首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Frequent heavy rainfalls during the East Asian summer monsoon drastically increase water flow and chemical loadings to surface waters. A solid understanding of hydroclimatic controls on watershed biogeochemical processes is crucial for water quality control during the monsoon period. We investigated spatio‐temporal variations in the concentrations and spectroscopic properties of dissolved organic matter (DOM) and the concentrations of trace metals in Hwangryong River, Korea, during a summer period from the relatively dry month of June through the following months with heavy rainfall. DOM and its spectroscopic properties differed spatially along the river, and also depended on storm and flow characteristics around each sampling time. At a headwater stream draining a forested watershed, the concentrations (measured as dissolved organic carbon (DOC)), aromaticity (measured as specific UV absorbance at 254 nm), and fulvic acid‐ and protein‐like fluorescence of DOM were higher in stormflow than in baseflow waters. DOC concentrations and fluorescence intensities increased along the downstream rural and urban sites, in which DOC and fluorescence were not higher in stormflow waters, except for the ‘first flush’ at the urban site. The response of DOM in reservoir waters to monsoon rainfalls differed from that of stream and river waters, as illustrated by storm‐induced increases in DOM aromaticity and fulvic‐like fluorescence, and no significant changes in protein‐like fluorescence. The results suggest that surface water DOM and its spectroscopic properties differentially respond to changes in hydroclimatic conditions, depending on watershed characteristics and the influence of anthropogenic organic matter loadings. DOC concentrations and intensities of spectroscopic parameters were positively correlated with some of the measured trace metals (As, Co, and Fe). Further research will be needed to obtain a better understanding of climate effects on the interaction between DOM and trace metals. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Amount and composition of dissolved organic matter (DOM) were evaluated for multiple, nested stream locations in a forested watershed to investigate the role of hydrologic flow paths, wetlands and drainage scale. Sampling was performed over a 4‐year period (2008–2011) for five locations with drainage areas of 0.62, 3.5, 4.5, 12 and 79 ha. Hydrologic flow paths were characterized using an end‐member mixing model. DOM composition was determined using a suite of spectrofluorometric indices and a site‐specific parallel factor analysis model. Dissolved organic carbon (DOC), humic‐like DOM and fluorescence index were most sensitive to changes with drainage scale, whereas dissolved organic nitrogen, specific UV absorbance, Sr and protein‐like DOM were least sensitive. DOM concentrations and humic‐like DOM constituents were highest during both baseflow and stormflow for a 3.5‐ha catchment with a wetland near the catchment outlet. Whereas storm‐event concentrations of DOC and humic DOM constituents declined, the mass exports of DOC increased with increasing catchment scale. A pronounced dilution in storm‐event DOC concentration was observed at peak stream discharge for the 12‐ha drainage location, which was not as apparent at the 79‐ha scale, suggesting key differences in supply and transport of DOM. Our observations indicate that hydrologic flow paths, especially during storms, and the location and extent of wetlands in the catchment are key determinants of DOM concentration and composition. This study furthers our understanding of changes in DOM with drainage scale and the controls on DOM in headwater, forested catchments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Bog systems tend to have a flashy hydrological regime with low baseflows and rapid and high storm peaks. Water derived from peatlands often contains significant amounts of organic humic and fulvic materials which form the largest fraction of the dissolved organic carbon component of the fluvial carbon flux. However, most estimates of dissolved organic carbon flux from peatlands are based on sampling that is infrequent and which may miss the periods of high flux during storm events. In order to better characterize the behaviour and fluxes of fluvial carbon it is necessary to operate more frequent sampling. This paper presents data from a continuously operating field‐based spectrophotometer simultaneously measuring absorbance across 200–730 nm at 2·5 nm intervals in runoff from an upland peatland stream. It is shown that absorbance at different wavelengths that have previously been used to characterize dissolved organic carbon varies rapidly during storm events. The probe is shown to even detect changes in absorbance characteristics in response to rainfall events before the stream discharge starts to rise. The high‐resolution behaviour of absorbance characteristics during storm events is different depending on the wavelength studied. Thus, the choice of wavelength used as a proxy for dissolved organic carbon needs careful attention and it may be that automated spectrophotometric