to pass through the ultrafiltration membrane and thereby decreasing the DOM retained by ultrafiltration. These results are important because they demonstrate that changes in salinity can influence DOM recovery in estuaries. Interpretation of DOM characteristics along estuarine gradients needs to account for potential artifacts introduced by sample isolation techniques.  相似文献   

17.
Spectroscopic techniques and extracellular enzyme activity measurements were combined with assessments of bacterial secondary production (BSP) to elucidate flood-pulse-linked differences in carbon (C) sources and related microbial processes in a river-floodplain system near Vienna (Austria). Surface connection with the main channel significantly influenced the quantity and quality of dissolved organic matter (DOM) in floodplain backwaters. The highest values of dissolved organic carbon (DOC) and chromophoric DOM (CDOM) were observed during the peak of the flood, when DOC increased from 1.36 to 4.37 mg l?1 and CDOM from 2.94 to 14.32 m?1. The flood introduced DOC which consisted of more allochthonously-derived, aromatic compounds. Bacterial enzymatic activity, as a proxy to track the response to changes in DOM, indicated elevated utilization of imported allochthonous material. Based on the enzyme measurements, new parameters were calculated: metabolic effort and enzymatic indices (EEA 1 and EEA 2). During connection, bacterial glucosidase and protease activity were dominant, whereas during disconnected phases a switch to lignin degradation (phenol oxidase) occurred. The enzymatic activity analysis revealed that flooding mobilized reactive DOM, which then supported bacterial metabolism. No significant differences in overall BSP between the two phases were detected, indicating that heterogeneous sources of C sufficiently support BSP. The study demonstrates that floods are important for delivering DOM, which, despite its allochthonous origin, is reactive and can be effectively utilized by aquatic bacteria in this river-floodplain systems. The presence of active floodplains, characterized by hydrological connectivity with the main channel, creates the opportunity to process allochthonous DOC. This has potential consequences for carbon flux, enhancing C sequestration and mineralization processes in this river-floodplain system.  相似文献   

18.
太湖冬季有色可溶性有机物吸收荧光特性及遥感算法   总被引:3,自引:2,他引:1  
基于2006年和2007年1月两次太湖采样,对50个点位的有色可溶性有机物(CDOM)光谱吸收、荧光、溶解性有机碳(DOE)浓度及遥感反射率进行测定与分析,探讨冬季太湖CDOM的吸收荧光特性及空间分布,建立CDOM吸收系数的遥感反演算法.结果表明,太湖冬季CDOM在355nm处吸收系数a(355)变化范围和均值分别为1...  相似文献   

19.
20.
Previous field and laboratory studies showed that organically bound nutrients can contribute largely to the export of N, P, and S from soil into aquatic systems. One possible determinant for the losses of dissolved organic nutrients leaving the soil environment could be their distribution between dissolved organic matter (DOM) fractions of different mobility in soil. To elucidate the potential influence of DOM fractions under varying flow conditions on the vertical translocation of organically bound nutrients, we determined the concentrations and fluxes of dissolved organic C (DOC) and nutrients (DON, DOP, DOS) in soil water under a Scots pine (Pinus sylvestris L.) and a European beech (Fagus sylvatica L.) forest. We sampled seepage water from the organic forest floor layer and the mineral subsoil using zero‐tension lysimeters and soil pore water using tension lysimeters and suction cups. DOM in soil water was fractionated into hydrophilic and hydrophobic compounds by XAD‐8 at pH 2. We found that the organic forest floor layers were large sources for DOC, DON, DOP, and DOS. The dissolved organic nutrients were mainly concentrated in the hydrophilic DOM fraction which proved to be more mobile in mineral soil pore water than the hydrophobic one. Consequently, the concentrations and fluxes of dissolved organic nutrients decreased less with depth than those of DOC. Concentrations as well as fluxes in subsoil pore water of DOC and dissolved organic nutrients in the studied weakly developed soils were high as compared with literature data on deeply developed forest soils. Under conditions of rapid water flow through the strongly structured mineral soil at the beech site, almost no retention of DOM took place and thus the influence of the distribution of organically bound nutrients between the DOM fractions on the export of DON, DOP, and DOS was negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号