methods which provide rich time‐series data from across the spectrum can tell us more about fluxes, processes and sources of aquatic carbon in peatland systems in the future than traditional practices have hitherto allowed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The fluorescent properties of dissolved organic matter (DOM) enable comparisons of humic‐like (H‐L) and fulvic‐like (F‐L) fluorescence intensities with dissolved organic carbon (DOC) in aquatic systems. The fluorescence‐DOC relationship differed in gradient, i.e. the fluorescence per gram of carbon, and in the strength of the correlation coefficient. We compare the fluorescence intensity of the F‐L and H‐L fractions and DOC of freshwater DOM in north Shropshire, England, featuring a river, wetland, spring, pond and sewage DOM sources. Correlations between fluorescence and DOC varied between sample sites. Wetland water samples for the F‐L peak gave the best correlation, r = 0·756; the lowest correlation was from final treated sewage effluent, r = 0·167. The relationship between fluorescence and DOC of commercially available International Humic Substances Society standards were also examined and they generally showed a lower fluorescence per gram of carbon for the F‐L peak than the natural samples, whereas peat wetland DOM gave a greater fluorescence per gram of carbon than river DOM. Here, we propose the strength of the fluorescence–DOC correlation to be a useful tool when discriminating sources of DOM in fresh water. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Andy Baker 《水文研究》2002,16(16):3203-3213
There is a need to be able to differentiate the dissolved organic matter (DOM) fraction in river waters. Research in the 1970s and 1980s has attempted to utilize both absorbance and fluorescence to distinguish between DOM fractions in river waters, but both were limited by the available technology. Total organic carbon content has, therefore, been widely used as a standard method of measuring DOM concentration, although it has little power to differentiate DOM fractions. Recent advances in fluorescence spectrophotometry enable rapid and optically precise analysis of DOM. Here, we show how a combination of both fluorescence and absorbance can be used to discriminate statistically between spatial variations of DOM in tributaries in a small catchment of the Ouseburn, NE England. The results of the discriminant analysis suggest that about 70% of the samples can be correctly classified to its tributary. Discriminant function 1 explains 60·8% of the variance in the data and the fulvic‐like fluorescence intensity has the largest absolute correlation within this function; discriminant function 2 explains a further 21·5% of the variance and the fulvic‐like fluorescence emission wavelength has the largest absolute correlation within this function. The discriminant analysis does not correctly classify all tributaries every time, and successfully discriminates between the different tributaries 70% of the time. Occasions when the tributary waters are less well discriminated are due to either episodic pollution events (at two sites) or due to tributaries that have strong seasonal trends in spectrophotometric parameters, which allows the sites to be misclassified. Results suggest that spectrophotometric techniques have considerable potential in the discrimination of DOM in rivers. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
This study aimed to evaluate the importance of physical, chemical and biological factors (e.g., chlorophyll-a, and carbon) in the regulation of the summer epilimnion thickness (Zmix) of the tropical lakes focusing on trends of the current environmental variability. We sampled a set of tropical lakes from the middle Rio Doce lacustrine system (Minas Gerais, Brazil) for two consecutive summers. Besides Zmix, we analyzed the visible light attenuation (KdPAR), dissolved organic carbon (DOC), chlorophyll-a (Chl-a), total suspended solids (TSS), and fetch. We also analyze the quality of the dissolved organic matter (DOM) through colored dissolved organic matter (CDOM), spectral slope (S), DOC-specific absorbance (SUVA) and the ratio between the absorbance at 250 nm and 365 nm (E250:365). Our results showed quite different results during the two years studied. In the summer of 2012, when there was higher rainfall, variations in Zmix were correlated to the optical factors associated with DOM quality, while in the drier summer of 2013 Chl-a, TSS and fetch were the variables that more explained Zmix. It suggests that DOM regulates the Zmix in the rainy periods in the studied tropical lakes and that control is determined by the balance between the DOM input (runoff) and output (such as photodegradation) of the aquatic systems. In reduced rain conditions (summer 2013), the factors responsible by chemistry photodegradation of DOM were predominant, and the organic matter was no longer controlling Zmix, which was driven by internal mixing, productivity, and the wind (Chl-a, TSS and fetch). In this study we showed how changes in precipitation might cause shifts in the factors that regulate the epilimnion thickness in tropical lakes.  相似文献   

7.
The results of a comparison between chemical water quality determinants and river water fluorescence on the River Tyne, NE England, demonstrate that tryptophan‐like fluorescence intensity shows statistically significant relationships between nitrate, phosphate, ammonia, biochemical oxygen demand (BOD) and dissolved oxygen. Tryptophan‐like fluorescence intensity at the 280 nm excitation/350 nm emission wavelength fluorescence centre correlates with both phosphate (r = 0·80) and nitrate (r = 0·87), whereas tryptophan‐like fluorescence intensity at the 220 nm excitation/350 nm emission wavelength centre correlates with BOD (r = 0·85), ammonia (r = 0·70) and dissolved oxygen (r = ?0·65). The strongest correlations are between tryptophan‐like fluorescence intensity and nitrate and phosphate, which in the Tyne catchment derive predominantly from point and diffuse source sewage inputs. The correlation between BOD and the tryptophan‐like fluorescence intensity suggests that this fluorescence centre is related to the bioavailable or labile dissolved organic matter pool. The weakest correlations are observed between tryptophan‐like fluorescence intensity and ammonia concentration and dissolved oxygen. The weaker correlation with ammonia is due to removal of the ammonia signal by wastewater treatment, and that with dissolved oxygen due to the natural aeration of the river such that this is not a good indicator of water quality. The observed correlations only hold true when treated sewage, sewerage overflows or cross connections, or agricultural organic pollutants dominate the water quality—this is not true for two sites where airport deicer (propylene glycol, which is non‐fluorescent) or landfill leachate (which contains high concentrations of humic and fulvic‐like fluorescent DOM) dominate the dissolved organic matter in the river. Mean annual tryptophan‐like fluorescence intensity agrees well with the General Water Quality Assessment as determined by the England and Wales environmental regulators, the Environment Agency. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
The molecular characteristics of dissolved organic matter (DOM) reflect both its source material and its biogeochemical history. In glacial systems, DOM characteristics might be expected to change over the course of a melt season as changes in the glacier drainage system cause the mobilization of DOM from different OM pools. To test this hypothesis we used Principal Components Analysis (PCA) of synchronous fluorescence spectra to detect and describe changes in the DOM in meltwater from a glacier system in the Coast Mountains of northern British Columbia, Canada. For most of the melt season, the dominant component of subglacially routed meltwater DOM is characterized by a tyrosine‐like fluorophore. This DOM component is most likely derived from supraglacial snowmelt. During periods of high discharge, a second component of DOM is present which is humic in character and similar to DOM sampled from a nearby non‐glacial stream. This DOM component is inferred to be derived from a moss‐covered soil environment that has been glacially overrun. It is probably entrained into glacial melt waters when the supraglacial meltwater flux exceeds the capacity of the principal subglacial drainage channels and water floods areas of the glacier bed that are normally isolated from the subglacial drainage system. Another source of DOM also appears to be mobilized during periods of high air temperatures. It is characterized by both humic and proteinaceous fluorophores and may be derived from the drainage of supraglacial cryoconite holes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Dissolved organic matter (DOM) concentration and composition in riverine and stream systems are known to vary with hydrological and productivity cycles over the annual and interannual time scales. Rivers are commonly perceived as homogeneous with respect to DOM concentration and composition, particularly under steady flow conditions over short time periods. However, few studies have evaluated the impact of short term variability (<1 day) on DOM dynamics. This study examined whether diurnal processes measurably altered DOM concentration and composition in the hypereutrophic San Joaquin River (California) during a relatively quiescent period. We evaluated the efficacy of using optical in situ measurements to reveal changes in DOM which may not be evident from bulk dissolved organic carbon (DOC) measurement alone. The in situ optical measurements described in this study clearly showed for the first time diurnal variations in DOM measurements, which have previously been related to both composition and concentration, even though diurnal changes were not well reflected in bulk DOC concentrations. An apparent asynchronous trend of DOM absorbance and chlorophyll‐a in comparison to chromophoric dissolved organic matter (CDOM) fluorescence and spectral slope S290–350 suggests that no one specific CDOM spectrophotometric measurement explains absolutely DOM diurnal variation in this system; the measurement of multiple optical parameters is therefore recommended. The observed diurnal changes in DOM composition, measured by in situ optical instrumentation likely reflect both photochemical and biologically‐mediated processes. The results of this study highlight that short‐term variability in DOM composition may complicate trends for studies aiming to distinguish different DOM sources in riverine systems and emphasizes the importance of sampling specific study sites to be compared at the same time of day. The utilization of in situ optical technology allows short‐term variability in DOM dynamics to be monitored and serves to increase our understanding of its processing and fundamental role in the aquatic environment. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
11.
The estuarine chemistry of dissolved humic acids was determined by carrying out both field and laboratory studies. These approaches were combined in an investigation of the Amazon estuary while laboratory mixing experiments were performed using filtered (0.45?0.001 μm) river water fractions of the Water of Luce (Scotland).The results demonstrate that a small fraction of river dissolved organic matter is preferentially and rapidly flocculated during estuarine mixing. This fraction is the high molecular weight component of dissolved humic acids (0.45?0.1 μm filtered). Approximately 60–80% of the dissolved humic acid in these rivers flocculates during estuarine mixing. This represents a removal of only 3–6% of river dissolved organic matter and is responsible for the non-conservative behaviour of dissolved humic acid in the Amazon estuary even though total dissolved organic carbon appears conservative.The salinity dependence with which humic acid flocculates in estuaries is similar to that of iron. This implies that both constituents may be removed from river water by a common mechanism of colloid flocculation.  相似文献   

12.
13.
Absorbance at 360 nm was measured on 44 filtered streamwater samples of different dissolved organic matter (DOM) contents. A regression equation of DOM on absorbance predicted DOM with a standard error of estimate of 1.26 mgl?1, Use of a published equation relating dissolved organic carbon (DOC) to absorbance gave DOC values for the samples which were consistent with measured DOM. The method offers considerable potential for rapid quantification of dissolved organic matter concentrations in streamwater.  相似文献   

14.
Most terrestrial allochthonous organic matter enters river networks through headwater streams during high flow events. In headwaters, allochthonous inputs are substantial and variable, but become less important in streams and rivers with larger watersheds. As allochthonous dissolved organic matter (DOM) moves downstream, the proportion of less aromatic organic matter with autochthonous characteristics increases. How environmental factors converge to control this transformation of DOM at a continental scale is less certain. We hypothesized that the amount of time water has spent travelling through surface waters of inland systems (streams, rivers, lakes, and reservoirs) is correlated to DOM composition. To test this hypothesis, we used established river network scaling relationships to predict relative river network flow-weighted travel time (FWTT) of water for 60 stream and river sites across the contiguous United States (3090 discrete samples over 10 water years). We estimated lentic contribution to travel times with upstream in-network lake and reservoir volume. DOM composition was quantified using ultraviolet and visible absorption and fluorescence spectroscopy. A combination of FWTT and lake and reservoir volume was the best overall predictor of DOM composition among models that also incorporated discharge, specific discharge, watershed area, and upstream channel length. DOM spectral slope ratio (R2 = 0.77) and Freshness Index (R2 = 0.78) increased and specific ultraviolet absorbance at 254 nm (R2 = 0.68) and Humification Index (R2 = 0.44) decreased across sites as a function of FWTT and upstream lake volume. This indicates autochthonous-like DOM becomes continually more dominant in waters with greater FWTT. We assert that river FWTT can be used as a metric of the continuum of DOM composition from headwaters to rivers. The nature of the changes to DOM composition detected suggest this continuum is driven by a combination of photo-oxidation, biological processes, hydrologically varying terrestrial subsidies, and aged groundwater inputs.  相似文献   

15.
运用三维荧光光谱(EEMs)技术结合平行因子分析法(PARAFAC),对周村水库夏季两场暴雨不同降雨历时以及分子量的溶解有机物光谱特征和来源进行分析.结果表明:周村水库不同暴雨荧光光谱中出现了5种组分,分别为类腐殖质(C1、C2)、可见区富里酸(C3)和类蛋白(C4、C5);相关性分析显示C1与C2、C3、C4以及C5具有显著的相关性,C2与C3具有显著的相关性,C3与C4以及C5具有显著的相关性;同一分子量下的雨水有机质总荧光强度以及各组分荧光强度随着降雨历时的增加均呈下降趋势,并且在各个历时和分子量间差异明显;同一降雨历时下,第一场暴雨总荧光强度随着分子量的减少而增加,第二场暴雨总荧光强度随着分子量的减少而减少;两场暴雨都呈现自生源的特征,其中第一场暴雨具有以陆源输入为主的特征;组分C1和C3与水质参数硝态氮、氨氮、总氮以及有机碳呈显著相关性.通过对暴雨在不同降雨历时以及分子量DOM光谱特征研究,可以进一步分析水库外源输入的天然有机质特征,为水库水质管理提供技术支持.  相似文献   

16.
Dissolved organic matter (DOM) concentrations in throughfall, throughflow, and runoff were recorded in a small (95 ha) woodland catchment in North Warwickshire for a period of eight weeks following a prolonged dry spell. DOM is shown to be positively related to stream discharge over the sampling period, although distinctive flushing effects were identified. The net contribution of DOM to total dissolved solids load carried in the river was only 2.4 per cent, and represented significantly less than published carbon losses by mineralization of soil organic matter. Throughfall inputs were some 100 times higher than streamflow outputs from the catchment.  相似文献   

17.
Exploring the chemical characterization of dissolved organic matter (DOM) is important for understanding the fate of laterally transported organic matter in watersheds. We hypothesized that differences in water-extractable organic matter (WEOM) in soils of varying land uses and rainfall events may significantly affect the quality and the quantity of stream DOM. To test our hypotheses, characteristics of rainfall-runoff DOM and WEOM of source materials (topsoil from different land uses and gullies, as well as typical vegetation) were investigated at two adjacent catchments in the Loess Plateau of China, using ultraviolet–visible absorbance and excitation emission matrix fluorescence with parallel factor analysis (PARAFAC). Results indicated that land-use types may significantly affect the chemical composition of soil WEOM, including its aromaticity, molecular weight, and degree of humification. The PARAFAC analysis demonstrated that the soils and stream water were dominated by terrestrial/allochthonous humic-like substances and microbial transformable humic-like fluorophores. Shifts in the fluorescence properties of stream DOM suggested a pronounced change in the relative proportion of allochthonous versus autochthonous material under different rainfall patterns and land uses. For example, high proportions of forestland could provide more allochthonous DOM input. This study highlights the relevance of soils and hydrological dynamics on the composition and fluxes of DOM issuing from watersheds. The composition of DOM in soils was influenced by land-use type. Precipitation patterns influenced the proportion of terrestrial versus microbial origins of DOM in surface runoff. Contributions of allochthonous, terrestrially derived DOM inputs were highest from forested landscapes.  相似文献   

18.
Boreal watersheds contain a vast quantity of terrestrially derived dissolved organic matter (DOM) originating from wetland and forest soils, yet variation in the potential for photochemical transformation of boreal aquatic DOM sources remains poorly understood. Laboratory solar radiation exposure experiments were conducted on DOM samples collected in three seasons, across nine sites, representing contrasting catchment composition and watershed position to assess variation in the photochemical lability of boreal DOM source and stable carbon isotopic signature (δ13C) of photomineralized DOM. Dissolved organic carbon (DOC) loss rates during laboratory exposure were lowest in summer, suggesting that DOM may have been more photo-degraded during summer. DOM from upstream portions of forested stream sites and wetland-influenced sites was more photolabile relative to downstream portions and the river DOM, suggesting potential losses in photolabile DOM downstream and in the lower reaches of the watershed. Increased a254:a350 and spectral slope following sample exposure suggest photoproduction of low molecular weight (LMW) CDOM and/or a higher photoreactivity of high molecular weight versus LMW compounds. Photomineralization of nitrogen was regulated by organic nitrogen concentration and resulted in NH4 +-photoproduction rates between 0.01 and 0.3?μM N?h?1 and ecologically significant increases in NH4 + for these waters. The δ13C of the photomineralized DOM was positively correlated to initial DOC concentration and generally lower when initial DOC concentrations were lower, suggesting variation in photomineralized DOM δ13C may be a result of kinetic isotope fractionation. Results from this study demonstrate significant variation in the photochemical lability of boreal watershed sources of DOM. Such variation suggests landscape and environmental change has the potential to alter the biogeochemical role photochemical transformations play in downstream portions of boreal watersheds.  相似文献   

19.
To detect temporal changes and the origin of the refractory dissolved organic matter in the Upper Rhône River, UV light absorbance (A) at 285 nm and quantitative dissolved organic carbon (DOC) measurements were carried out. Data from 63 visits to the main channel over a period of two years and from visits to different waterbodies in the alluvial plain before and after a flood are presented. There was a good correlation between A (0.019–0.160) and the DOC content (1.40–9.81 mg/L) for the waterbodies, but not for the river axis with lower A (0.013–0.044) and DOC content (1.13–2.20 mg/L). Due to this good correlation, the DOC content could be quantified for the waterbodies by absorbance measurements only. For the river water this indirect determination of the DOC content was not possible. However, the A/DOC ratio showed changes in the composition of DOC of river water and provided indications about the origin of the dissolved organic matter in the Upper Rhône River.  相似文献   

20.
The spatial and diurnal tidal variability of dissolved organic carbon (DOC) concentrations and the composition of dissolved organic matter (DOM), as evaluated by high-temperature catalytic oxidation and excitation–emission matrix combined with parallel factor analysis (EEM–PARAFAC), respectively, were determined in Liverpool Bay. EEM–PARAFAC modeling resulted in six fluorescent components characterized as terrestrial humic-like (two), microbial humic-like (two), and protein-like (two). The spatial distributions of DOC and the four humic-like components were negatively correlated with salinity in the high-salinity waters observed in this study (30.41–33.75), suggesting that terrestrial DOM was conservatively distributed. The spatial patterns of protein-like components were largely different from those of DOC, humic-like components, and chlorophyll a, suggesting that these distributions were the combined result of production and degradation in the bay in addition to river inputs. These findings suggest that the DOM dynamics in Liverpool Bay are strongly controlled by river-dominated allochthonous DOM inputs with some less significant contributions of autochthonous DOM within the bay. In addition, the temporal variations of DOM associated with the diurnal tidal cycles were determined at one inshore (31.34–32.24 salinity) and one offshore (33.64–33.75 salinity) station in the bay. Negative linear relationships between salinity and DOM characteristics, i.e., DOC, humic-like, and protein-like components, were observed at the inshore station. In contrast, no relationship was observed at the offshore station, suggesting that the export of DOM through rivers and possibly tidal flats have a noticeable influence on DOM concentration and composition up to a relatively elevated salinity of around 33 in Liverpool Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号